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This document describes an algorithm for fitting a 3D point set with a helix. The assumption is that the
underlying data is modeled by an elliptical helix. The algorithm will produce useless results for a random
data set or data sets with intrinsic dimension of 2 or 3.

1 Reconstructing a Standard Elliptical Helix

An elliptical helix with the z-axis as axis and cross-section being an axis-aligned ellipse is specified paramet-
rically by

(x(t), y(t), z(t) = (a cos(ωt+ φ), b sin(ωt+ φ), t)

where a > 0, b > 0, ω > 0, φ ∈ [0, 2π), and t ∈ IR. The helix lies on the elliptical cylinder (x/a)2+(y/b)2 = 1.

Given two points (x0, y0, z0) and (x1, y1, z1) on the helix such that ∆ := x2
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The solution leads to a =

√
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√
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1)/∆.

For the same two helix points, xi/a = cos(ωz + φ) and yi/b = sin(ωz + φ). Taking the ratios and applying
inverse tangent yields  z0 1

z1 1

 ω

φ

 =

 tan−1((ay0)/(bx0))

tan−1((ay1)/(bx1))

 .
Defining θ0 = tan−1((ay0)/(bx0)) and θ1 = tan−1((ay1)/(bx1)), the solution to the system of equations is
ω = (θ1 − θ0)/(z1 − z0) and φ = (θ0z1 − θ1z0)/(z1 − z0).

2 Reconstructing a General Elliptical Helix

Generally, the data points might be approximated by a helix whose axis is a line other than the z-axis. The
elliptical cylinder containing the helix satisfies the general quadratic equation

xTAx + bTx + c = 0

where A is a 3× 3 symmetric matrix, b and x are 3× 1 vectors, and c is a scalar. Moreover, exactly one of
the eigenvalues of A must be zero and the other two eigenvalues are positive. The other eigenvalues could
both be negative, but in that case the quadratic equation could be multiplied by −1 to obtain the case we
consider here. In fact there is one additional constraint as described below.

Using an eigendecomposition, let A = RDRT where R is an orthonormal matrix and D = Diag{d0, d1, 0}.
Let y = (y0, y1, y2) = RTx and e = (e0, e1, e2) = RTb. The quadratic equation becomes

yTDy + eTy + c = 0.

The additional constraint is that e2 = 0. In this case we get

d0y
2
0 + d1y

2
1 + e0y0 + e1y1 + c = 0.
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Completing the square on both y0 and y1 terms yields

d0
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)2
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2d1

)2

=
e20
4d0

+
e21
4d1

− c =: λ.

The right-hand side λ must be positive. In standard form, the equation is(
y0 + e0

2d0

)2

λ/d0
+

(
y1 + e1

2d1

)2

λ/d1
= 1.

This is the equation for an elliptical cylinder whose axis is in the direction of the y2 axis and passes through
(e0/(2d0), e1/(2d1)). The lengths of the ellipse axes are a =

√
λ/d0 and b =

√
λ/d1. A final change

of variables is u = (u0, u1, u2) = (y0 + e0/(2d0), y1 + e1/(2d1), y2). This produces the standard elliptical
cylinder (u0/a)2 + (u1/b)2 = 1. Given points on the helix, the helix can be reconstructed as shown in the
previous section by first transforming the data points indicated by this section’s discussion.

3 Fitting a Standard Elliptical Helix

If the data points are not exactly on the helix, then the parameters a, b, ω, and φ must be estimated. One
possibility is to sort the data points by z-value, then compute the parameters for each pair of consecutive
points using the reconstruction of the first section. A summary statistic could be used to make the final
selection (average, median, generalized order statistics, etc.)

Another approach is to use a least-squares method. The energy function is

E(a, b, ω, φ) =
∑N−1

i=0 |(xi, yi, zi)− (a cos(ωzi + φ), b sin(ωzi + φ), zi)|2

=
∑N−1

i=0 (xi − a cos(ωzi + φ))2 + (yi − b sin(ωzi + φ))2 .

The global minimum occurs when ∇E = 0. Define ψi = ωzi + φ. The derivatives are
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∂E
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∑
i cos2 ψi −

∑
i xi cosψi

1
2

∂E
∂b = b

∑
i sin2 ψi −

∑
i yi cosψi

1
2

∂E
∂ω =

∑
i(xi − a cosψi)(zia sinψi) + (yi − b sinψi)(−zib cosψi)

1
2

∂E
∂φ =

∑
i(xi − a cosψi)(a sinψi) + (yi − b sinψi)(−b cosψi)

The first two equations determine a and b in terms of ω and φ:

a =
∑

i xi cosψi∑
i cos2 ψi

, b =
∑

i yi sinψi∑
i sin2 ψi

These can be plugged into the last two equations to produce two nonlinear equations in the two unknowns ω
and φ. This system can be numerically solved by a multidimensional root finder, perhaps by a Newton-Jacobi
method.
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If the cylinder is circular, say a = b = r for some r > 0, then the equations may be reduced to a simpler
numerical problem. The derivatives are

1
2

∂E
∂r = Nr −

∑
i xi cosψi −

∑
i yi sinψi

1
2r

∂E
∂ω =

∑
i xizi sinψi − yizi cosψi

1
2r

∂E
∂φ =

∑
i xi sinψi − yi cosψi

The first equation determines r,

r =
1
N

∑
i

xi cosψi + yi sinψi.

The other two equations may be separated by expanding sinψi = sin(ωzi) cos(φ) + cos(ωzi) sin(φ) and
cosψi = cos(ωzi) cos(φ)− sin(ωzi) sin(φ). Define ξi = ωzi. The two equations from setting derivatives equal
to zero are

0 = (cosφ)
∑

i zi(xi sin ξi − yi cos ξi) + (sinφ)
∑

i zi(xi cos ξi + yi sin ξi)

0 = (cosφ)
∑

i(xi sin ξi − yi cos ξi) + (sinφ)
∑

i(xi cos ξi + yi sin ξi)

Abstractly these represent two orthogonality conditions. If u(φ) = (cosφ, sinφ), then the two equations are
of the form u ·(p0, p1) = 0 and u ·(q0, q1) = 0. Both (p0, p1) and (q0, q1) are orthogonal to the u, so they must
be parallel vectors. Thus, we need p0q1 − p1q0 = 0. This last equation is a function only of the unknown
ω. A standard root finder for a function of one variable may be applied, for example, a Newton’s method.
An initial guess could be obtained by choosing two data points and computing ω as indicated in the first
section. Once a root is found, the vector (p0, p1) is computed. The value for φ = tan−1(p1/p0).

4 Fitting a General Elliptical Helix

The elliptical cylinder of best fit is computed according to the method in section 2. The cylinder and data
points are transformed into standard position so that we have an elliptical cylinder whose axis is the z-axis
and whose cross section is an axis-aligned ellipse. The fitting methods of section 3 can then be applied.
The parametric equation of the fitting helix can then be inverse transformed back to the original coordinate
system.
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