<Demon Entertainment>

<Word-Rover>
 Design Document

Version <2.3>

TEAM MEMBERS

	Name
	Student ID

	Huihua(Angel) GUAN
	4778375

	Francois Gabriel BELLAVANCE
	4481380

	Lifeilai LICHOKCHING
	4633369

	Yo-Zen(Charles) LIU
	4626397

	Wei LI
	5028817

	Hong An ZHANG
	5048400

	Qingzhe(Nick) HUANG
	5037735

	Xiang Qun LIU
	4584414

	Qihui HU
	5047633

Revision History

	Date
	Version
	Description
	Author

	17 Feb
	<2.0>
	Group Discussion & assign tasks
	The Whole Group

	21 Feb
	<2.1>
	Interface
	Charles Yo-Zen

	22 Feb
	<2.2>
	MVC Module Interface
	Huihua(Angel), lifeilai

	25 Feb
	<2.2>
	Class Diagram
	Francois

	11 Mar
	<2.3>
	Revised & Compiled
	Charles Yo-Zen, Huihua(Angel), lifeilai

 Table of Contents

61.
Introduction

1.1
Purpose
6
1.2
Scope
6
1.3
Definitions, Acronyms, and Abbreviations
6
1.3.1
Definitions
6
1.3.2
Abbreviations
6
1.4
References
7
1.5
Overview
7
2.
Architectural Design
7
2.1
Rationale
7
2.2
Software Architecture Diagram
8
2.3
System Topology
9
3.
Software Interface Design
9
3.1
System Interface Diagrams
9
3.1.1
User Interface
9
3.1.1.1
Game Start
9
3.1.1.1.1 Welcome Game Interface
9
3.1.1.1.2 Enter Players’ Name Interface
10
3.1.1.2 Main View
10
3.1.1.3 Game Win View
13
3.1.2
Software Interface
13
3.1.3
Hardware Interface
13
3.2
Module Interface Diagrams
13
3.2.1 View Interface
14
3.2.1.1 GamePlayingWindow
14
3.2.2 Model Interface
14
3.2.2.1 Player
15
3.2.2.2 Board
15
3.2.2.3 Deck
16
3.2.2.4 Tiles
16
3.2.2.5 Rack
17
3.2.3 Controller Interface
17
3.2.3.1 KeyFunction
17
3.3
Dynamic Models of System Interface
18
3.3.1
Start Game Scenario
18
3.3.2
Form Word Scenario
20
3.3.3
Trade Cards for Letter Scenario
21
3.3.4
Discard Cards or Letters Scenario
22
4.
Internal Module Design
22
4.1
Module <module>
22
4.1.1
Module Class Diagram
23
4.1.2
Class <Board>
23
4.1.2.1
Methods Description
24
4.1.3
Class <Player>
24
4.1.3.1
Methods Description
24
4.1.4
Class <Deck>
25
4.1.4.1
Methods Description
26
4.1.5
Class <Tiles>
27
4.1.5.1
Methods Description
27
4.1.6
Class <Rack>
28
4.1.6.1
Methods Description
28
4.1.7
Class <Menu>
30
4.1.7.1
Methods Description
30
4.1.8
Class <Messages>
30
4.1.8.1
Methods Description
30
4.2
Module <View>
31
4.2.1
Class <GameStartScreen>
33
4.2.1.1
Method Descriptions
33
4.2.2
Class <PlayerInformationScreen>
33
4.2.2.1
Method Descriptions
34
4.2.3
Class <MainScreen>
34
4.2.3.1
Method Descriptions
35
4.2.4
Class <GameWinnerScreen>
37
4.2.4.1
Method Descriptions
37
4.3
Module <Controller>
38
4.3.1
Module Class Diagram
38
4.3.1.1
GameStartScreen Event Handlers
38
4.3.1.2
PlayerInformationScreen Event Handlers
38
4.3.1.3
MainScreen Event Handlers
39
4.3.1.4
GameWinnerScreen Event Handlers
40
5.
Team Members Log Sheets
41
5.1 Team Member Name: Huihua(Angel) GUAN
41
5.2 Team Member Name: Yo-Zen(Charles) LIU
41
5.3 Team Member Name: Francois Gabriel BELLAVANCE
41
5.4 Team Member Name: Lifeilai LICHOKCHING
41
5.5 Team Member Name: Wei LI
42
5.6 Team Member Name: Hong An ZHANG
42
5.7 Team Member Name: Qingzhe(Nick) HUANG
42
5.8 Team Member Name: Xiang Qun LIU
42
5.9 Team Member Name: Qihui HU
43

Table of Figures

Figure 1.1 MVC Architecture

 8
Figure 2.1 High-level Class Diagram of the MVC Model

 9
Figure 3.1 Welcome Game Interface

10
Figure 3.2 Enter Player’s Name Interface

10
Figure 3.3 Main View

11
Figure 3.4 Cancel Message

11
Figure 3.5 Trade Message

11
Figure 3.6 Trade Error Message

12
Figure 3.7 Discard Message

12
Figure 3.8 Pick and Message

12
Figure 3.9 Select Card Message

12
Figure 3.10 Select Letter Message

12
Figure 3.11 Form Word Message

12
Figure 3.12 End round Message

12
Figure 3.13 Quit Message

12
Figure 3.14 Game Win

13
Figure 3.15 Interface Between MVC Modules

13
Figure 3.16 Game between MVC Modules

14
Figure 3.17 Player

15
Figure 3.18 Board

15
Figure 3.19 Deck

16
Figure 3.20 Tiles

16
Figure 3.21 Rack

17
Figure 3.22 KeyFunction

18
Design Document
1. Introduction

The primary goal of this project is to develop the Word-Rover game. This game is based on the original idea of Hasbro’s Scrabble and the Rummy card game, with some modifications. We have combined and changed the original rules of both games.
The purpose of this design document is to provide all details of the Architectural Design (AD), Module Interface Design (MID), and Internal Module Design (IMD) for the Word-Rover game. The Architectural Design part focuses on the high-level project decomposition, the Module Interface Design focuses on the software interfaces between the high level modules, and the Internal Module Design focuses on the low level description of the implementation classes and all their attributes and methods.
1.1 Purpose

The purpose of this document is to present the design of the Word-Rover game, which is in partial fulfillment of the requirements of COMP 354. It will provide details on the architectural design, the software interface design and the internal module design. The architectural design will describe the software architecture that was chosen for the game and a class diagram of this architecture. The software interface design will have screen shots of the graphical user interface and how the users interact with the game. Finally, the internal module design will describe in detail the different modules through the use of class diagrams. This document is intended primarily for members of the Demon Entertainment and the project coordinator, Dr Joey Paquet, as it will serve as a basis for the final phase of the project.

1.2 Scope

This document is intended to provide detailed design specifications of the Word-Rover game that will be used as a basis for the implementation phase. The software architecture that will be used will be explained in great detail in order for the implementation team to actually create a game based on the software architecture described in this document. Furthermore, screen shots of the game will provide a basis for the actual graphical user interface used in the game. The class diagrams from the Internal Module Design section will be converted to Visual C++ using Rational Rose and Microsoft Visio. This code will then be used by the implementation team to develop the game.

