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1 Introduction

This article describes how to compute the points of intersection of two ellipsoids, a geometric query labeled
find intersections. It also shows how to determine if two ellipsoids intersect without computing the points of
intersection, a geometric query labeled test intersection. Specifically, the geometric queries for the ellipsoids
E0 and E1 are:

• Find Intersections. If E0 and E1 intersect, find the points of intersection.

• Test Intersection. Determine if

– E0 and E1 are separated (there exists a plane for which the ellipsoids are on opposite sides),

– E0 properly contains E1 or E1 properly contains E0, or

– E0 and E1 intersect.

An implementation of the find query, in the event of no intersections, might not necessarily determine if one
ellipsoid is contained in the other or if the two ellipsoids are separated. Let the ellipsoids Ei be defined by
the quadratic equations

Qi(X) = XTAiX + BT
i X + Ci

=
[

x y z
] 

a
(i)
00 a

(i)
01 a

(i)
02

a
(i)
01 a

(i)
11 a

(i)
12

a
(i)
02 a

(i)
12 a

(i)
22




x

y

z

 +
[

b
(i)
0 b

(i)
1 b

(i)
2

] 
x

y

z

 + c(i)

= 0

for i = 0, 1. It is assumed that the Ai are positive definite. In this case, Qi(X) < 0 defines the inside of the
ellipsoid and Qi(X) > 0 defines the outside.

2 Find Intersection

2.1 Variation 1

The two polynomials f(z) = α0 + α1z + α2z
2 and g(z) = β0 + β1z + β2z

2 have a common root if and only if
the Bézout determinant is zero,

(α2β1 − α1β2)(α1β0 − α0β1)− (α2β0 − α0β2)2 = 0.

This is constructed by the combinations

0 = α2g(z)− β2f(z) = (α2β1 − α1β2)z + (α2β0 − α0β2)

and
0 = β1f(z)− α1g(z) = (α2β1 − α1β2)z2 + (α0β1 − α1β0),
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solving the first equation for z and substituting it into the second equation. When the Bézout determinant
is zero, the common root of f(z) and g(z) is

z̄ =
α2β0 − α0β2

α1β2 − α2β1
.

The common root to f(z) = 0 and g(z) = 0 is obtained from the linear equation α2g(z) − β2f(z) = 0 by
solving for z.

The ellipsoid equations can be written as quadratics in z whose coefficients are polynomials in x and y,
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Using the notation of the previous paragraph with f corresponding to Q0 and g corresponding to Q1,
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Let α2β1 − α1β2 =
∑

i+j≤1 v0ijx
iyj , α1β0 − α0β1 =

∑
i+j≤3 v1ijx

iyj , and α2β0 − α0β2 =
∑

i+j≤2 v2ijx
iyj .

The Bézout determinant is a polynomial in x and y of degree at most 4, R(x, y) =
∑

i+j≤4 rijx
iyj where

r40 = v010v130 − v2
220

r31 = v010v121 + v001v130 − 2v211v220

r22 = v010v112 + v001v121 − v2
211 − 2v202v220

r13 = v010v103 + v001v112 − 2v202v211

r04 = v001v103 − v2
202

r30 = v010v120 + v000v130 − 2v210v220

r21 = v010v111 + v001v120 + v000v121 − 2v210v211 − 2v201v200

r12 = v010v102 + v001v111 + v000v112 − 2v202v210 − 2v201v211

r03 = v001v102 + v000v103 − 2v201v202

r20 = v010v110 + v000v120 − v2
210 − 2v200v220

r11 = v010v101 + v001v110 + v000v111 − 2v201v210 − 2v200v211

r02 = v001v101 + v000v102 − v2
201 − 2v200v202

r10 = v010v100 + v000v110 − 2v200v210

r01 = v001v100 + v000v101 − 2v200v201

r00 = v000v100 − v2
200
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Points of intersection are solutions to R(x, y) = 0. If there are solutions, then there must be at least one
solution (x, y) that is closest to the origin. This problem can be set up as a constrained minimization:
Minimize |X|2 subject to the constraint R(X) = 0. Applying the method of Lagrange multipliers, define
F (X, t) = |X|2 + tR(X). Setting ∂F/∂t = 0 reproduces the constraint R = 0. Setting the spatial derivatives
∇F = 0 yields 2(x, y) + t(Rx, Ry) = (0, 0) where Rx = ∂R/∂x and Ry = ∂R/∂y. Therefore, 0 = S(x, y) =
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yRx − xRy =
∑

