
Eigensystem Solvers for Symmetric Matrices

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: March 2, 2008

Contents

1 Householder Reduction to Tridiagonal Form 2

2 Symbolic Tridiagonalization 3

2.1 Reduction of 2× 2 matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Reduction of 3× 3 matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Reduction of 4× 4 matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Implementation 9

4 Generalized Eigensystems 12

4.1 Principal Curvatures and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Optimal Scale Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1

http://www.geometrictools.com/


This document discusses numerical solution of eigensystems of the form Av = λv where A is a real, symmetric
matrix. I also consider generalized eigensystems of the form Av = λBv where B is nonegative definite. For
regular eigensystems, standard packages may be used. In particular, for general dimensions I use routines
from Numerical Recipes in C. I use the routine tred2 for reduction of the matrix to tridiagonal form, followed
by tqli for computing eigenstuff for a tridiagonal matrix. However, for dimensions n = 2, 3, 4 I have written
special reduction routines which run about n times faster than tred2. The code is found in eigen.h and
eigen.c.

1 Householder Reduction to Tridiagonal Form

The standard way to solve Av = λv is to compute an orthogonal matrix Q such that T = QTAQ is
tridiagonal. The equivalent eigensystem is Tw = λw where w = QTv. Such systems are fairly easy to
solve numerically since roots of det(T − λI) = 0 can be bounded a priori and then located using standard
root-finding techniques.

The reduction T = QTAQ is obtained where Q is a product of a sequence of n − 2 Householder transfor-
mations, where n is the size of the matrix. Since A is symmetric, the matrix T is symmetric, so only the
main diagonal and the adjacent subdiagonal need to be computed. A description of the algorithm is given
in Numerical Recipes in C. The routine which implements the reduction is

void mgcEigen::
TridiagonalN (int n, float** mat, float* diag, float* subd);

// input: n = size of matrix
// mat = nxn real, symmetric A
// output: mat = orthogonal Q
// diag = diagonal entries of tridiagonal T, diag[0..n-1]
// subd = subdiagonal entries of T, subd[0..n-2]

I modified the Numerical recipes code so that array indexing starts at 0 rather than at 1. I also have the first
n− 1 entries of subd storing the subdiagonal values rather than the last n− 1 (subd[1..n-1]) as in NRC.
In the book, routine tred2 returns the subdiagonal entries in the last n − 1 positions. The code tqli for
finding eigenstuff of tridiagonal matrices rotates the input subdiagonal entries so that the first n− 1 entries
are valid, and the last entry is arbitrary. I placed the rotation in tred2 because I have my own reduction
code which can be called in place of tred2, so there would be no reason to waste time rotating in tqli.

The computation of eigenstuff for tridiagonal T is accomplished by factoring T = QL where Q is orthogonal
and L is lower triangular. The diagonal entries of L are the eigenvalues of T and the columns of Q are the
corresponding eigenvectors. The routine below is found in Numerical Recipes in C and uses implicit shifting
to accelerate the convergence and avoid loss of precision of the eigenvalues.

void mgcEigen::
QLAlgorithm (int n, float* diag, float* subd, float** mat);

// input: n = size of matrix
// diag = diagonal entries of tridiagonal T, diag[0..n-1]
// subd = subdiagonal entries of T, subd[0..n-2]
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// mat = the output matrix from NRC_tred2 if the eigenstuff
// of real, symmetric A is desired (run NRC_tred2 on A
// first), otherwise just the identity matrix if
// eigenstuff desired for T only
// output: diag = eigenvalues of T (and of A if NRC_tred2 used first)
// mat = eigenvectors of T (or of A if NRC_tred2 used first),
// column k of mat is an eigenvector for the eigenvalue
// diag[k]

As before, all array indexing has been modified to start at 0 rather than at 1.