1.3 Definitions, Acronyms, and Abbreviations

1.3.1 Definitions

Model View Controller

The architecture used in the Word-Rover game, consisting of three module components, the model, view and controller, which are developed separately.
1.3.2 Abbreviations

MVC: Model View Controller

UI: User Interface

AD: Architectural Design

MID: Module Interface Design
IMD: Internal Module Design
1.4 References

Hasbro, “Tips & Tools”, Hasbro.

http://www.hasbro.com/scrabble/pl/page.tips/dn/home.cfm
Pressman, Roger S. Software Engineering: A Practitioner’s Approach. 5th Ed. Toronto, McGrawHill, 2001.

Template 2, Design Document, Rational Unified Process, Rational Software.
http://newton.cs.concordia.ca/%7epaquet/teaching/354/index354W2004.html
Example of Template 2, Montrealopoly, Team Redmond, Fall 2003

http://newton.cs.concordia.ca/%7epaquet/teaching/354/index354W2004.html
Example of Wang’s Thesis “Naval Battle Simulation System: A case study in Software Engineering”, March 2002.

http://newton.cs.concordia.ca/%7epaquet/teaching/354/SherryWangMajorReport.pdf
1.5 Overview

The remainder of this document is divided into three major parts: Architectural Design, Software Interface Design and Internal Model Design.
The architectural design consists of the architectural rationale, software architectural diagram and system topology. The software interface design consists of the system interface diagrams and dynamic models of system interface, which shows how the module interfaces are to be used. The internal module design describes each module of the system along with its class diagram and all the classes that it has.
The last section contains the team member’s log sheets.
2. Architectural Design

2.1 Rationale

We chose Model View Controller model (MVC) as the architecture of our game, Word-Rover. The goal of MVC is to separate the application data (the model) from the way the data is rendered to the user (the view) and from the way in which the user controls the data (the controller). Dividing the concerns of the application in this way dramatically increases the system's modularity, and enhances the overall flexibility of the design. There are three components in the MVC pattern.
· The Model contains the underlying classes whose instances are to be viewed and manipulated. The Model object knows about all the data of the game that need to be displayed. It also knows about all the operations that can be applied to transform that object. However, it knows nothing about the user interface (UI), the manner in which the data are to be displayed, nor the UI actions that are used to manipulate the data. The data are accessed and manipulated through methods that are independent of the UI.
· The View contains objects used to render the appearance of the data from the model in the user interface. The View object refers to the model. It obtains data from the model and then displays the information. A view renders the contents of a model. A view will change as the data from the model changes.
· The Controller contains the objects that control and handle the player’s interactions with the view and the model. The Controller object knows about the physical means by which players manipulate data within the model. A controller translates interactions with the view into actions to be performed by the model.

[image: image1.jpg]Changes

Figure 1.1 MVC Architecture

The MVC design separates the view (V), from the data model (M) and control (C). This simply means that the code used to show the user information, including the GUI, is separate from the management of the data itself as well as the interactions between the GUI and the data. With MVC architecture’s design principles, we will benefit from the following points by using the MVC model in our project, Word-Rover.

· Divide and conquer: three components can be somewhat independently designed so that they can be done in parallel, which will minimize our project time.
· Design flexibility: it is usually quite easy to change the UI by changing the view, the controller, or both. The separation of model and view allows multiple views without changing data in model.
· Design testability: we can test the application separately from the UI.

2.2 Software Architecture Diagram

The modules of the game are shown in the following high-level class diagram of the MVC model. The players interact directly with the view and the controller, while the model accepts requests from the controller and updates the view for the players.

The controller receives inputs from players via keyboard or mouse. The input data will be tracked and verified by the controller. If the entered data is valid, the controller will accept the data and change the data in the model. Otherwise, an error message will be prompted because, for example, the player intends to perform an illegal action.

The model is where the information is managed, stored, massaged, and computed. The model will carry out its task whenever it is informed by the controller. Then the model will update the view whenever the data in the model is changed.

The view houses the user interface (UI). The UI consists of GUI elements such as buttons, board, racks and scoreboard. On a textual user interface, there would be some function keys and text fields. Players can see the appearance of the game via the view and follow the game steps correctly. Therefore, players can input new data which will be handled by the controller and then manipulated by the model. The view is updated in turn.

[image: image2.jpg]Uses

Player Sees

—

Controller

Changes

View

Changes

[-y

Model

Updates

Figure 2.1 High-level Class Diagram of the MVC Model
2.3 System Topology

Word-Rover is developed for a standalone environment and is installed on a single computer. All three components of the MVC model will be integrated into one executable and no extra software or connection is required.
3. Software Interface Design

3.1 System Interface Diagrams

The user interface of Word-Rover acts as a system level interface since Word-Rover does not require interacting with any other software or hardware system. A text mode user interface will first be designed. Later on if time allows, the game could be upgraded to a graphical user interface. User interface displays the state of the game to the players and let players interact with the game through data inputs.

3.1.1 User Interface

The user interface is the link between the players and the game system. To minimize the errors performed by the players, an efficient and intuitive user interface should display enough information to the players at all time, provide explicit function keys by which players can interact with the game, and prompt clear message dialogs that acknowledge players what to do next.
The text mode user interfaces with which players will interact are described below.
3.1.1.1 Game Start
3.1.1.1.1 Welcome Game Interface

Welcome Game user interface will be displayed when the Word-Rover game is launched. In this interface, players will see the “welcome” message and “start game” message as following.

[image: image3.png]WELCOME TO WORDROUER

version 1.0

Copyright 2804 by Denon Entertainment

EERER B

KKK AR K

Plaien pinis “S' th FLARE Game

Figure 3.1 Welcome Game Interface
User interactions
1) Users enter “S” to start the game.

Note: With other input except “S”, same “start game” message will prompt again.
3.1.1.1.2 Enter Players’ Name Interface

After starting the game, enter player’s name interface will appear. In this interface, players are asked to enter their name and to continue the game.

[image: image4.png]This is a 2 players game.

Please enter the first plaver’s name Snoopy
Please enter the second player’s name 3 Dunbo

Snoopy will start the game First.

Please press any key to continue...

Figure 3.2 Enter Players’ Name Interface
User interactions

1) User enters his/her name by answering the pop-up dialog.

Note: If the current player input a name as the previous player, an error message informing duplicate name inputted will appear. And the same message of asking to enter player’s name prompts.

2) When 2 players’ names have been entered, game play can continue by pressing any key.

3.1.1.2 Main View

Once players have entered their name and continued playing the game, the game’s main interface is loaded, which is the game’s main playing area and with which players interact the game. The players can see all the components, such as board, scores, rack of cards and rack of letters, and interacting the game system by selecting option from the menu bar.