i+j≤4 sijx
iyj , another polynomial of degree at most four. The coefficients are

s40 = −r31

s31 = 4r40 − 2r22

s22 = 3r31 − 3r13

s13 = 2r22 − 4r04

s04 = r13

s30 = −r21

s21 = 3r30 − 2r12

s12 = 2r21 − 3r03

s03 = r12

s20 = −r11

s11 = 2r20 − 2r02

s02 = r11

s10 = −r01

s01 = r10

s00 = 0

We now have two polynomial equations in two unknowns, R(x, y) = 0 and S(x, y) = 0.

Consider f(y) =
∑4

i=0 αiy
i and g(y) =

∑4
i=0 βiy

i. The Bézout matrix for f and g is the 4 × 4 matrix
M = [Mij ] with

Mij =
min(4,7−i−j)∑

k=max(4−j,4−i)

wk,7−i−j−k

for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3, with wi,j = αiβj − αjβi for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 4. In expanded form,

M =


w4,3 w4,2 w4,1 w4,0

w4,2 w3,2 + w4,1 w3,1 + w4,0 w3,0

w4,1 w3,1 + w4,0 w2,1 + w3,0 w2,0

w4,0 w3,0 w2,0 w1,0

 .

Both R(x, y) = 0 and S(x, y) = 0 can be written as polynomials in y whose coefficients are polynomials in
x. That is, the αi and βi are polynomials in x of degree 4− i. The degree of wi,j is 8− i− j. The Bézout
determinant is D(x) = det(M(x)), a polynomial of degree 16 in x.

The roots of D(x) = 0 are computed. For each root x, the coefficients of f(y) are computed and the roots
for the fourth degree polynomial equation f(y) = 0 are computed. The pairs (x, y) are tested to make sure
R(x, y) = 0 and S(x, y) = 0. Once such a pair (x̄, ȳ) is found, then the problem now is to traverse the curve
of intersection, or verify that the initial point is isolated, in which case the two ellipsoids are tangent at that
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point. The point is isolated if ∇Q0(x̄, ȳ) and ∇Q1(x̄, ȳ) are parallel. A simple verification that the cross
product of the gradient vectors is the zero vector will suffice. If the point is not isolated, then the curve can
be traversed by solving a system of differential equations

dx

dt
= Ry(x, y),

dy

dt
= −Rx(x, y), (x(0), y(0)) = (x̄, ȳ).

The vector (Rx, Ry) is normal to the level curve defined by R = 0, so the vector (Ry,−Rx) is tangent to the
level curve. The differential equations just specify to traverse the curve by following the tangent vector.

2.2 Variation 2

The main problem with Variation 1 is that numerically finding the roots of a degree 16 polynomial is usually
an ill-conditioned problem. An alternative is to set up a system of differential equations that allows you to
walk along one ellipsoid in search of a point of intersection with the other ellipsoid. The search will either
find a point or determine that there is none.

Start with a point X0 such that Q0(X0) = 0. If Q1(X0) = 0, you got lucky and have a point of intersection.
If Q1(X0) < 0, then X0 is inside the other ellipsoid. The idea is to walk tangent to the first ellipsoid while
increasing the value of Q1 to zero. In space, the direction of largest increase of Q1 is ∇Q1. However, this
vector is usually not tangent to the first ellipsoid, so you need to project it onto the first ellipsoid’s tangent
space by projecting out the contribution by ∇Q0. The path on the first ellipsoid with largest increase in Q1

locally is determined by
dX
dt

= ∇Q1 −
∇Q1 · ∇Q0

|∇Q0|2
∇Q0, X(0) = X0.

In the event that Q1(X0) > 0, the tangent direction must be reversed so that Q1 is decreased as rapidly as
possible to 0. The differential equations for this case are

dX
dt

= −∇Q1 +
∇Q1 · ∇Q0

|∇Q0|2
∇Q0, X(0) = X0.