For my applications I need the eigenvalues to be sorted. The following routines are selection sorts. The
order of the parameters is different than in NRC.

void mgcEigen::
DecreasingSort (int n, float* eigval, float** eigvec);

// input: eigval = eigenvalues in arbitrary order
// eigvec = column k of matrix is eigenvector for eigval[k]
// output: eigval = eigenvalues in decreasing order, maximum in
// eigval[0], minimum in eigval[n-1]
// eigvec = column k of matrix is eigenvector for eigval[k]

void mgcEigen::
IncreasingSort (int n, float* eigval, float** eigvec);

// input: eigval = eigenvalues in arbitrary order
// eigvec = column k of matrix is eigenvector for eigval[k]
// output: eigval = eigenvalues in increasing order, maximum in
// eigval[0], minimum in eigval[n-1]
// eigvec = column k of matrix is eigenvector for eigval[k]

Array indexing also starts at 0 rather than at 1.

2 Symbolic Tridiagonalization

For small dimensions, the Householder reductions for tridiagonalization can be done symbolically. The
resulting implementations are faster than the general purpose code provided in Numerical Recipes. The
routines are TridiagonalD for D = 2, 3, 4. I did profiling by iterating 100, 000 times a block of code
which assigned a matrix its values, tridiagonalized (using TridiagonalN or TridiagonalD), and computed
eigenstuff with QLAlgorithm. I did the timing on an Intel 80486 at 33 MHz running under Microsoft Windows
3.1. The table below gives the timing information where the times are total seconds of execution time as
measured by using the clock() routine in time.h. The reduction routines were timed on matrices of the
form M = [mij ] where mij = i + j + 1.

3



D time for TridiagonalN time for TridiagonalD

2 9.23 5.99

3 43.52 15.33

4 99.12 27.98
Timing for numeric versus symbolic tridiagonalization

2.1 Reduction of 2× 2 matrices

Since a 2×2 matrix is already tridiagonal, there is nothing to do theoretically. However, the implementation
must do the assignment of numbers to the actual parameters needed for further processing. The method
which does this is

void mgcEigen::
Tridiagonal2 (float** mat, float* diag, float* subd)

// input: mat = 2x2 real, symmetric A
// output: mat = identity matrix I
// diag = diagonal entries of A, diag[0] = a00, diag[1] = a11
// subd = subdiagonal entry of A, subd[0] = a01

{
// matrix is already tridiagonal

diag[0] = mat[0][0];
diag[1] = mat[1][1];
subd[0] = mat[0][1];
subd[1] = 0;
mat[0][0] = 1; mat[0][1] = 0;
mat[1][0] = 0; mat[1][1] = 1;

}

2.2 Reduction of 3× 3 matrices

There are many ways to reduce A to tridiagonal form. I used a Householder transformation which does a
rotation and a reflection in the x1x2-plane, where x = (x0, x1, x2). Let the matrix entries be labeled

A =

 a b c
b d e
c e f

 .

If c = 0, the matrix is already tridiagonal, so the orthogonal transformation is just the identity matrix Q = I.
If c 6= 0, a Householder transformation Q and corresponding tridiagonal matrix T = QTAQ are

Q =

 1 0 0
0 u v
0 v −u

 and T =

 a L 0
L d + vq e− uq
0 e− uq f − vq


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where L =
√

b2 + c2, u = b/L, v = c/L, and q = 2ue + v(f − d). The method for the reduction is

void mgcEigen::
Tridiagonal3 (float** mat, float* diag, float* subd)

// input: mat = 3x3 real, symmetric A
// output: mat = orthogonal matrix Q
// diag = diagonal entries of T, diag[0,1,2]
// subd = subdiagonal entry of T, subd[0,1]

{
float a = mat[0][0], b = mat[0][1], c = mat[0][2],

d = mat[1][1], e = mat[1][2],
f = mat[2][2];

diag[0] = a;
subd[2] = 0;
if ( c != 0 ) {

float ell = sqrt(b*b+c*c);
b /= ell;
c /= ell;
float q = 2*b*e+c*(f-d);
diag[1] = d+c*q;
diag[2] = f-c*q;
subd[0] = ell;
subd[1] = e-b*q;
mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;
mat[1][0] = 0; mat[1][1] = b; mat[1][2] = c;
mat[2][0] = 0; mat[2][1] = c; mat[2][2] = -b;

