
Compiler Design
Qingzhe Huang
ID: 5037735
Comp442 Compiler Design
Apr. 20, 2004
Abstract

This report is the final assignment of comp442 and includes 5 following parts:
1. Description of source language SLANG:

a) The syntax given by a context-free grammar

b) Lexical conventions

c) Semantics 

d) Changed form of grammar for parsing

e) Code generation limitations

2.  User’s guide

a) How to use my compiler

b) Options available

3.   Structure of my compiler

a)  Structure of whole compiler 

b) Design of scanner

c) Design of parser

d) Design of symbol table

e) Description of the code generation 

f) Description of error handling

g) List of the errors recognized by my compiler

h) Design of grammar analysis part

i)  Design of context-free-grammar reader

4.   Evaluation of the efficiency of my compiler

a) Evaluation of speed of my compilation process
b) Evaluation of size of my compiler
c) Evaluation of code efficiency
d) Evaluation of grammar-independency-parsing feature of my compiler

5.  Evaluation of my compiler design decisions

a) What can be done if given more time?

b) What should be done if I could restart my project?

1. Introduction Description of source language SLANG:
a)  The syntax given by a context-free grammar
 M -> program i ; Dl B

Dl -> Dv Ml

Ml -> Ml Mo | e

Mo -> module i ( Vl ) Dv B

Dv -> variables Vl | e

Vl -> Vl V | e

V -> Il : T ;

T -> integer Ad  | char Ad

Il -> i | Il , i

L -> i Ar

Ad -> e | array [ n ]

B -> begin Sl end ;

Sl -> S | S Sl

S -> L := E ; | if C  then S else S | loop Sl end ; | exit ; | i ( Lp ) ; | B | read Ln ; | write Lo ; | e ;

Lp -> e | Ln

Ln -> L { , L }

Lo -> Lr { , Lr }

Lr -> i Ar | n | c

Ar -> e | [ E ]

E -> F { Oa F }

Oa -> + | -

F -> R { Om R }

Om -> * | /

R -> L | n | ( E ) | c

C -> E Or E

Or -> = | < | > | <= | >= | !=
b)  Lexical conventions

i) Tokens are case-sensitive.

ii) Tokens have a maximum length of 255 characters. For number type, the maximum is 12 digits. Comments have no limit of length.

iii) All reserved key words are in small-case letters.

iv)  All characters (ASCII character from 0 to 255) except space, end of line, tab, and those listed in assignment will be considered illegal unless they are character constant or part of comments.
v) When an error happens my scanner tries to resume before a maximum of 10 errors are reached. Then it stops.

vi)  If source code file is empty, it is also considered as an error.

c)  Semantics 
i) The three-address-code instruction-set:

INTER_ADD, INTER_SUB, INTER_MUL, INTER_DIV,

INTER_CEQ, INTER_CNE, INTER_CLT,INTER_CLE, INTER_CGT, INTER_CGE,

INTER_ASN,

INTER_READ, INTER_WRITE,

INTER_LABEL,

INTER_JTRUE, INTER_JFALSE, INTER_JUMP,

INTER_HALT,

INTER_CALL, INTER_PARAM
ii) The instruction format:

----- Arithmetic and logic instruction:

(opcode, add1, add2, result)  

where add1 and add2 can be immediate value, opcode includes:





 INTER_ADD, INTER_SUB, INTER_MUL, INTER_DIV, INTER_CEQ, INTER_CLT, INTER_CLE,  INTER_CGT, INTER_CGE, INTER_CNE,

i.e.  (INTER_ADD, a, b, @t0)  <===> @t0 =  a+b

i.e.  (INTER_DIV, a, b, @t0)  <===>  @t0 =   a/b
i.e.  (INTER_CLE, a, b, @t0)  <===>  @t0 =   a<=b
------ Conditional jump and assignment

(opcode, condition, -, label)\


where condition is a true-false value or right-hand-side variable and label is a label or left-hand-side variable. 

opcode includes:

INTER_JTRUE, INTER_JFALSE,INTER_ASSIGNMENT
i.e. (INTER_ASN, a, -, b)  <===>  b := a;

i.e. (INTER_JFALSE, boolVal, -, label)  <===> if_f boolVal then jump label

i.e. (INTER_JTRUE, boolVal, -, label)  <===>  if  boolVal then jump label

------- Unconditional jump and Label and parameter passing and module calling

(opcode, -,-, label)

where label is a label or a module or a parameter of a module. 