[image: image5.png]Current player: Snoopy

12 3 456 7 8 919111213 14

Nunber of letters still in hag : 480

Number of cards still in deck : 38

o

Nunber of discarded cards 14

Last discarded card

dddapdna

: Cancel 2: Trade 3: Discard
Select card 6: Select letter

: Quit

Please select one of the options:

Figure 3.3 Main View

User interactions
1) Users can select one of the options by entering the number from the menu bar.

Note: When a selection is not within the options from the menu bar, an error message will prompt following with a same message asking to select an option again.

Different diagram will be shown in the following as different option is selected. Whenever an illegal action is performed, an error message will appear and an appropriate solution will be given. The essential prompted messages from each option are introduced below.

· Option “1 Cancel” is selected; the player can cancel the previous action he/she performed.

[image: image6.png]Would you like to cancel the current action? C(¥/ND>

Figure 3 .4 Cancel Message

· Option “2 Trade” is selected, the player can trade a desired letter with a hand of cards.

[image: image7.png]Please enter a letter you would like to trade for:

Figure 3.5 Trade Message

[image: image8.png]Error! You have not selected a hand of cards to trade for a letter.
Please select some cards to form a hand and try again.

Figure 3.6 Trade Error Message

· Option “3 Discard” is selected, the player can discard a letter or a card.

[image: image9.png]Please enter the index of the card to be discarded:

Figure 3.7 Discard Message

· Option “4 Pick card” is selected, the player can pick up a card either from the deck or from the discarded card pile.

[image: image10.png]Would you like to pick a mew card from the deck (N>
or the last discarded card (D>?

Figure 3.8 Pick card Message

· Option “5 Select card” is selected, the player can select a card or cards by inputting the index of the card in the rack.

[image: image11.png]Please enter the index of the card to be selected:

Figure 3.9 Select card Message

· Option “6 Select letter” is selected, the player can select a letter or letters by inputting the index of the letter in the rack.

[image: image12.png]Please enter the index of the letter to be selected:

Figure 3.10 Select letter Message

· Option “7 Form word” is selected, the player can form word by inputting the coordinates of the board.

[image: image13.png]The word formed is: APPLE
Please enter the coordinates to put the word on the board (X.¥>: 8,8

Figure 3.11 Form word Message

· Option “8 End round” is selected, the player can end his/her round.

[image: image14.png]Would you like to end this round? (Y/N>

Figure 3.12 End round Message

· Option “9 Quit” is selected, the players can quit the game.

[image: image15.png]Mould you like to quit the game? (Y/N)>

 Figure 3.13 Quit Message

If the player decides to quit the game, the other player is automatically declared the winner on the Game Win pop-up message.

3.1.1.3 Game Win View

When the game is over, that player who gets the higher score is declared the winner. A pop-up message will display the name of the winning player. The players will then have two options, either to start a new game or to exit the game.

[image: image16.png]THE WINNER IS DUMBO, CONGRATULATIONS! \“o"/
YOU WON WITH 625 POINTS.
BETTER LUCK NEXT TIME, SNOOPY...

Copyright 2804 by Demon Entertainment

FEETEEEER

ARKKERKKR

Please press any key to start a new game
or press ‘&’ to exit game

Figure 3.14 Game Win
User interactions

1) The players can start a new game or to exit the game.

3.1.2 Software Interface

Word-Rover is a stand-alone program which does not need to interact with any other system software besides the Operating System on the computer. Therefore, no software interface is required to run the game.
3.1.3 Hardware Interface

Word-Rover does not interact with any hardware other than the computer. Therefore, no hardware interface is required to run the game.
3.2 Module Interface Diagrams

As shown on the following diagram, there are three interfaces between the Model, View and Controller. Any two of the modules communicate among them by the functions in either module.

[image: image17.emf]Controller

View Model

Interface 1

I

n

t

e

r

f

a

c

e

2

I

n

t

e

r

f

a

c

e

3

Figure 3.15 Interfaces between MVC Modules

3.2.1 View Interface

Whenever a change occurs in the model’s data, the interface between the model and the view will be called to update view. This interface includes the following classes and functions:

3.2.1.1 GamePlayingWindow

The GamePlayingWindow class is the main viewing interface of the game. It show the current player’s name, the board, the rack of cards, the rack of letters, the scoreboard, the letter bag, the card deck, the discarded card deck and the menu bar.

[image: image18.emf]View Model

GamePlayingWindow

showPlayerName()

showBoard()

showCardRack()

showLettersRack()

showScore()

showLetterBag()

showCardDeck()

showDiscardedCard()

showMenuBar()

showErrorMessage()

Figure 3.16 GamePlayingWindow
The following functions are available to this interface:

· showPlayerName(): The current player’s name will be displayed.
· showBoard(): The board gets refreshed whenever the state of a cell on the board changes. The cell could be empty or displays letters of a word.
· showCardRack(): The rack of the cards gets refreshed whenever the state of a card changes. Normally, 7 cards will be displayed in the rack during the game play.
· showLettersRack(): The rack of the letters gets refreshed whenever the state of a letter changes. Normally, 7 letters will be displayed in the rack during the game play.
· showScore(): The score of each player gets refreshed after each play turn. All players’ scores will be displayed in the scoreboard.
· showLetterBag(): The number of unused letters in the bag gets refreshed when a player takes or trades letters from the bag.

· showCardDeck(): The number of unused cards in the deck gets refreshed when a player picks up cards from the deck. Also, the back of the first card in the deck is displayed.

· showDiscardedCard(): The number of discarded cards and the face of the last discarded card get refreshed when a player discards a card.

· showMenuBar(): The keys in the menu bar are displayed during playing the game.

showErrorMessage(): Validation errors detected by the controller are displayed.

3.2.2 Model Interface

The interface between the controller and model is called the controller receives input from the player. The following methods are part of the interface:

3.2.2.1 Player

The class Player contains all the information of each player in the game. The methods called in this class by the interface are to query the player’s status or to perform an action that the player requested.

[image: image19.emf]Controller Model

Player

setName()

getName()

set Score()

getScore()

Figure 3.17 Player

The following methods are available to this interface:

· setName(): a method of setting the players’ name

· getName(): a method of getting the players’ name

· setScore(): a method of setting the player’s score after each turn and for the whole game

· getScore(): a method of getting the player’s score after each turn and for the whole game

3.2.2.2 Board

The class Board contains all the methods which control the flow of game. Methods are called whenever a new game and when control of the game needs to be passed on to the next player to start his turn.

[image: image20.emf]Controller Model

Board

setWord()

getData()

Figure 3.18 Board

The following methods are available to this interface:

· setWord(): a method of setting a word into the board

· getData(): a method of getting data from the board

3.2.2.3 Deck

The class Deck contains the methods for the cards status. It is called whenever a player is access the cards and at the beginning of the game.

[image: image21.emf]Deck

shuffle()

removeCard()

numOfCards()

addCards()

Controller Model

Figure 3.19 Deck

The following methods are available to this interface:

· addCard(): a method of adding a card to the deck

· removeCard(): a method of removing a card from the deck

· shuffle(): a method of shuffling the cards

· numOfCard(): a method of getting the number of cards in the deck

3.2.2.4 Tiles

The class Tile contains the methods for the tile status. It is called whenever a player is access the tiles and at the beginning of the game.