}
else {

diag[1] = d;
diag[2] = f;
subd[0] = b;
subd[1] = e;
mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;
mat[1][0] = 0; mat[1][1] = 1; mat[1][2] = 0;
mat[2][0] = 0; mat[2][1] = 0; mat[2][2] = 1;

}
}

2.3 Reduction of 4× 4 matrices

The reduction of a 4 × 4 matrix is more complicated. The orthogonal transformation is a motion in the
x1x2x3-plane where the general 4-dimensional coordinates are x = (x0, x1, x2, x3). Let the matrix entries be
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labeled

A =


a b c d
b e f g
c f h i
d g i j

 =
[

a vT

v S

]

where the right-hand side is in block matrix form where v is a 3 × 1 column vector and S is a symmetric
3× 3 submatrix of A. I seek an orthogonal transformation in block form Q = Diag(1, P ) where 1 is a scalar,
P is a 3× 3 orthogonal matrix, and T = QTAQ is tridiagonal. The tridiagonal matrix T is then given by

T = QTAQ =
[

a vTP
PTv PTSP

]
.

Let the columns of P be labeled pk, k = 1, 2, 3. For T to be tridiagonal, vTP must be parallel to (1, 0, 0).
This implies that v is orthogonal to both p2 and p3. If v = (0, 0, 0), choose p1 = (1, 0, 0); otherwise, set
p1 = v/|v|.

Also for T to be tridiagonal, the upper right-hand corner entry of PTSP must be 0; that is, pT
1 Sp3 = 0. This

implies that the vector Sp1 is in the plane of p1 and p2. If Sp1 is parallel to p1 (i.e. p1 is an eigenvector
for S), then choose any p2 and p3 such that P is orthogonal. If p1 = (α, β, γ), choose

P =


α −β −γ

β 1 + (α−1)β2√
β2+γ2

(α−1)βγ√
β2+γ2

γ (α−1)βγ√
β2+γ2

1 + (α−1)γ2√
β2+γ2


if

√
β2 + γ2 6= 0. If this square root is zero, simply choose p2 = (0, 1, 0) and p3 = (0, 0, 1). If Sp1 is not

parallel to p1, choose

p3 =
p1 × Sp1

|p1 × Sp1|
and p2 = p3 × p1.

After constructing P , the code also includes construction of the entries for PTSP which is itself a tridiagonal
matrix, so only 5 values need be computed. The method for the reduction is

void mgcEigen::
Tridiagonal4 (float** mat, float* diag, float* subd)

// input: mat = 4x4 real, symmetric A
// output: mat = orthogonal matrix Q
// diag = diagonal entries of T, diag[0,1,2,3]
// subd = subdiagonal entry of T, subd[0,1,2]

{
// save matrix M
float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],

e = mat[1][1], f = mat[1][2], g = mat[1][3],
h = mat[2][2], i = mat[2][3],

j = mat[3][3];

6



diag[0] = a;
subd[3] = 0;

mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0; mat[0][3] = 0;
mat[1][0] = 0;
mat[2][0] = 0;
mat[3][0] = 0;

if ( c != 0 || d != 0 ) {
float q11, q12, q13;
float q21, q22, q23;
float q31, q32, q33;

// build column Q1
float len = sqrt(b*b+c*c+d*d);
q11 = b/len;
q21 = c/len;
q31 = d/len;

subd[0] = len;

// compute S*Q1
float v0 = e*q11+f*q21+g*q31;
float v1 = f*q11+h*q21+i*q31;
float v2 = g*q11+i*q21+j*q31;

diag[1] = q11*v0+q21*v1+q31*v2;

// build column Q3 = Q1x(S*Q1)
q13 = q21*v2-q31*v1;
q23 = q31*v0-q11*v2;
q33 = q11*v1-q21*v0;
len = sqrt(q13*q13+q23*q23+q33*q33);
if ( len > 0 ) {

q13 /= len;
q23 /= len;
q33 /= len;