opcode include : 
INTER_JUMP, INTER_LABEL, INTER_CALL, INTER_PARAM

i.e. (INTER_LABEL, -,-, lbl)           <===>  label:  lbl;

i.e. (INTER_JUMP, -,-, lbl)            <===>  jump lbl;

i.e. (INTER_CALL, -,-, moduleName)     <===>  call moduleName();

i.e. (INTER_PARAM, -,-,param)          <===>  passing param by either stack or register

--------Read and write use different format:

(opcode, var, -, -)

where var is parameter for write and the opcode is INTER_WRITE;

i.e. (INTER_WRITE, var, -, -)    <===>   write var;

(opcode, -, -, var)                         

where var is a parametn for read and opcode is INTER_READ;

i.e. (INTER_READ, -,-, var);     <===> read var;

iii) Assignment and comparison statement

Assignment statement and logical comparison statement will check the type of l-hand and r-hand. And only simple data type allowed. That is, array assignment and comparison operations are not allowed. Assignment must be in strict type: different type of left-hand-side and right-hand-side will be checked and will raise an error.

iv)  Module and parameter

Module has parameters of upper bound of 10. Module calling will be checked with types and numbers of parameters. Parameter will be passed by reference or by its address. Recursive module calling is allowed.

v) Variable and module declaration

Each module and variable must be declared before it is used.

vi)  Variable scope

Each variable and parameter declared in module can only be used in that module.

vii)  Each module should be declared exactly once.

viii) Type checking

Since operation of assignment and comparison will be checked with type, char and integer cannot be mixed during operations.

ix)  Array operation 
Read and write operation can only operate on simple data type. The following is considered as an error:


module simple()


variables A: integer array[3];


begin




read A;  /*error of read an array */




write simple; /*error of write a module */


end;

d) Changed form of grammar for parsing

M ==> program i ; Dl B

 Dl ==> Dv Ml

 B ==> begin Sl end ;

 Dv ==> variables Vl  | e

 Ml ==> Ml0

 Mo ==> module i ( Vl ) Dv B

 Vl ==> Vl0

 V ==> Il : T ;

 Il ==> i Il0

 T ==> integer Ad  | char Ad

 Ad ==> e  | array [ n ]

 L ==> i Ar

 Ar ==> e  | [ E ]

 Sl ==> S Sl0

 S ==> i S0  | if C then S else S  | loop Sl end ;  | exit ;  | begin Sl end ;  | read Ln ;  | write

 Lo ;  | e ;

 E ==> F M0

 C ==> F M0 Or E

 Lp ==> e  | Ln

 Ln ==> i Ar M1

 Lo ==> Lr M2

 Lr ==> i Ar  | n  | c

 F ==> R M3

 Oa ==> +  | -

 R ==> i Ar  | n  | ( E )  | c

 Om ==> *  | /

 Or ==> =  | <  | >  | <=  | >=  | !=

 M0 ==> + F M0  | e  | - F M0

 M1 ==> , L M1  | e

 M2 ==> , Lr M2  | e

 M3 ==> * R M3  | e  | / R M3

 Ml0 ==> module i ( Vl ) Dv B Ml0  | e

 Vl0 ==> i Il0 : T ; Vl0  | e

 Il0 ==> , i Il0  | e

 Sl0 ==> e  | Sl

 S0 ==> Ar := E ;  | ( Lp ) ;

 START ==> M $

Press any key to continue

e) Code generation limitations

i)  Memory space limitations


Main program variables and all labels and main program temporaries are all stored in memory between 32000 and 30000. Therefore a maximum space of 2000 bytes limits the size of main program.  Each module stores all its local variables, temporaries in stack and there is a limit of 240 bytes. Stack starts at high memory address 30000 and deeper recursion has the danger of overwriting code which starts from low memory. 
ii) Array and module

Array is considered as an address and can not be operated in assignment, I/O, comparison. While element of array is treated as a simple data type which can be manipulated as simple variables. But in my implementation, element of array is implemented as a pointer. i.e.  

variables A: integer array[5];  

A[2] ( is a temporaries pointer with its address field calculated as “address of  A + (size of integer)*2”.

Array can be passed as parameters by reference. 