[image: image22.emf]Tiles

shuffle()

numOfTiles()

getTiles()

Controller Model

Figure 3.20 Tiles

The following methods are available to this interface:

· getTile(): a method of getting a tile from the bag

· shuffle(): a method of shuffling the tiles

· numOfTiles():a method of getting the number of tiles in the bag
3.2.2.5 Rack

The class Rack contains the methods for maintaining and updating each player rack.

[image: image23.emf]Model

Rack

addCard()

removeCard()

addLetter()

removeLetter()

selectCard()

selectLetter()

numOfCards()

numOfLetters()

Controller

Figure 3.21 Rack

The following methods are available to this interface:

· addCard(): a method of adding a card to the rack

· removeCard(): a method of removing a card from the rack

· addLetter(): a method of adding a letter to the rack

· removeLetter(): a method of removing a card from the rack

· selectCard():a method of selecting a card from the rack

· selectLetter(): a method of selecting a letter from the rack

· numOfCards(): a method of getting the number of cards in the rack

· numOfLetters(): a method of getting the number of letters in rack

3.2.3 Controller Interface

The controller accepts inputs from the players and verifies inputs. Any error detected updates the view by calling the showErrorMessage function in the view. This function informs the player of the error by displaying an error message.

3.2.3.1 KeyFunction

The KeyFunction class is called when a player selects a key function from the menu bar. There are 9 keys in the menu bar, including Cancel, Trade, Discard, PickCard, SelectCard, SelectLetter, FormWord, EndRound and Quit.

The following functions are available to this interface:

Cancel(): a method of canceling the previous action

Trade(): a method of trading letter

Discard(): a method of discarding card or letter

PickCard(): a method of picking up card

SelectCard(): a method of selecting card

SelectLetter(): a method of selecting letter

FormWord(): a method of forming a word

ndRound(): a method of ending a round

Quit(): a method of quit the game

[image: image24.emf]KeyFunction

Cancel()

Trade()

Discard()

PickCard()

SelectCard()

SelectLetter()

FormWord()

EndRound()

Quit()

View

Controller

Figure 3.22 KeyFunction

3.3 Dynamic Models of System Interface

In order to demonstrate some interactions between the system modules, we have selected some scenarios, or major functionalities of the system, that will explain and depict the interactions using sequence diagrams. We have decided to use sequence diagrams, because they depict the interaction between the classes (or objects) of the system, and also show how the sequence of calls occurs.
3.3.1 Start Game Scenario

[image: image25.emf]:Player

:Board :Player :Rack :Tiles :Cards

1.New Game Information

2.setName()

3.Initialize board

4.Initialize

Player’s rack

5. getTiles()

and shuffle()

6. Return

7. getCards() and shuffle()

9. Return

10. Return

10. Return

3.3.2 Form Word Scenario

[image: image26.emf]:Player

:Board :Player :Rack :Tiles

1. selectLetters()

2. setWord()

3. setScore()

4. getTiles()

5. addLetters()

6.Return

7.selectLetters()

Next Player's turn

3.3.3 Trade Cards for Letter Scenario

[image: image27.emf]:Player

:Board

:Rack :Tiles :Player

1.selectCard()

3. getTiles()

2. removeCard()

4. addLetter()

5. Return

6. selectLetter()

7. setWord()

8. setScore()

9. Return

10. Next player's turn

3.3.4 Discard Cards or Letters Scenario

[image: image28.emf]:Player

:Board :Player :Rack :Tiles

:Cards

1.Player's Turn, selectLetter()

2. setWord()

3.Opponent challenge the word

4. The word is refused

5. Return

6.Discard Cards/Letters

7. shuffle() & getCard()

8. Return

9. shuffle() & getTiles()

10. Return

11.Return

12. Next

player’s turn

4. Internal Module Design

As previously explained the game is divided into three modules the Model, the View and the Controller. The following sections will describe and explain the compositions of the modules, their relationships and their purpose.
4.1 Module <module>

The model module is extremely important to the design of the Word-Rover game. The model is representative of the data in the game and the state of the game as the game progresses. The following sections describe the classes and relationships that compose the model.
4.1.1 Module Class Diagram

[image: image29.png]Deck

Feards/52 2] - intager
Pastpiscar

ecCard Integer]
[rshufieq
[romoveCard
[trumofCards()
fraceCards)
|
1
Rack
e [ardsT7) - Tnieger
e feomtrs e char Feters7 “iniager|
Tom o] | [oatoicar bek [remorcuco
) {playersz: Player B L-aadLoter)
- rumofTles() fmenu: benu 1+ 2 [meNamep fremoveLetir
sgeos() fmessages : Messages [retamed) frsleciCarc)
[reetordy frsetscore frslect ter)
frgeiData frgesscoret frrumotCars)
frrumotLeters)
0
' |
Wen Wessages
eI - rger FessagelD - meger
Descrpon: Sig [Dascrpion Sirng
[Fshowienugary [Fhoniotfessagel
lsshowErmoressage()|

4.1.2 Class <Board>

	Class Name
	 Board

	 Inherits from
	 None

	 Description
	 The Board Class will be the main entity of the game. All the objects in the game will be contained in the Board.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Char
	 cells[15 x 15]
	 A two-dimensional array representing the playing board.

	
	 Private
	 Tiles
	 bagOfLetters
	 Object representing the bag of letters (Tiles).

	
	 Private
	 Deck
	 deckOfCards
	 Object representing the deck of cards.

	
	 Private
	 Player
	 players[2]
	 Object representing the player.

	
	 Private
	 Menu
	 Menu
	 Object representing the different menu options.

	
	 Private
	 Messages
	 Messages
	 Object representing the different messages presented throughout the game.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 setWord(String word, Integer coordinates)
	 Allows a word to be placed on the playing board.

	
	 Public
	 getData(Integer dataID)
	 Retrieves various data from the Board class.

4.1.2.1 Methods Description

	 Method name
	 setWord(String word, Integer coordinates)

	 Description
	 The method places the formed word on the board at the specified coordinates.

	
	

	 Input
	 String word, Integer coordinates

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 GetData(Integer dataID)

	 Description
	 The method retrieves various data from the Board class. For example it can retrieve the words on the board.

	
	

	 Input
	 Integer dataID

	 Output
	 String Information

	 Return Type
	 String

4.1.3 Class <Player>

	 Class Name
	 Player

	 Inherits from
	 None

	 Description
	 The Player class contains all the information pertaining to the player.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Integer
	 playerID
	 The player’s ID.

	
	 Private
	 String
	 name
	 The player’s name.

	
	 Private
	 Integer
	 score
	 The player’s score

	
	 Private
	 Rack
	 rack
	 Object representing the player’s rack.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 setName(String name)
	 Updates the player’s name.

	
	 Public
	 getName(Integer playerID)
	 Retrieves the player’s name.