Whether or not the ellipsoids not intersect, eventually the traversal will lead to a point for which the gradients
are parallel. In this case the right-hand side of the differential equation reduces to the zero vector. The
length of the right-hand side vector can be used as a termination criterion in the numerical solver. Another
concern is that the numerical solver will produce a new position from an old one. Because of numerical error,
the new position might not be on the first ellipsoid. A correction can be made to adjust the new position so
that it is on the first ellipsoid. The corrected value can be used to generate the next iterate in the solver.

Once a point X1 = X(T ) is found for which Q1(X1) = 0, the 2D level curve traverse mentioned in Variation
1 can be applied. However, it is possible to traverse the curve of intersection in 3D. A tangent vector for the
curve is perpendicular to both ∇Q0 and ∇Q1. The system of equations to solve is

dX
dt

= ∇Q0 ×∇Q1, X(0) = X1.

6



3 Test Intersection

3.1 Variation 1

All level curves defined by Q0(X) = λ are ellipsoids, except for the minimum (negative) value λ for which the
equation defines a single point, the center of every level curve ellipsoid. The ellipsoid defined by Q1(X) = 0
is a surface that generally intersects many level surfaces of Q0. The problem is to find the minimum level
value λ0 and maximum level value λ1 attained by any X on the ellipsoid E1. If λ1 < 0, then E1 is properly
contained in E0. If λ0 > 0, then E0 and E1 are separated. Otherwise, 0 ∈ [λ0, λ1] and the two ellipsoids
intersect.

This can be formulated as a constrained minimization that can be solved by the method of Lagrange multipli-
ers: Minimize Q0(X) subject to the constraint Q1(X) = 0. Define F (X, t) = Q0(X)+tQ1(X). Differentiating
yields ∇F = ∇Q0 + t∇Q1 where the gradient indicates the derivatives in X. Also, ∂F/∂t = Q1. Setting
the t-derivative equal to zero reproduces the constraint Q1 =. Setting the X-derivative equal to zero yields
∇Q0 + t∇Q1 = 0 for some t. Geometrically this means that the gradients are parallel.

Note that ∇Qi = 2AiX + Bi, so

0 = ∇Q0 + t∇Q1 = 2(A0 + tA1)X + (B0 + tB1).

Formally solving for X yields

X = −(A0 + tA1)−1(B0 + tB1)/2 =
1

δ(t)
Y(t)

where δ(t) is the determinant of (A0 + tA1), a cubic polynomial in t, and Y(t) has components cubic in t.
Replacing this in Q1(X) = 0 yields

Y(t)TA1Y(t) + δ(t)BT
1 Y(t) + δ(t)2C1 = 0,

a degree 6 polynomial in t. The roots can be computed, the corresponding values of X computed, and Q0(X)
evaluated. The minimum and maximum values are stored as λ0 and λ1, and the earlier comparisons with
zero are applied.

3.2 Variation 2

An iterative method can be set up that attempts to find a separating plane between the two ellipsoids. This
does not directly handle proper containment of one ellipsoid by the other, but a similar algorithm can be
derived for the containment case. Let the ellipsoids be in factored form, (X −Ci)TMi(X −Ci) = 1 where
Mi is positive definite and Ci is the center of the ellipsoid, i = 0, 1. A potential separating axis is C0 + tN
where N is a unit length vector. The t-interval of projection of E0 onto the axis is I0(N) = [−r0, r0] where

r0 =
√

NTM−1
0 N. The t-interval of projection of E1 onto the axis is I1(N) = [N ·∆− r1,N ·∆+ r1] where

∆ = C1 −C0 and r1 =
√

NTM−1
1 N.

Select an initial N. If the intersection F (N) := I0(N) ∩ I1(N) = ∅, then the ellipsoids are separated. If
F (N) 6= ∅, then the given axis does not separate the ellipsoids. When the intervals overlap, F (N) = [f0, f1]
where f0 = max{N ·∆ − r1,−r0} and f1 = min{N ·∆ + r1, r0}. The function D(N) = f1 − f0 > 0 when
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there is overlap. If the two intervals have a single point of intersection, then f0 = f1. If the intervals are
disjoint, then f1 < f0 and D(N) < 0. The problem now is to search the space of unit length vectors, starting
at the initial N, to determine if there is such a vector that makes D < 0. It is enough to determine if D = 0
and the graph of D has a transverse crossing at that location.
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