Module’s argument must strictly match its declaration which means that the size of array is also checked. All parameters are passed by reference or its address. The upper limit number of parameters is 10. 
iii) Run-time system

My run-time system is dynamic and all module local variables, temporaries and parameters are stored in stack. Recursion is allowed. Parameters are passed by reference.
iv) The symbol table 

The symbol table has an upper limit of maximum 800 grammar Node can be stored. And the total length of all symbol name can not exceed 4096, including NULL characters. 
2. User’s guide
a)  How to use my compiler
i) The executable file
The executable file is named “CFGReader.exe” which means context-free-grammar-reader.

ii) The input file

You need a grammar source input file for my executable to read in grammar rules. The name of file is “ruletest.txt” and it should be at same folder of executable files.

You also need source code file for compilation. The name of file is “test.txt” and should also be at same folder of executable files.
iii) The output file

There will be four output files:

“test0.txt” is scanner output file which lists all source code in “test.txt” including comment and possible error messages if scanning errors are encountered. Also line numbers will be added for each line.

“test1.txt” is parser output file which lists all grammar rules it parsed, including possible error messages if parsing errors are encountered. 

“test2.txt” is intermediate code output file which lists all intermediate code or 3-address-code, including possible error messages if intermediate code errors are encountered.

“test3.txt” is the target code output file which lists all target code for “moon machine”, including possible error messages if code generation errors are encountered.

iv)  How to run simulator

You need executable “moon simulator” file “moon.exe” along with utility library “util.m”. They should be placed the same folder of generated target code file “test3.txt”. To run, simply type in “moon util.m test3.txt” at command line. (For details, please check user’s manual of moon simulator.)

b) Options available
You can call my compiler at command line by your own grammar source file:
CFGReader   yourGrammarSourceFile  yourSourceCodeFile  

Then the output file name would be:
Scanner output file name=yourSourceCodeFileName+0.txt

Parser output file name= yourSourceCodeFileName+1.txt

Intermediate code output file name= yourSourceCodeFileName+2.txt

Target code file name = yourSourceCodeFileName+3.txt
3. Structure of my compiler
a) Design of scanner

i) I am using table-driven method for scanner. 

ii). I mapped 255 ASCII character to 72 CharType which is an enum type. Therefore I reduced the size of my token-state-table.

iii) My scanner treats each reserved key word as a type of token. Therefore I have a total 37 token types. Each key word is scanned like Automaton like all other type of tokens. And error is considered to be a special token type because it is also a "final" state in Automaton. So, I add "ERRORTYPE" into my final states.

iv)  Since many key-word-related states are added to my state table, I have a total of 138 token states. Wnen "nextToken" method called, it will eat up all white space and remain in state "READY". So, I don't have a special method to eat up all white space which is suggested by Dr. Optrany. 

v) My token state table is a 138x72 table with 138 rows of token state, 72 columns of CharType. Each entry of table is just a token state. This token-state-table is using like a function, that is, at a specific state with a specific "CharType" it will return a specific state. A special initializing unit is used to initialize all states in table. 

vi) A independent "error-handling" function is designed to be called throughout compilation procedure. I defined a series of "error-code" which is simply enum type and grouped with range of Scanner, Parser, Semantical Analyser. So, error-handling is done in a kind of uniformal way, that is, when error occurred simply call "errorHandler" with an "errorNo". Within the global function "errorHandler" it test the range of "errorNo" to determine the scope of error to be from Scanner or Parser or whatever. Then according to source of error, errorHandler will try to access some infomation to do specific error-handling for the error. In case of Scanner, I now only designed to output error message to program listing file. 
vii)  When an error encountered, Scanner will report error by calling "errorHandler", then resume to "READY" state to be able to be called for next token. A error number counter is incremented. When number of error reaches to 10, method "nextToken" will always return false which originally means "EndOfFile" and user should stop calling "nextToken" method because result will be undefined.
b) Design of parser
i) I am writing a kind of parsing tool which read in the extended BNF grammar and removes all left-recursion, common-left-factor and calculates the First, Follow set of each non-terminal.

ii) My parser is a table-driven parser and the parsing table is built by my parsing tool.

iii) There are two auxiliary class to help my parser---grammar and CFGReader. CFGReader is to read in E-BNF and store all rules in an array of struct GrammarToken.

iv) Grammar implements almost all grammar-related job: replacing "{}" used in E-BNF with “|” in CFG, removing left-recursion, removing 
common-left-factor, calculating Null property, calculating First and Follow set for each non-terminal, displaying 
grammar rules, displaying look-ahead of each rule, building NT-table for parser.