	
	 Public
	 setScore(Integer playerID, Integer score)
	 Updates the player’s score.

	
	 Public
	 getScore(Integer playerID)
	 Retrieves the player’s score.

4.1.3.1 Methods Description

	 Method name
	 setName(String name)

	 Description
	 The method allows for the player’s name to be updated.

	
	

	 Input
	 String name

	 Output
	 None.

	 Return Type
	 Void.

	 Method name
	 getName(Integer playerID)

	 Description
	 The method retrieves the player’s name.

	
	

	 Input
	 Integer playerID

	 Output
	 String Player.name

	 Return Type
	 String

	 Method name
	 setScore(Integer playerID, Integer score)

	 Description
	 The method allows for the player’s score to be updated.

	
	

	 Input
	 Integer playerID, Integer score

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 getScore(Integer playerID)

	 Description
	 The method retrieves the player’s score.

	
	

	 Input
	 Integer playerID

	 Output
	 Integer Player.score

	 Return Type
	 Integer

4.1.4 Class <Deck>

	 Class Name
	 Deck

	 Inherits from
	 None

	 Description
	 The class Deck contains all the information pertaining to the deck of cards.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Deck
	 cards[52 x 2]
	 A two-dimensional array representing the cards.

	
	 Private
	 Integer
	 lastDiscardedCard
	 Holds the index value of the last card discarded.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 shuffle()
	 Shuffles the array of cards.

	
	 Public
	 removeCard(Integer cardValue)
	 Marks a card as removed from the deck.

	
	 Public
	 numOfCards()
	 Retrieves the number of cards remaining in the deck.

	
	 Public
	 addCards(Integer cardValue)
	 Marks a card as added in the deck of cards.

4.1.4.1 Methods Description

	 Method name
	 shuffle()

	 Description
	 The method simply shuffles the array of cards.

	
	

	 Input
	 None.

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 removeCard(Integer cardValue)

	 Description
	 The method marks a card in the array of cards as discarded.

	
	

	 Input
	 Integer cardValue

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 numOfCards()

	 Description
	 The method returns the number of cards remaining in the deck of cards.

	
	

	 Input
	 None.

	 Output
	 Integer count

	 Return Type
	 Integer

	 Method name
	 addCards(Integer cardValue)

	 Description
	 The method finds the value in the array of cards an marks the card as returned to the deck.

	
	

	 Input
	 Integer cardValue

	 Output
	 None.

	 Return Type
	 Void

4.1.5 Class <Tiles>

	 Class Name
	 Tiles

	 Inherits from
	 None

	 Description
	 The class Tiles contains all the information pertaining to the bag of tiles.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Char
	 letters[100x2]
	 A two-dimensional array representing the 100 tiles (letters) in the game.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 shuffle()
	 Shuffles the array of letters (tiles).

	
	 Public
	 numOfTiles()
	 Retrieves the number of tiles still in the bag.

	
	 Public
	 getTiles()
	 Retrieves and marks the tile (letter) as removed from the bag.

4.1.5.1 Methods Description

	 Method name
	 shuffle()

	 Description
	 The method simply shuffles the bag of tiles.

	
	

	 Input
	 None.

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 numOfTiles()

	 Description
	 The method retrieves the number of tiles remaining in the bag.

	
	

	 Input
	 None.

	 Output
	 Integer count

	 Return Type
	 Integer

	 Method name
	 getTiles()

	 Description
	 The method retrieves a tile from the bag of tiles.

	
	

	 Input
	 None.

	 Output
	 Integer tileIndex

	 Return Type
	 Integer

4.1.6 Class <Rack>

	 Class Name
	 Rack

	 Inherits from
	 None

	 Description
	 The class Rack contains all the information pertaining to the player’s rack.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 *Integer
	 cards[7]
	 An array holding the index value of the cards in the player’s hand.

	
	 Private
	 *Integer
	 letters[7]
	 An array holding the index value of the tiles in the player’s hand.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 addCard(Integer cardIndex)
	 Adds a card to the player’s hand.

	
	 Public
	 removeCard(Integer cardIndex)
	 Removes a card from the player’s hand.

	
	 Public
	 addLetter(Integer letterIndex)
	 Adds a letter to the player’s hand.

	
	 Public
	 removeLetter(Integer letterIndex)
	 Removes a letter from the player’s hand.

	
	 Public
	 selectCard(Integer cardIndex)
	 Marks the cards in the player’s hand as selected.

	
	 Public
	 selectLetter(Integer letterIndex)
	 Marks the letters in the player’s hand as selected.

	
	 Public
	 numOfCards()
	 Retrieves the number of cards in the player’s hand.

	
	 Public
	 numOfLetters()
	 Retrieves the number of letters in the player’s hand.

4.1.6.1 Methods Description

	 Method name
	 addCard(Integer cardIndex)

	 Description
	 The method adds a card to the player’s hand.

	
	

	 Input
	 Integer cardIndex

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 removeCard(Integer cardIndex)

	 Description
	 The method removes a card from the player’s hand.

	
	

	 Input
	 Integer cardIndex

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 addLetter(Integer letterIndex)

	 Description
	 The method adds a card to the player’s hand.

	
	

	 Input
	 Integer letterIndex

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 removeLetter(Integer letterIndex)

	 Description
	 The method removes a card from the player’s hand.

	
	 Integer letterIndex

	 Input
	 None.

	 Output
	 Void

	 Return Type
	

	 Method name
	 selectCard(Integer cardIndex)

	 Description
	 The method marks a card in the player’s hand as selected.

	
	

	 Input
	 Integer cardIndex

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 selectLetter(Integer letterIndex)

	 Description
	 The method marks the tile in the player’s hand as selected.

	
	

	 Input
	 Integer letterIndex

	 Output
	 None.

	 Return Type
	 Void

	Method name
	 numOfCards()

	 Description
	 The method retrieves the number of cards in the player’s hand.

	
	

	 Input
	 None.

	 Output
	 None.

	 Return Type
	 Void

	 Method name
	 numOfLetters()

	 Description
	 The method retrieves the number of tiles in the player’s hand.

	
	

	 Input
	 None.

	 Output
	 None.

	 Return Type
	 Void

4.1.7 Class <Menu>

	 Class Name
	 Menu

	 Inherits from
	 None

	 Description
	 The class will hold the content of the menu displayed in the MainScreen.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Integer
	 menuID
	 The ID of the menu option.

	
	 Private
	 String
	 description
	 The description of the menu option.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showMenuBar()
	 Displays the menu on the MainScreen.

4.1.7.1 Methods Description

	Method name
	 showMenuBar()

	 Description
	 This method will be called by the View interface. It will simply display the menu on the MainScreen.

	
	

	 Input
	 None.

	 Output
	 None.

	 Return Type
	 Void.

4.1.8 Class <Messages>

	 Class Name
	 Messages

	 Inherits from
	 None

	 Description
	 The class will hold all the informational and error messages presented throughout the game.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Integer
	 messageID
	 The ID of the message.

	
	 Private
	 String
	 description
	 The description of the message.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showInfoMessage()
	 Returns an information message.

