
Approximating an Ellipse by Circular Arcs

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: January 13, 2002
Last Modified: February 12, 2008

Contents

1 Algorithm 2

2 Implementation 2

1

http://www.geometrictools.com/


1 Algorithm

The ellipses to be approximated are axis-aligned and centered at the origin,

x2

a2
+

y2

b2
= 1 (1)

where a 6= b. Only the portion of the ellipse in the first quadrant will be approximated by circular arcs. The
approximations in the other quadrants can be obtained by reflections of those in the first quadrant.

The first part of the process involves selecting a set of ellipse points Pi = (xi, yi), 0 ≤ i ≤ n, where
P0 = (a, 0), Pn = (0, b), and the points are counterclockwise ordered in the first quadrant. The selection is
based on weighted averages of curvatures. Given a parameterized curve (x(t), y(t)), the curvature is

K(t) =
x′(t)y′′(t)− y′(t)x′′(t)

((x′(t))2 + (y′(t))2)3/2
.

The ellipse is parameterized by x(t) = a cos t and b sin t for t ∈ [0, 2π). The derivatives are x′(t) = −a sin t,
y′(t) = b cos t, x′′(t) = −a cos t, and y′′(t) = −b sin t. The curvature is K(t) = ab/(a2 sin2 t + b2 cos2 t)3/2.
As a function of (x, y), the curvature is

K(x, y) =
ab((

bx
a

)2
+

(
ay
b

)2
)3/2

, (2)

where it is understood that (x, y) additionally satisfies equation (1). If the curvature K is specified, the
corresponding (x, y) is obtained by solving equations (1) and (2). Setting λ = (ab/K)2/3, the solution is

x = a

√∣∣∣∣ λ− a2

b2 − a2

∣∣∣∣, y = b

√∣∣∣∣ λ− b2

a2 − b2

∣∣∣∣.
Define K0 = K(a, 0) = a/b2 and Kn = K(0, b) = b/a2. The point Pi for 1 ≤ i ≤ n − 1 is selected so that
the curvature is Ki = (1− i/n)K0 + (i/n)Kn.

The second part of the process involves selecting a circular arc with center Ci and radius ri, 0 ≤ i < n, whose
end points are Pi and Pi+1. In order to obtain a vertical tangent at (a, 0), the circle (C0, r0) is chosen that
contains P0, P1, and (x1,−y1) where the last point is the reflection of P1 through the x-axis. Similarly, in
order to obtain a horizontal tangent at (0, b), the circle (Cn−1, rn−1) is chosen that contains Pn−1, Pn, and
(−xn−1, yn−1) where the last point is the reflection of Pn−1 through the y-axis. The other circles (Ci, ri)
for 1 ≤ i ≤ n− 2 are chosen to contain Pi−1, Pi, and Pi+1.

2 Implementation

The source code for the approximation is in files Wm4ApprEllipseByArcs2.h and Wm4ApprEllipseByArcs2.cpp.
A test program is shown next.

#include "Wm4ApprEllipseByArcs2.h"

#include "Wm4Images.h"

2



#include "Wm4Matrix2.h"

#include "Wm4RasterDrawing.h"

using namespace Wm4;

static int gs_iB0 = 256, gs_iB1 = 256;

static int gs_iB0M = gs_iB0-1, gs_iB1M = gs_iB1-1;

static ImageRGB82D gs_kImage(gs_iB0,gs_iB0);

static int gs_iColor = 0;

//----------------------------------------------------------------------------

static void SetPixel (int iX, int iY)

{

if (0 <= iX && iX < gs_kImage.GetBound(0)

&& 0 <= iY && iY < gs_kImage.GetBound(1))

{

gs_kImage(iX,iY) = gs_iColor;

}

}

//----------------------------------------------------------------------------

int main ()

{

float fA = 2.0f, fB = 1.0f;

int iNumArcs = 8;

Vector2f* akPoint = new Vector2f[iNumArcs+1];

Vector2f* akCenter = new Vector2f[iNumArcs];

float* afRadius = new float[iNumArcs];

ApproximateEllipseByArcs(fA,fB,iNumArcs,akPoint,akCenter,afRadius);

// Draw approximate ellipse to see how good it looks.

gs_kImage = 0x00FFFFFF;

gs_iColor = 0x00FF0000;

float fMax = 1.1f*fA, fMin = -fMax, fRange = fMax-fMin;

int i;

for (i = 0; i < iNumArcs; i++)

{

// Inefficiently draw circle just to see the results.

Vector2f kP0 = akPoint[i] - akCenter[i];

float fR0 = kP0.Length();

Vector2 kP1 = akPoint[i+1] - akCenter[i];

float fR1 = kP1.Length();

float fAngle = Mathf::ACos(kP0.Dot(kP1)/(afRadius[i]*afRadius[i]));

int jMax = 256;

for (int j = 0; j <= jMax; j++)

{

Matrix2f kRot;

kRot.FromAngle(j*fAngle/jMax);

Vector2f kPm = akCenter[i] + kRot*kP0;

int iX = int(gs_iB0M*(kPm.x-fMin)/fRange);

int iY = int(gs_iB1M*(kPm.y-fMin)/fRange);

SetPixel(iX,iY);

3



SetPixel(iX,gs_iB1M-iY);

SetPixel(gs_iB0M-iX,gs_iB1M-iY);

SetPixel(gs_iB0M-iX,iY);

}

}

// Plot the true ellipse.

gs_iColor = 0x000000FF;

Ellipse2D(128,128,128/1.1f,64/1.1f,SetPixel);

// Plot the sample points

gs_iColor = 0x00000000;

for (i = 0; i <= iNumArcs; i++)

{

Vector2f kPm = akPoint[i];

int iX = int((gs_kImage.GetBound(0)-1)*(kPm.x-fMin)/fRange);

int iY = int((gs_kImage.GetBound(1)-1)*(kPm.y-fMin)/fRange);

for (int iDY = -1; iDY <= 1; iDY++)

{

for (int iDX = -1; iDX <= 1; iDX++)

{

SetPixel(iX+iDX,iY+iDY);

SetPixel(iX+iDX,gs_iB1M-iY+iDY);

SetPixel(gs_iB0M-iX+iDX,gs_iB1M-iY+iDY);

SetPixel(gs_iB0M-iX+iDX,iY+iDY);

}

}

}

gs_kImage.Save("appr.im");

delete[] akPoint;

delete[] akCenter;

delete[] afRadius;

return 0;

}

//----------------------------------------------------------------------------

The variable iNumArcs was set to 2, 4, and 8. The approximation by arcs is drawn in blue and the true
ellipse, drawn with a Bresenham-style algorithm, is drawn in red. The arc end points are drawn as black
dots. Figure 2.1 shows the drawings, 2 arcs in the first quadrant in the top image, 4 arcs for the middle
image, and 8 arcs for the bottom image.

4



Figure 2.1 Top: A 2-arc approximation. Middle: A 4-arc approximation. Bottom: An 8-arc
approximation.

5


	1 Algorithm
	2 Implementation