v) Parser has little job to do except implementing a stack and standard algorithm given in textbook.

vi) All syntax error would cause parser stop while declaration error won't!.
c) Design of symbol table
i) The symbol table is based on hash table which is wrapped by a class. The table contains the pointer to each Node. And each Node is declared in a static array of Node of size 800.

ii) Conflict in hash table is solved with separate chaining. Therefore the field of “next” of Node points to a linked list of Nodes. 

iii) During parsing there are two instances of “hash-table” class, a “mainHash” and a “moduleHash” which contains symbols of main program and current module respectively. After parsing module, the “moduleHash” will be cleared and hash table space can be reused for other modules. 

iv) When parsing module, searching of symbols will be done first in “moduleHash”. Therefore local variables could have same name as global variable and is recognized in module first. While parsing in main program, searching would only be done in “mainHash”. 
v) Node for module has a field called “paramNo”, indicating number of parameters it has and another field called “paramType” which is a list of pointers to Nodes of its parameters.
vi) Field “type” indicates whether Node is type of integer or char. Field “structure” indicates whether Node is simple data type (0), array (1), module (2), program (3)  or a pointer (4).

vii) The field of “name” of each Node is a pointer to a NULL-end character array. And the string is actually a part of static char array of size of 4096 declared in hash-table class.

viii) Hash function uses the standard algorithm in text book which adds all ASCII value of each character of name of symbol and shift by 8. The result is used as key in hash-table.

d) Description of code generation
i)  As my parser is table-driven, I don’t have the privilege of descent recursion function calls. So, I invented a series of “states” variables which indicate the parsing procedure. For an example, some states indicate whether parsing is inside module body or module local variable or parameter etc. By watching these states variable, my parser generate appropriate code accordingly.

ii) How to generate these states? Some are done by watching the parsing stack which pushed in the grammar rules. Some are done by watching tokens which is waiting to be matched with parsing stack. Therefore the code generation part is extremely messy.
iii) For some code like expressions of arithmetic operations, I need to wait high precedence operation like multiplication and division to be done first. Therefore I used a stack to store both operator and variable pointers of low precedence. And after end of expression is encountered, I pop from stack one by one to generate code. 

iv)  For some statement like “loop S end;” which can not be tracked with grammar rules, I have to watch the token “end” to see if it is an unmatched end. That is if there is a begin, it must be matched with an end. Only the unmatched end indicates end of loop-statement.

v) The most important idea of my code generation is that I want the “moon-assembler” to do as little job as possible. Therefore, I don’t use those convenient assembly directives like “db, dw, res…”. Instead I calculate all addresses of each symbol and generate code accordingly. 
vi) Variables of main program is located in high memory address of 32000. And stack starts from address of 30000. All labels are stored in main program memory along with temporaries in main program. Each module is allocated with size of 240 bytes. 

vii) When doing module call, I first calculate the absolute address of each parameter and pushed the address into stack. Then push the number of parameter into stack. Then push the top of stack into stack. At last push the return address into stack. At the beginning of module, move base of stack to current top of stack. At end of module call, pop number of parameters and original top of stack, move both base and top of stack back to original position just before module call. 

e) Description of error handling

i) The error handle module is a rather independent module. Throughout compiler, each part of compiler has defined its own error numbers which are enumerate numbers.  For example, scanner and parser each has its own type of errors. But whenever an error is encountered, a global error-handling function is called and the appropriate error number is passed as parameter. In some cases, certain data is passed, too. So, there are two “void*” type parameter  in error-handling function. 

ii) Different type of errors are handled differently and all error handling code is written in one class. For example, errors from scanner will be counted and scanner tries to resume to normal state only after total 10 errors are found. And many other types of parser simply generate error message and stop compilation. If new type of error need to be handled, simply add the error number and specific error-handling function. 
f) List of errors recognized by my compiler

//these are scanner errors:

"IllegalToken",          ( indicates violation of token rules

"TokenTooLong",     ( indicates length of token name exceeds limit

"UnexpectedReachEOF",  ( usually means scanner expecting a matching parentheses or comment etc.