	
	 Public
	 showErrorMessage()
	 Returns an error message.

4.1.8.1 Methods Description

	 Method name
	 showInfoMessage(Integer messageID)

	 Description
	 This method will be used to retrieve informational messages from the Messages class. The method will

	
	 return a string containing the description of the informational message.

	 Input
	 messageID

	 Output
	 String Message.description

	 Return Type
	 String

	 Method name
	 showErrorMessage(Integer messageID)

	 Description
	 This method will be used to retrieve error messages from the Messages class. The method will return a

	
	 string containing the description of the error message.

	 Input
	 messageID

	 Output
	 String Message.description

	 Return Type
	 String

4.2 Module <View>

The view module consists of the different screens that the players will see throughout the game. The game will be character based, however, if time permits graphic will be implemented. A screen is defined as related data displayed in the screen. Hence, every time a new screen is displayed the content of the previous screen will be cleared from the screen. The following 4 views makeup the view module,

(1) GameStartScreen: This screen will be displayed when the game is first started. The screen simply displays a welcome message and the name of the game. The player is prompted to press ‘s’ to continue to the next screen.

(2) PlayerInformationScreen: In this screen the 2 players are prompted to enter their player name. Once the player names have been entered the game can begin.

(3) MainScreen: This is the main game screen. On this screen the players will see the board, the scoreboard, the possible game action command buttons and current player’s rack (letters and cards).

(4) GameWinnerScreen: Once the game has ended or if a player quits the game the GameWinner Screen is displayed. The screen displays the winner’s score and name. By default if a player quits the game the other player is automatically declare the winner.

4.2.1 Module Class Diagram

[image: image30.png]MainScreen

CurentPlayer - Label

board Label

scoreBoard:Label

baginfomaton: Label

dockinfomaton: Label

rack : Label

cancel menu CommendButon

e menu CommandButon

lscard . manu. CommandButon

PlayerinformationScreen idCard manuConmandButon
Gamestartsereon ——y SeleciCard menu CommandButon

Thcensoseasnliterel = selectLetter : menuCommandButton|

startGame : CommandButton| player2Name : Textoox (RN o

tehowinichiessa0s0) CommandButon| -quit : menu. CommandButton

et MerEa)} -menuMessageArea : Label

GameWinnerSereon
messageArea - aber
[newGame : Commandautin|
[exitGame - CommandBution
Showioessagel)
lsshowinner)

Components explained:
Label: Represents a read-only area on the screen where text and characters can be displayed. The size of a
Iabel can vary according to what needs to be displayed onthe screen
Texthox: Represents a wiitable area on the screen whers the user can enter some text Like alabel the size
of atexthox can vary. Also a prompt can act as a texbox, such a DOS prompt
CommandButto
Represents a entitythat when selected causes an event, For examle, pressing the ' key auits
the game.

4.2.1 Class <GameStartScreen>

	 Class Name
	 StartGameScreen

	 Description
	 It is the first screen that appears when the player launches the WordRover game.

	
	 The screen simply prompts the user to start the game.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Label
	 messageArea
	 The label acts as a placeholder for the welcome message.

	
	 Private
	 CommandButton
	 startGame
	 Allows the user to proceed to the PlayerInformationScreen

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showInfoMessage(Int msgID)
	Updates the messageArea label to display the welcome message.

4.2.1.1 Method Descriptions

	 Method name
	 showInfoMessage(Integer msgID)

	 Description
	 The method retrieves the welcome message and then displays the message on the screen via the

	
	 messageArea label.

	 Input
	 Integer msgID

	 Output
	 None

	 Return Type
	 Void

4.2.2 Class <PlayerInformationScreen>

	 Class Name
	 PlayerInformationScreen

	 Description
	 In this screen the players need to enter a name for player1 and player2. Once the names have been entered

	
	 the game can begin.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 Label
	 messageArea
	 The label acts as a placeholder for the instructions.

	
	 Private
	 Textbox
	 player1Name
	 Allows player1 to enter a name.

	
	 Private
	 Textbox
	 player2Name
	 Allows player2 to enter a name.

	
	 Private
	 CommandButton
	 acceptNames
	 Allow the players to accept the names and go the main screen.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showInfoMessage(Int msgID)
	 Updates the messageArea label to display the instructions.

4.2.2.1 Method Descriptions

	 Method name
	 showInfoMessage(Integer msgID)

	 Description
	 The method retrieves the instruction message (instructing the players to enter their names) and then displays the

	
	 message on the screen via the messageArea label.

	 Input
	 Integer msgID

	 Output
	 None

	 Return Type
	 Void

4.2.3 Class <MainScreen>

	Class Name
	 MainScreen

	 Description
	This screen is the main play view. On this screen the players will see their racks, the board, the scoreboard,

	
	 the current player and the menu options. The screen will be updated as the game progresses.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 currentPlayer
	 Label
	 Displays the current player’s name.

	
	 Private
	 Board
	 Label
	 Displays the board.

	
	 Private
	 scoreBoard
	 Label
	 Displays the game score.

	
	 Private
	 bagInformation
	 Label
	 Displays relevant information, such as the number of letters

 remaining in the bag and the last letter discarded.

	
	 Private
	 deckInformation
	 Label
	 Displays relevant information, such as the number of cards

 left in the deck and the last card discarded.

	
	 Private
	 Rack
	 Label
	 Displays the current player’s hand (letters and cards.)

	
	 Private
	 Cancel
	 menu.CommandButton
	 Allows the player to cancel an action.

	
	 Private
	 Trade
	 menu.CommandButton
	 Allows the player to trade a hand of cards for a letter.

	
	 Private
	 Discard
	 menu.CommandButton
	 Allows the player to discard a letter or a card.

	
	 Private
	 PickCard
	 menu.CommandButton
	 Allows the player to pickup a new card from the deck or the last

 discarded card.

	
	 Private
	 selectCard
	 menu.CommandButton
	 Allows the player to select a card in the rack.

	
	 Private
	 selectLetter
	 menu.CommandButton
	 Allows the player to select a letter in the rack.

	
	 Private
	 formWord
	 menu.CommandButton
	 Allows the player to form a word.

	
	 Private
	 endRound
	 menu.CommandButton
	 Allows the player to end their turn.

	
	 Private
	 Quit
	 menu.CommandButton
	 Allows the player to quit the game.

	
	 Private
	 menuMessageArea
	 Label
	 Displays the information relevant to the selected menu option.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showPlayerName(Integer playerID)
	 Updates the current player’s name label.

	
	 Public
	 showBoard()
	 Updates the board label according to the state.

	
	 Public
	 showCardRack(Integer PlayerID)
	 Updates the card rack label according to its state.

	
	 Public
	 showLettersRack(Integer PlayerID)
	 Updates the letter rack label according to its state.

	
	 Public
	 showScore()
	 Updates the scoreboard label according to its state.

	
	 Public
	 showLetterBag()
	 Updates the bagInformation label according to its state.

	
	 Public
	 showCardDeck()
	 Updates the deckInformation label according to its state.

