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1 Introduction

A circle in 3D is represented by a center C, a radius r, and a plane containing the circle, N · (X−C) = 0,
where N is a unit length normal to the plane. If U and V are also unit length vectors so that U, V,
and N form a right-handed orthonormal coordinate system (the matrix with these vectors as columns is
orthonormal with determinant 1), then the circle is parameterized by

X = C + r(cos(θ)U + sin(θ)V)

for angles θ ∈ [0, 2π). A disk in 3D is the set of points

X = C + s(cos(θ)U + sin(θ)V)

where 0 ≤ s ≤ r.

2 Distance from Point to Disk

Any point P can be represented in terms of the coordinate system {C;U,V,N} by

P = C + xU + yV + zN

where x = U ·(P−C), y = V ·(P−C), and z = N ·(P−C). The distance from P to the disk involves finding
the closest point, call it K, on the disk to P. This point can be determined by looking at the projection of
P onto the plane of the disk,

Q = C + xU + yV

If Q is inside the disk, then it is the closest point to P and the distance δ is |z|. The condition for being
inside the disk is x2 + y2 ≤ r2. The closest point and squared distance are

K = Q, δ2 = z2, for x2 + y2 ≤ r2

If Q is outside the disk, then the closest point to P is on the disk’s circular boundary along the ray from C
to Q. The closest point and squared distance are

K = C + r
Q−C
|Q−C|

, δ2 = |P−K|2, for x2 + y2 > r2

Notice that
P−K = (P−C)− (K−C)

= (xU + yV + zN)− r
(

xU+yV
|xU+yV|

)
= x

(
1− r√

x2+y2

)
U + y

(
1− r√

x2+y2

)
V + zW

which implies

|P−K|2 = (x2 + y2)

(
1− r√

x2 + y2

)2

+ z2 = x2 + y2 + z2 + r2 − 2r
√

x2 + y2
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In summary, the squared distance from P to the disk is

δ2 =

 z2 , x2 + y2 ≤ r2

x2 + y2 + z2 + r2 − 2r
√

x2 + y2 , x2 + y2 > r2


3 Distance from Curve to Disk

A parametric curve is of the form P(t) for t ∈ [t0, t1]. Let us assume that the curve is continuously
differentiable. The squared distance from the curve to the disk is

δ̄2 = min
t∈[t0,t1]

δ2(t) = min
t∈[t0,t1]

 z(t)2 , x(t)2 + y(t)2 ≤ r2

x(t)2 + y(t)2 + z(t)2 + r2 − 2r
√

x(t)2 + y(t)2 , x(t)2 + y(t)2 > r2


The condition x(t)2 + y(t)2 ≤ r2 partitions the interval I = [t0, t1] into two sets of subintervals. One set of
subintervals satisfies the condition; the other set does not.

If I0 ⊆ I is a subinterval that satisfies x(t)2 + y(t)2 ≤ r2, then we need to minimize z(t)2 for t ∈ I0 = [a, b].
This is a calculus problem. The minimum occurs either at the end points t = a or t = b or at a point
where the derivative is zero. The following equation sets the derivative to zero; a factor 2 has already been
cancelled from the equation:

z(t)z′(t) = 0 (1)

Naturally, this equation is solved in two parts: z(t) = 0 or z′(t) = 0.

If I1 ⊆ I is a subinterval that satisfies x(t)2 + y(t)2 > r2, then we need to minimize x(t)2 + y(t)2 + z(t)2 +
r2−2r

√
x(t)2 + y(t)2 for t ∈ I1 = [a, b]. The minimum occurs either at t = a or t = b or at a point where the

derivatives is zero. The following equation sets the derivative to zero; a factor 2 has already been cancelled
from the equation:

x(t)x′(t) + y(t)y′(t) + z(t)z′(t)− r
x(t)x′(t) + y(t)y′(t)√

x(t)2 + y(t)2
= 0

Formally, the square root may be eliminated, but you need to take care in identifying extraneous solutions
introduced by the squaring:(

x(t)2 + y(t)2
)
(x(t)x′(t) + y(t)y′(t) + z(t)z′(t))2 − r2 (x(t)x′(t) + y(t)y′(t))2 = 0 (2)

The reason for the reformulation is that if the parametric curve is polynomial in t, then the zero-derivative
equations are polynomials in t, in which case standard numerical packages for polynomial root finding may
be used to solve the problem.

After all subintervals are processed for their minima, the minimum of the minima is chosen for δ̄2.

4 Distance from Circle to Disk

Consider the parametric circle that has center T, radius ρ, and lies on the plane M · (X − T) = 0 for a
unit-length normal M. Let A and B be unit-length vectors so that {A,B,M} is a right-handed orthonormal
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set. The parametric form for the circle is

P(t) = T + ρ (cos(t)A + sin(t)B) = C + x(t)U + y(t)V + z(t)N

for t ∈ [0, 2π). The middle expression is the parametric form. The right-hand side specifies the representation
with respect to the coordinate system of the disk. Thus,

x(t) = U · (T−C) + (ρ cos(t))U ·A + (ρ sin(t))U ·B = a0 + a1γ + a2σ

y(t) = V · (T−C) + (ρ cos(t))V ·A + (ρ sin(t))V ·B = b0 + b1γ + b2σ

z(t) = N · (T−C) + (ρ cos(t))N ·A + (ρ sin(t))N ·B = c0 + c1γ + c2σ

where
a0 = U · (T−C), b0 = V · (T−C), c0 = N · (T−C),

a1 = ρU ·A, b1 = ρV ·A, c1 = ρN ·A,

a2 = ρU ·B, b2 = ρV ·B, c2 = ρN ·B,

and γ = cos(t) and σ = sin(t). Naturally, γ2 + σ2 = 1.

4.1 Partitioning the Interval

The interval [0, 2π) is partitioned by setting x(t)2 + y(t)2 − r2 = 0,

0 = x(t)2 + y(t)2 − r2

= (a0 + a1γ + a2σ)2 + (b0 + b1γ + b2σ)2 − r2

= (a2
1 + b2

1)γ
2 + 2(a1a2 + b1b2)γσ + (a2

2 + b2
2)σ

2 + 2(a0a1 + b0b1)γ + 2(a0a2 + b0b2)σ + (a2
0 + b2

0 − r2)

This is a quadratic equation in γ and σ. Using elimination theory for this equation and for γ2 + σ2 = 1, you
can obtain a quartic equation in γ:

d0 + d1γ + d2γ
2 + d3γ

3 + d4γ
4 = 0

If γ̄ is a real-valued root of the equation, then the corresponding t values are solutions to cos(t̄) = γ̄;
in particular, the t̄ are chosen in [0, 2π). If t̄0 and t̄1 are two consecutive values in the partition, then
x(t)2 + y(t)2 − r2 ≤ 0 on [t̄0, t̄1] or x(t)2 + y(t)2 − r2 ≥ 0 on [t̄0, t̄1]. If the first case, then Equation (1) is
solved during the minimization phase. If the second case, then Equation (2) is solved during the minimization
phase.

4.2 Minimization Case 1

Replacing z(t) into Equation (1) leads to

z(t) = c0 + c1γ + c2σ = 0 or z′(t) = −c1σ + c2γ = 0
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For the first condition, we have c0 + c1γ + c2σ = 0 and γ2 + σ2 = 1. Substituting the first (linear) equation
into the second (quadratic) equation leads to a quadratic equation in either γ or σ, the choice depending on
whether c2 is zero or not. The second condition is handled similarly. For example, suppose that c2 6= 0; then

σ = −(c0 + c1γ)/c2

and

1 = γ2 +
(

c0 + c1γ

c2

)2

which is equivalent to
(c2

1 + c2
2)γ

2 + (2c0c1)γ + (c2
0 − c2

2) = 0

If γ̄ is a real-valued root to this equation, then σ̄ = −(c0 + c1γ̄)/c2. The squared distance for this specific
case can be calculated using the formula derived earlier.

4.3 Minimation Case 2

Replacing x(t), y(t), and z(t) into Equation (2) leads to a formal polynomial equation of degree 6. This is
clear from the expression

x(t)x′(t) + y(t)y′(t) + z(t)z′(t) = (a0 + a1γ + a2σ)(−a1σ + a2γ) + (b0 + b1γ + b2σ)(−b1σ + b2γ)

+ (c0 + c1γ + c2σ)(−c1σ + c2γ)

= a0(−a1σ + a2γ) + b0(−b1σ + b2γ) + c0(−c1σ + c2γ)

+ (a1a2 + b1b2 + c1c2)(γ2 − σ2)

+ ((a2
2 + b2

2 + c2
2)− (a2

1 + b2
1 + c2

1))γσ

(3)

This is quadratic in γ and σ. When you square it, you get degree 4, and then when you multiply by the
quadratic x2 + y2, you wind up with degree 6. However, notice that (a1, b1, c1)/ρ are the coordinates of the
unit-length vector A in the disk’s coordinate system and (a2, b2, c2)/ρ are the coordinates of the unit-length
vector B in the disk’s coordinate system. This means two things. First, |(a1, b1, c1)/ρ| = |(a2, b2, c2)/ρ| = 1
since A and B both have length 1, in which case a2

1+b2
1+c2

1 = a2
2+b2

2+c2
2. Second, (a1, b1, c1)/ρ·(a2, b2, c2)/ρ =

0 since A and B are perpendicular, in which case a1a2 + b1b2 + c1c2 = 0. Consequently, the quadratic term
in Equation (3) is zero and

x(t)x′(t) + y(t)y′(t) + z(t)z′(t) = a0(−a1σ + a2γ) + b0(−b1σ + b2γ) + c0(−c1σ + c2γ)

Equation (2) is therefore degree 4 in γ and σ. Using elimination theory with this equation and with γ2+σ2 = 1
leads to a degree 8 equation in γ. The roots are computed numerically, each root γ̄ is used to generate
candidates σ̄, and pairs (γ̄, σ̄) are used to compute candidate minimum distances.
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