"FileEmptyError",   ( if the source code file is empty

"CannotOpenFile",   ( if opening of source code file fails

"ExceedNumberLimit",  ( if the number of digit of number exceeds limit

//these are parser errors

"UnexpectedEmptyStack",  ( usually means that parser expecting some tokens to follow
"IllegalGrammarToken", ( violation of grammar rule
"NotEmptyStack",  ( usually means that parser finished parsing and stack is not empty
"StackOverFlow", ( overflow of stack as stack has a length limit of 50
//error of symtab

"TooManyIdentifier",  ( means total number of symbols exceed upper limit of hash table
"VariableRedeclared", ( variable cannot be re-declared
"VariableUndeclared", ( variables must be declared before being used
//error of intermediate code

"UnmatchedOperandType", ( assignment, comparison require type matching
"IllegalModuleCalling",  ( only module can be called
"CannotCompareComplicatedType", ( usually means array cannot be compared except element of it
"CannotOperateOnComplicatedType", (array,module,program cannot be assigned, compared
"MissMatchModuleParamNo", (number of module parameter is checked before calling
"MissMatchModuleParamType", ( the type of each module parameter is checked before calling
4. Evaluation of my compiler
a) Evaluation of speed

i) My scanner has the highest efficiency and speed because I use table-driven method and include all key words into a DFA-like searching state table. So, whenever a token is scanned, at end of scanning the type of token is recognized no matter it is key word or symbols. I also used some tables to match group of ASCII characters to a specific type which eliminates comparison codes or function calls.

ii) My parser has a fairly good speed mainly because it uses table-driven parsing instead of descent recursions. However, before parsing my “context-free-grammar-reader” needs to read in source grammar rules from grammar source file and ask class “grammar” to eliminate left-recursion, common-left-factor and calculate First, Follow set of each symbol. Then it needs to establish NT-table for parser to begin parse. This overhead can be avoided if I modify my grammar-reader to output modified grammar into files. 
iii)  My symbol table is a standard hash table implementation which should have fairly good speed. As I declared all grammar Node statically in an array of Node, the hash-table only contains the pointer of Node. The manipulation of hash table such as clear and insert are quite fast. The name of each variable is stored in a long character array and each Node only stores the pointer to its name which stored in the long array. It also eliminates the dynamic-allocation of symbol name.

iv) My intermediate code generation is not slow because parser is fast. And target code is generated immediately after each three-address-code is generated. So, it is fast in this sense.

b)  Evaluation of size
The size of scanner is big as my state-table also includes all states of key words which is size of 132x78. The size of parser is also quite big as grammar-reader has to store grammar in memory and manipulates and modifies grammar. Also table-driven parsing requires a very large state-table. The size of symbol table is big as I allocate static arrays both for grammar Node and name for each symbol. For an example, the size of array for symbol name is 4096 fixedly. The size of intermediate code generation is not very large as I only store one intermediate code at any time in memory. After each intermediate code is generated, I generate write its target code into output file. Therefore not much memory is required to store generated code.

c) Evaluation of code efficiency

The code efficiency is no good as I did no optimization. Many temporaries are generated and stored into memory and immediately after that they are fetched back to register. In all words, the code efficiency is not good at all.
5. Evaluation of my design decisions
a) Improvement for scanner

Scanner should be also read in by grammar reader! Because the token type cannot match my parser and I lost all convenience of parsing tool. I should also write a “lex-like” scanner generator which automatically establish state-table. As you know, coding scanning table by hand is a very boring job!

b) Improvement for parser

I should use LR(1) parsing! The biggest drawback of LL(1) table-driven is that it doesn’t help too much in code generation which cost most of my time. By using LR(1) parsing, we will store all state information in state-table which will be very useful in code generation. Because grammar rules usually only tell you when a statement starts and quite often you don’t know when it ends unless you keep watching tokens. And LR(1) keeps track all information at each step.

c) Improvement for code generation
I would reuse temporaries after each simple statement. I might try to calculate address of label of if-then-else statement to eliminate any involvement of assembler in “moon”. Because I highly suspect that other machine would supply this convenience of “label directive”. 

I would calculate the size of different module. Because my current simple solution of allocation of 240 bytes for each module is a very silly decision. 

I would change parameter passing from “pass-by-reference” to “pass-by-value-and-return-as-result”. In other words, I would pass all parameters by its value in stack. And these parameter would be popped back at end of module. If we invent a new key word “const” to protect the parameter from modifying, we can use this mechanism. On contrary my current solution of passing-by-reference cannot supply any protection to parameters.

If I have some time, I would do a little bit of code optimization of register optimization which I think is the easiest one.




14