	
	 Public
	 showDiscardedCard()
	 Updates the bagInformation label according to its state.

	
	 Public
	 showMenuBar()
	 Displays the buttons (Cancel, Trade and more).

	
	 Public
	 showErrorMessage(Integer errorID)
	 Displays error message.

4.2.3.1 Method Descriptions

	 Method name
	 showPlayerName(Integer playerID)

	 Description
	 The method retrieves the current player’s name and updates the label currentPlayer.

	
	

	 Input
	 Integer playerID

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showBoard()

	 Description
	 The method retrieves and displays the board information and states. This allows for the board to be displayed on

	
	 The screen via the board label.

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showCardRack(Integer playerID)

	 Description
	 This method retrieves and displays the player’s cards via the rack label.

	
	

	 Input
	 Integer playerID

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 ShowLetterRack(Integer playerID)

	 Description
	 The method retrieves and displays the player’s letters via the rack Label.

	
	

	 Input
	 Integer playerID

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showScore()

	 Description
	 The method retrieves and displays the players’ score via the scoreboard label.

	
	

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showLetterBag()

	 Description
	 The method retrieves and displays information relating to the bag of letters. Such information as the number of

	
	 letters remaining in the bag. The information is displayed via the bagInformation label.

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showCardDeck()

	 Description
	 The method retrieves and displays information relating to the deck of cards. Such information as the number of

	
	 Cards remaining in the deck. The information is displayed via the deckInformation label.

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showDiscardedCard()

	 Description
	 The method retrieves and displays the last card that was discarded. The card is displayed on the screen via the

	
	 deckInformation label.

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showMenuBar()

	 Description
	 The method retrieves and displays the menu options (Cancel, Trade, Discard and more)

	
	

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

	 Method name
	 showErrorMessage(Integer errorID)

	 Description
	 Displays an error message when an error occurs. The error id displayed via the menuMessageArea label.

	
	

	 Input
	 Integer errorID

	 Output
	 None

	 Return Type
	 Void

4.2.4 Class <GameWinnerScreen>

	 Class Name
	 GameWinnerScreen

	 Description
	 The screen displays the information (name and score) of the player who has won the game. It furthermore allow the

	
	 players to exit the game or play another game.

	 Attributes
	 Visibility
	 Data Type
	 Name
	 Description

	
	 Private
	 messageArea
	 Label
	 The label acts as a placeholder for displaying the winner’s information.

	
	 Private
	 newGame
	 CommandButton
	 Allow the players to start a new game.

	
	 Private
	 exitGame
	 CommandButton
	 Allow the players to exit the game.

	 Methods
	 Visibility
	 Method Name
	
	 Description

	
	 Public
	 showInfoMessage(Integer msgID)
	 Updates the messageArea label to display the winner information header.

	
	 Public
	 ShowWinnerMessage()
	 Updates the messageArea label to display the winner’s name and score.

4.2.4.1 Method Descriptions

	Method name
	 showInfoMessage(Integer msgID)

	 Description
	 The method retrieves the winner header message and then displays the message on the screen via the

	
	 messageArea label.

	 Input
	 Integer msgID

	 Output
	 None

	 Return Type
	 Void

	Method name
	 showWinnerMessage()

	 Description
	 The method establishes which player has won the game and displays the name and score of the winner via the

	
	 MessageArea label.

	 Input
	 None

	 Output
	 None

	 Return Type
	 Void

4.3 Module <Controller>

The Controller module will be responsible for handling events that are triggered by the player’s interaction within the screens. The Controller module will not support classes, instead it will be a group of functions that will react to predetermined event when they are triggered. Since, our game will be character based an event will happen when a specific keyboard key is pressed or when a specific command is entered at the command prompt. Furthermore, Controller module will be used control the Model and on certain occasions validate data input. For example, if a player tries to discard a card that they do not have the event handler will pass an errorID to the MainScreen View. The showErrorMessage() method of the MainScreen will receive the errorID and display the appropriate error message to the screen.

4.3.1 Module Class Diagram

The following diagram demonstrates the screens in our game and the event handlers associated with each screen,

[image: image31.png]Payerinformationseroen Eventandie]

[MainScreen_EventHandler|

[F<Evert>> cancell)
f+<<Evert>> trade()
<<Event>> discard()

<<Evert>> accepPlayeriame()

<<Event>> pickCard()
[+<<Evert>> seleciCard()
f+<<Event>> soleci eter)
<<Event>> formWord(]
<<Event>> encRound()
<<Event>> quit)

[GameWinnerScreen_EventHandier]

[Fe<Evert>> srtGame()
|r<<vents> exitGame()

4.3.1.1 GameStartScreen Event Handlers

Event startGame():

When the player presses the ‘S’ keyboard key the StartGame Screen is cleared and the PlayerInformationScreen is called and loaded to the screen.

4.3.1.2 PlayerInformationScreen Event Handlers

Event acceptPlayerName():

After the game has been started, the 2 players are prompted to enter a name for each player. When the names have been entered and the ‘enter’ key has been pressed the MainScreen is called and loaded to the screen. Furthermore,

i. Control is assigned to player 1.

ii. Initialization of the board object.

iii. Initialization the player rack object.

iv. The bag of tiles and the deck of cards are both shuffled.

v. Each player is assigned 7 cards and 7 tiles (letters).

4.3.1.3 MainScreen Event Handlers

Event cancel():

The player can rollback a previous action.

Event trade():

The player can exchange a hand of cards for a desired letter.

· Validates that previously a valid hands of cards has been selected.

· The Rack.removeCards() method removes the cards from the Rack.

· The desired letter is added to the rack using the Rack.addLetter() method.

Event discard():

The player can discard a letter or a card.

· Validates that previously a valid card or letter has been selected.

· The Rack.RemoveCard() or Rack.RemoveLetter() method removes a card or a letter from the player’s rack.

· If a card is discarded it is maker as the last discarded card.

· The Deck.addCards() or Tiles.addTiles() methods returns the card or letter to its appropriate set.

Event pickCard():

The player can pickup a card from the deck of cards or select the last card discarded.

· The Deck.removeCard() method removes the card from the deck of cards.

Or

· The Deck.removeCard(Last_Discarded_Card) method removes the last discarded card from the deck of cards.

· Then the Rack.addCard() method adds the card to the players rack.

Event selectCard():

The player can select a card in his/her rack.

· The Rack.selectCard() method marks the card as selected.

Event selectLetter():

The player can select a letter (tile) in his/her rack.

· The Rack.selectLetter() method marks the letters as selected.

Event formWord():

The player forms a word that will eventually be displayed on the board.

· The player needs to have previously selected the letters.

· The player then forms the word and identifies the coordinates of where to place the word on the board.

· The word and coordinates are validated.

· The Board.setWord() method updates the board.

· The Player.setScore() method updates the player score.

· The Rack.addLetters() method replaces the letters used on the rack.

- The screen is refreshed.

Event endRound():

The player ends the round.

· Control of the game is given to the other player.