// build column Q2 = Q3xQ1
q12 = q23*q31-q33*q21;
q22 = q33*q11-q13*q31;
q32 = q13*q21-q23*q11;

v0 = q12*e+q22*f+q32*g;
v1 = q12*f+q22*h+q32*i;
v2 = q12*g+q22*i+q32*j;
subd[1] = q11*v0+q21*v1+q31*v2;
diag[2] = q12*v0+q22*v1+q32*v2;
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subd[2] = q13*v0+q23*v1+q33*v2;

v0 = q13*e+q23*f+q33*g;
v1 = q13*f+q23*h+q33*i;
v2 = q13*g+q23*i+q33*j;
diag[3] = q13*v0+q23*v1+q33*v2;

}
else { // S*Q1 parallel to Q1, choose any valid Q2 and Q3

subd[1] = 0;

len = q21*q21+q31*q31;
if ( len > 0 ) {

float tmp = q11-1;
q12 = -q21;
q22 = 1+tmp*q21*q21/len;
q32 = tmp*q21*q31/len;

q13 = -q31;
q23 = q32;
q33 = 1+tmp*q31*q31/len;

v0 = q12*e+q22*f+q32*g;
v1 = q12*f+q22*h+q32*i;
v2 = q12*g+q22*i+q32*j;
diag[2] = q12*v0+q22*v1+q32*v2;
subd[2] = q13*v0+q23*v1+q33*v2;

v0 = q13*e+q23*f+q33*g;
v1 = q13*f+q23*h+q33*i;
v2 = q13*g+q23*i+q33*j;
diag[3] = q13*v0+q23*v1+q33*v2;

}
else { // Q1 = (+-1,0,0)

q12 = 0; q22 = 1; q32 = 0;
q13 = 0; q23 = 0; q33 = 1;

diag[2] = h;
diag[3] = j;
subd[2] = i;

}
}

mat[1][1] = q11; mat[1][2] = q12; mat[1][3] = q13;
mat[2][1] = q21; mat[2][2] = q22; mat[2][3] = q23;
mat[3][1] = q31; mat[3][2] = q32; mat[3][3] = q33;

}
else {

diag[1] = e;
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subd[0] = b;
mat[1][1] = 1;
mat[2][1] = 0;
mat[3][1] = 0;

if ( g != 0 ) {
float ell = sqrt(f*f+g*g);
f /= ell;
g /= ell;
float Q = 2*f*i+g*(j-h);

diag[2] = h+g*Q;
diag[3] = j-g*Q;
subd[1] = ell;
subd[2] = i-f*Q;
mat[1][2] = 0; mat[1][3] = 0;
mat[2][2] = f; mat[2][3] = g;
mat[3][2] = g; mat[3][3] = -f;

}
else {

diag[2] = h;
diag[3] = j;
subd[1] = f;
subd[2] = i;
mat[1][2] = 0; mat[1][3] = 0;
mat[2][2] = 1; mat[2][3] = 0;
mat[3][2] = 0; mat[3][3] = 1;

}
}

}

3 Implementation

The class declaration for handling eigensystems is

#include <iostream.h>

class mgcEigen
{
public:

mgcEigen (int _size);
~mgcEigen ();

// set the matrix for eigensolving
float& Matrix (int row, int col) { return mat[row][col]; }
mgcEigen& Matrix (float** inmat);
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// get the results of eigensolving
float Eigenvalue (int d) { return diag[d]; }
float Eigenvector (int row, int col) { return mat[row][col]; }
const float* Eigenvalue () { return diag; }
const float** Eigenvector () { return (const float**) mat; }

// solve eigensystem
void EigenStuff2 (); // uses TriDiagonal2
void EigenStuff3 (); // uses TriDiagonal3
void EigenStuff4 (); // uses TriDiagonal4
void EigenStuffN (); // uses TriDiagonalN
void EigenStuff (); // uses switch statement

// solve eigensystem, use decreasing sort on eigenvalues
void DecrSortEigenStuff2 ();
void DecrSortEigenStuff3 ();
void DecrSortEigenStuff4 ();
void DecrSortEigenStuffN ();
void DecrSortEigenStuff ();

// solve eigensystem, use increasing sort on eigenvalues
void IncrSortEigenStuff2 ();
void IncrSortEigenStuff3 ();
void IncrSortEigenStuff4 ();
void IncrSortEigenStuffN ();
void IncrSortEigenStuff ();

// debugging output?
float& Tdiag (int i) { return diag[i]; }
float& Tsubdiag (int i) { return subd[i]; }
void Reduce () { TridiagonalN(size,mat,diag,subd); }

private:
int size;
float** mat;
float* diag;
float* subd;

// Householder reduction to tridiagonal form
void Tridiagonal2 (float** mat, float* diag, float* subd);
void Tridiagonal3 (float** mat, float* diag, float* subd);
void Tridiagonal4 (float** mat, float* diag, float* subd);
void TridiagonalN (int n, float** mat, float* diag, float* subd);

// QL algorithm with implicit shifting, applies to tridiagonal matrices
void QLAlgorithm (int n, float* diag, float* subd, float** mat);
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// sort eigenvalues from largest to smallest
void DecreasingSort (int n, float* eigval, float** eigvec);

// sort eigenvalues from smallest to largest
void IncreasingSort (int n, float* eigval, float** eigvec);

// error handling
public:

static int verbose;
static unsigned error;
static void Report (ostream& ostr);

private:
static const unsigned invalid_size;
static const unsigned allocation_failed;
static const unsigned ql_exceeded;
static const char* message[];
static int Number (unsigned single_error);
static void Report (unsigned single_error);

};

Methods are provided for solving low dimensions 2, 3, or 4 using the optimized routines. The other methods
use the general Numerical Recipes in C code. The eigenvalues can be solved for in no particular order, in
decreasing order, or in increasing order. An example is

int main ()
{

mgcEigen eig(3);

eig.Matrix(0,0) = 2; eig.Matrix(0,1) = 1; eig.Matrix(0,2) = 1;
eig.Matrix(1,0) = 1; eig.Matrix(1,1) = 2; eig.Matrix(1,2) = 1;
eig.Matrix(2,0) = 1; eig.Matrix(2,1) = 1; eig.Matrix(2,2) = 2;

eig.IncrSortEigenStuff3();

cout.setf(ios::fixed);

cout << "eigenvalues = " << endl;
for (int row = 0; row < 3; row++)

cout << eig.Eigenvalue(row) << ’ ’;
cout << endl;

cout << "eigenvectors = " << endl;
for (row = 0; row < 3; row++) {

for (int col = 0; col < 3; col++)
cout << eig.Eigenvector(row,col) << ’ ’;

cout << endl;
}
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// eigenvalues =
// 1.000000 1.000000 4.000000
// eigenvectors =
// 0.411953 0.704955 0.577350
// 0.404533 -0.709239 0.577350
// -0.816485 0.004284 0.577350

return 0;
}

The characteristic polynomial is λ3−6λ2−9λ+4 which has roots 1, 1, and 4. The eigenspace corresponding
to λ = 1 is 2-dimensional and is spanned by (1,−1, 0 and (1, 0,−1) (these are not an orthogonal basis for
the eigenspace). The eigenspace corresponding to λ = 4 is spanned by (1, 1, 1). Note that the eigensolver
can return any set of orthonormal vectors in eigenspaces whose dimension is larger than 1.

4 Generalized Eigensystems

A generalized eigensystem is of the form Av = λBv where B is also a matrix. If B is invertible, then the
system can be converted to a regular one: B−1Av = λv. However, there are some instances where inverting
B is not the best choice for a robust numerical solution, for example, when B is positive definite. If B is not
invertible, then one must take advantage of any special structure that B has, for example, if B is nonnegative
definite.

Suppose that B is positive definite. The matrix can be uniquely factored as B = QTDQ for an orthogonal
matrix Q and a diagonal matrix D with nonnegative entries. The diagonal matrix D = Diagd1, . . . , dn has a
square root D1/2 = Diag(d1/2

1 , . . . , d
1/2
n ). Thus, B = MTM where M = D1/2Q. The generalized eigensystem

is converted to
Av = λMTMv.

Some matrix algebra yields
M−TAM−1Mv = λMv.

Setting C = M−TAM−1 and w = Mv, the eigensystem is now

Cw = λw

which is now a regular eigensystem where C is symmetric. The numerical methods described earlier can now
be applied to solve for λ and vectors w. The eigenvectors for the original generalized system can be solved
as v = M−1w.

4.1 Principal Curvatures and Directions

As an example, consider the problem of computing the principal curvatures λ and principal directions v for
an 2-dimensional surface defined implicitly as F (x) = 0 where F : IR3 → IR. They are determined by the
generalized eigensystem Av = λBv, where

A =
D2F√

1 + |DF |2
and B = I + DFDFT
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where DF is the 3 × 1 vector of first derivatives of F , D2F is the 3 × 3 matrix of second derivatives of F ,
and I is the 3× 3 identity matrix.

Matrix B can be decomposed as follows. Let d = DF . Let Q be an orthogonal matrix such that Qd = |d|k,
where k = (0, 0, 1); then QBQT = Diag(1, 1, 1+ |d|2) = D. Thus, B = MTM where M = D1/2Q. As shown
previously, the eigensystem now becomes Cw = λw where C = M−TAM−1 and w = Mv.

Matrix Q may be chosen as follows. Let d = (d1, . . . , dn) and define α = (d1, . . . , dn−1). If α = 0, just
choose Q to be the identity matrix. Otherwise, define β = α/|α| and let

Q =

 E + (dn − 1)ββT α

−αT dn

 ,

where E is the (n− 1)× (n− 1) identity matrix.

4.2 Optimal Scale Ridges

Consider a smooth function f : IR2 → IR. Let D2fu = αu and D2fv = βv where α ≤ β and where
the eigenvectors are unit length. The height ridges of f are those points (x, y) for which u · Df = 0 and
α = uTD2fu = α < 0.

Consider a scale space function M : IR2 × IR+ → IR, say M = M(x, y, σ). For each (x, y) find the smallest
σ0 = σ0(x, y) such that M has a local maximum through scale at (x, y, σ0(x, y)). Thus, Mσ(x, y, σ0(x, y)) = 0
and Mσσ(x, y, σ0(x, y)) < 0. For a connected component of the graph of σ0(x, y), define the function
f(x, y) = M(x, y, σ0(x, y)). The optimal scale ridges of M are the height ridges of f .

The optimal scale ridge definition is equivalent to the following one. Note that

Df = (Mx + Mσσ0,x,My + Mσσ0,y) = (Mx,My).

The first equality is by application of the chain rule. The second equality is true since Mσ(x, y, σ0(x, y)) ≡ 0.
Differentiating again yields

D2f =

 Mxx + Mxσσ0,x Mxy + Mxσσ0,y

Myx + Myσσ0,x Myy + Myσσ0,y

 .

Differentiating Mσ(x, y, σ0(x, y)) ≡ 0 yields

σ0,x = −Mxσ

Mσσ

σ0,y = −Myσ

Mσσ

Mxσσ0,y = Myσσ0,x

Let v = (v0, v1) be an eigenvector for D2f with eigenvalue λ, so D2fv = λv. Define

v2 = v0σ0,x + v1σ0,y.

This implies v0Mxσ + v1Myσ + v2Mσσ ≡ 0. It can be shown that

D2M

 v

v2

 =

 λv

0

 .
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We can therefore rephrase the optimal scale ridge definition. Let u = (0, 0, 1) and α = Mσσ. Define matrix
P = Diag(1, 1, 0). Let v and w solve the generalized eigensystem

D2Mv = βPv, D2Mw = γPw.

Ridge curves are obtained as solutions to u ·DM = 0 and v ·DM = 0 where α < 0 and β < 0.

In the generalized eigensystem, the matrix P is nonnegative definite. The factoring method that worked for
positive definite matrices does not apply here. The problem is that P = MTM , but M is not invertible.
However, for this special problem, you can find the eigenvalues in the standard way, det(D2M − λP ) = 0.
Despite the fact that the matrices are 3× 3, the characteristic polynomial is quadratic.

Generally, if A and B are real symmetric n×n matrices, and if B has rank r < n (B is singular), the number
of generalized eigenvalues of Av = λBv is r.
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