Event quit():

The player quits that game.

· The GameWinnerScreen is called and loaded.

4.3.1.4 GameWinnerScreen Event Handlers

Event startGame():

Releases the objects created earlier and the players are returned to the StartGameScreen.

Event exitGame():
The game WordRover ends and the screen is closed.

5. Team Members Log Sheets

5.1 Team Member Name: Huihua(Angel) GUAN
	Date
	task
	duration

	17 Feb
	Design Documentation(Section 2)
	6.0

	20 Feb
	Design Discussion
	1.0

	21 Feb
	Design Discussion &Documentation(Section 3.3)
	8.5

	22 Feb
	Design Documentation(Section 3.1)
	8.0

	
	
	

	
	
	

	
	
	

	
	Total(Hours) :
	23.0

5.2 Team Member Name: Yo-Zen(Charles) LIU
	Date
	task
	duration

	21 Feb
	Create GUI interfaces
	6.0

	22 Feb
	Implementation Group Discussion
	3.0

	23 Feb
	Design Documentation(Screenshots)
	3.0

	
	Total(Hours) :
	12.0

5.3 Team Member Name: Francois Gabriel BELLAVANCE
	Date
	task
	duration

	07 Feb
	Group Meeting
	1.0

	25 Feb
	Review Deliverable 2 Template
	1.0

	26 Feb
	Group Meeting
	0.5

	28 Feb
	Development of Internal Module Design
	3.0

	01 Mar
	Research MVC Software Architecture
	1.5

	03 Mar
	Research MVC Software Architecture
	1.5

	04 Mar
	Group Meeting
	0.5

	06 Mar
	Development of Internal Module Design
	10.0

	07 Mar
	Development of Internal Module Design
	3.5

	09 Mar
	Revision of Design Document
	1.0

	
	Total(Hours) :
	23.5

5.4 Team Member Name: Lifeilai LICHOKCHING
	Date
	task
	duration

	17 Feb
	Group Meeting
	1.0

	20 Feb
	Group Discussion
	1.0

	21 Feb
	Working on Module Interface
	7.0

	22 Feb
	Working on Module Interface
	5.0

	26 Feb
	Group Meeting
	1.0

	03 Mar
	Working on Introduction
	3.0

	10 Mar
	Compiling report
	2.0

	
	Total(Hours) :
	20.0

5.5 Team Member Name: Wei LI
	Date
	task
	duration

	21 Feb.
	Read the example of template 2
	2.0

	22 Feb.
	Group meeting-discuss project design and coding
	6.0

	24 Feb.
	Group meeting -- coding class CManual
	5.0

	26 Feb.
	Group meeting -- class CMessage
	5.0

	28 Feb.
	Group meeting for discuss coding
	2.0

	05 Mar.
	Group meeting for synchronization
	1.0

	
	Total(Hours) :
	21.0

5.6 Team Member Name: Hong An ZHANG
	Date
	Task
	duration

	19 Feb.
	Studying template for project deliverable #2
	2.0

	22 Feb.
	Group meeting-discuss project design and coding
	6.0

	24 Feb.
	Group meeting – writing code
	5.0

	26 Feb.
	Group meeting – writing code
	5.0

	28 Feb.
	writing code
	5.0

	05 Mar.
	Group meeting – writing code
	3.0

	
	Total(Hours) :
	26.0

5.7 Team Member Name: Qingzhe(Nick) HUANG
	Date
	task
	duration

	23 Jan.
	Setting up coding standard for VC++
	0.5

	24 Jan.
	Coding for Dictionary class
	6.0

	29 Jan.
	Coding for Layout class
	2.0

	21 Feb.
	Coding for basic display classes
	3.0

	22 Feb.
	Coding for board class
	3.5

	24 Feb.
	Coding for tokens class
	2.5

	26 Feb.
	Coding for menuListener class
	13.5

	27 Feb.
	Coding for board with improvement
	2.0

	03 Mar.
	Coding for Rack
	2.0

	05 Mar.
	Coding with Bag
	3.0

	06 Mar.
	Coding with rummy
	2.0

	09 Mar.
	Coding with player
	2.0

	
	Total(Hours) :
	31.5

5.8 Team Member Name: Xiang Qun LIU
	Date
	Task
	duration

	07 Feb.
	Group meeting : discussion design
	1.5

	20 Feb.
	Reading template for project deliverable #2
	1.0

	22 Feb.
	Team meeting – decided on architecture design and class definition
	5.0

	24 Feb.
	Class board
	4.5

	26 Feb.
	Class board
	4.5

	29 Feb.
	Debug programs
	6.0

	07 Mar.
	Controller state
	5.5

	
	Total(Hours) :
	28.0

5.9 Team Member Name: Qihui HU
	Date
	Task
	duration

	20 Feb.
	Read the example of template 2
	2.0

	22 Feb.
	Group meeting-discuss project design and coding
	6.0

	24 Feb.
	Draft code writing about class CDeck
	3.0

	26 Feb.
	Draft code writing about class CBag
	3.0

	28 Feb.
	Group meeting for discuss coding
	2.0

	05 Mar.
	Group meeting for synchronization
	1.0

	
	Total(Hours) :
	17.0

_1138988424.bin

_1138988536.bin

_1139224033.vsd
�

�

�

:Player�

:Board�

5. Return�

6. selectLetter()�

7. setWord()�

8. setScore()�

9. Return�

10. Next player's turn�

:Rack�

:Tiles�

:Player�

1.selectCard()�

3. getTiles()�

2. removeCard()�

4. addLetter()�

_1140164130

_1139226009.vsd
�

�

�

:Player�

:Board�

:Player�

:Rack�

:Tiles�

:Cards�

1.Player's Turn, selectLetter()�

2. setWord()�

3.Opponent challenge the word�

4. The word is refused�

5. Return�

6.Discard Cards/Letters�

7. shuffle() & getCard()�

8. Return�

9. shuffle() & getTiles()�

10. Return�

11.Return�

�

12. Next player�s turn�

_1139223806.vsd
�

�

�

:Player�

:Board�

:Player�

:Rack�

:Tiles�

:Cards�

1.New Game Information�

2.setName()�

�

3.Initialize board�

�

4.Initialize Player�s rack�

�

5. getTiles() and shuffle()�

6. Return�

�

7. getCards() and shuffle()�

9. Return�

10. Return�

10. Return�

_1139223934.vsd
�

�

:Player�

:Board�

:Player�

:Rack�

:Tiles�

2. setWord()�

3. setScore()�

4. getTiles()�

1. selectLetters()�

5. addLetters()�

6.Return�

�

7.selectLetters() Next Player's turn�

_1138988556.bin

_1138988469.bin

_1138988498.bin

_1138988451.bin

_1138984164.bin

_1138988376.bin

_1138988405.bin

_1138988344.bin

_1138980583.bin

_1138981584.bin

_1138978246.bin

_1138887040.vsd
�

�

Controller�

Use Case�

View�

Model�

�

�

�

�

�

�

Interface 1�

Interface 2�

Interface 3�

