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1 Introduction

A quadratic equation in three variables x0, x1, and x2 is

a00x
2
0 + a11x

2
1 + a22x

2
2 + 2a01x0x1 + 2a02x0x2 + 2a12x12 + b0x0 + b1x1 + b2x2 + c = 0 (1)

In matrix-vector form, the equation is
xTAx + bTx + c = 0 (2)

where

x =


x0

x1

x2

 , A =


a00 a01 a02

a01 a11 a12

a02 a12 a22

 , b =


b0

b1

b2


and where the superscript T denotes the transpose operator. Observe that the matrix A is symmetric:
AT = A.

The problem is to classify the set of solutions to the quadratic equation. In many applications, we are only
interested in quadric surfaces. These include ellipsoids, hyperboloids, and paraboloids. However, a quadratic
equation can define other surfaces including cylinder surfaces and planes. It is even possible to generate lines
and a point via a quadratic. And it is possible that there is no solution to the equation!

A methodical approach is presented here for the classification. This is a mathematical construction assuming
real numbers, but as we are all aware, implementations within a floating-point arithmetic system can cause
problems due to round-off errors. If the coefficients of the quadratic equation are converted to their rational
number equivalents, we may use exact arithmetic to classify the solution set of the quadratic equation without
errors. The last part of this document provides the details.

2 Classification using Real Arithmetic

Since the matrix A is symmetric, it has an eigendecomposition

A = RDRT (3)

where R = [v0 |v1 |v2] is a rotation matrix whose real-valued columns vi are linearly independent eigenvectors
of A, and where D = Diag(d0, d1, d2) is a real-valued diagonal matrix of eigenvalues of A. The eigenvector
vi corresponds to the eigenvalue di.

The eigenvalues are roots of a cubic polynomial called the characteristic polynomial of A, namely,

p(λ) = det(λI −A) = λ3 − c2λ
2 + c1λ− c0 = 0 (4)

where I is the 3× 3 identity matrix. The coefficients are

c0 = a00(a11a22 − a2
12)− a01(a01a22 − a12a02) + a02(a01a12 − a02a11)

c1 = (a00a11 − a2
01) + (a00a22 − a2

02) + (a11a22 − a2
12)

c2 = a00 + a11 + a22
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The value c0 is the determinant of A, a sum of a single 3× 3 determinant. The value c2 is the trace of A, a
sum of three 1×1 determinants. The value c1 has no official name, but is a sum of three 2×2 determinants.
All these determinants are referred to as the principal minors of the matrix A. Closed form equations exist
for the roots of p(λ) = 0, but the resulting values are generally not rational numbers. This makes the
classification using rational arithmetic somewhat challenging.

Define y = RTx and e = RTb. Equation (2) may be rewritten as

yTDy + eTy + c = 0 (5)

Let y have components labeled yi and let e have components labeled ei for 0 ≤ i ≤ 2. Equation (5) becomes

d0y
2
0 + d1y

2
1 + d2y

2
2 + e0y0 + e1y1 + e2y2 + c = 0 (6)

If any of the di are not zero, we can complete the square on the di terms:

diy
2
i + eiyi = di

(
yi +

ei

2di

)2

− e2
i

4di

This is the basis for the classification, but requires us to analyze the signs of the di. When a value di is zero,
we will then have to analyze the sign of the corresponding ei value. In preparation for the classification,
define the following quantities:

zi =

 yi, di = 0

yi + ei

2di
, di 6= 0

 , r = −c +
2∑

i=0,di 6=0

e2
i

4di

The classifications are presented next and depend on the signs of the di, the signs of the ei, and the sign of
r. To simply the discussion, the eigenvalues are assumed to be ordered as d0 ≤ d1 ≤ d2.

2.1 The Case All di 6= 0

Equation (6) reduces to
d0z

2
0 + d1z

2
1 + d2z

2
2 = r

The subcases are

1. r > 0

(a) 0 < d0 ≤ d1 ≤ d2 (ellipsoid)

(b) d0 < 0 < d1 ≤ d2 (hyperboloid of one sheet)

(c) d0 ≤ d1 < 0 < d2 (hyperboloid of two sheets)

(d) d0 ≤ d1 ≤ d2 < 0 (no solution)

2. r < 0

(a) 0 < d0 ≤ d1 ≤ d2 (no solution)

(b) d0 < 0 < d1 ≤ d2 (hyperboloid of two sheets)
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(c) d0 ≤ d1 < 0 < d2 (hyperboloid of one sheet)

(d) d0 ≤ d1 ≤ d2 < 0 (ellipsoid)

3. r = 0

(a) 0 < d0 ≤ d1 ≤ d2 (point)

(b) d0 < 0 < d1 ≤ d2 (elliptic cone)

(c) d0 ≤ d1 < 0 < d2 (elliptic cone)

(d) d0 ≤ d1 ≤ d2 < 0 (point)

2.2 The Case d0 = 0 < d1 ≤ d2

Equation (6) reduces to
d1z

2
1 + d2z

2
2 + e0z0 = r

The subcases are

1. e0 6= 0 (elliptic paraboloid)

2. e0 = 0

(a) r > 0 (elliptic cylinder)

(b) r = 0 (line)

(c) r < 0 (no solution)

2.3 The Case d0 < 0 = d1 < d2

Equation (6) reduces to
d0z

2
0 + d2z

2
2 + e1z1 = r

The subcases are

1. e1 6= 0 (hyperbolic paraboloid)

2. e1 = 0

(a) r 6= 0 (hyperbolic cylinder)

(b) r = 0 (two planes)

2.4 The Case d0 ≤ d1 < d2 = 0

Equation (6) reduces to
d0z

2
0 + d1z

2
1 + e2z2 = r

The subcases are
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1. e2 6= 0 (elliptic paraboloid)

2. e2 = 0

(a) r > 0 (none)
(b) r = 0 (line)
(c) r < 0 (elliptic cylinder)

2.5 The Case d0 = d1 = 0 < d2

Equation (6) reduces to
d2z

2
2 + e0z0 + e1z1 = r

The subcases are

1. e0 6= 0 or e1 6= 0 (parabolic cylinder)

2. e0 = e1 = 0

(a) r > 0 (two planes)
(b) r = 0 (one plane)
(c) r < 0 (no solution)

2.6 The Case d0 < 0 = d1 = d2

Equation (6) reduces to
d0z

2
0 + e1z1 + e2z2 = r

The subcases are

1. e1 6= 0 or e2 6= 0 (parabolic cylinder)

2. e1 = e2 = 0

(a) r > 0 (no solution)
(b) r = 0 (one plane)
(c) r < 0 (two planes)

2.7 The Case d0 = d1 = d2 = 0

Equation (6) reduces to
b0x0 + b1x1 + b2x2 + c = 0

The subcases are

1. b0 6= 0 or b1 6= 0 or b2 6= 0 (plane)

2. b0 = b1 = b2 = 0 (no solution)
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3 Classification using Rational Arithmetic

As mentioned previouslly, construction of the eigenvalues and eigenvectors must occur using real numbers
(in theory, floating-point numbers in practice). However, the classifications were based on analysis of the
signs of the eigenvalues and the signs of the components of the rotated vector e. Assuming the coefficients
of the quadratic equation are treated as rational numbers, we can actually avoid the real numbers in the
classification.

3.1 Determining the Signs of the di

The characteristic polynomial is p(λ) = λ3 − c2λ
2 + c1λ − c0. The coefficients are rational numbers since

the entries of matrix A are rational numbers. If c0 6= 0, all the eigenvalues are not zero. We may use Sturm
sequences to count the number of positive roots. The first three Sturm polynomials are

p0(λ) = λ3 − c2λ
2 + c1λ− c0

p1(λ) = 3λ2 − 2c2λ + c1

p2(λ) =
(

2
9c2

2 − 2
3c1

)
λ +

(
c0 − 1

9c1c2

)
= c3λ + c4

where the last equality defines c3 and c4. If c3 = 0, then p0, p1, and p2 are the full Sturm sequence. If
c3 = 0, an additional polynomial is in the sequence, a constant one,

p3(λ) = −c2
3c1 + (2c2c3 + 3c4)c4

c2
3

= c5

where the last equality defines c5. When c3 6= 0, the signs that determine the positive and negative root
counts are

λ sign p0 sign p1 sign p2 sign p3 sign changes

−∞ − + sign −c3 sign c5 n−∞

0 sign −c0 sign c1 sign c4 sign c5 n0

∞ + + sign c3 sign c5 n∞

The number of positive roots is n0 − n∞ and the number of negative roots is n−∞ − n0.

When c3 = 0, the signs that determine the positive and negative root counts are

λ sign p0 sign p1 sign p2 sign changes

−∞ − + sign c4 n−∞

0 sign −c0 sign c1 sign c4 n0

∞ + + sign c4 n∞

The number of positive roots is n0 − n∞ and the number of negative roots is n−∞ − n0.

6



The Sturm sequence approach only lets you know the number of distinct roots, ndistinct = n−∞−n∞. If this
number is 3, then the root signs are all known. However, if it is 1 or 2, then more work must be done. If
ndistinct = 1, then the distinct root has multiplicity 3, and the positive or negative root count is increased
from 1 to 3 accordingly. If ndistinct = 2, three cases occur. First, if the negative root count is 0, then the
positive root count was 2 and can be increased to 3. One positive root has multiplicity 2. Second, if the
positive root count is 0, then the negative root count was 2 and can be increased to 3. One negative root
has multiplicity 2. Third, and most complicated, is when the positive and negative root counts are both 1.
Figure 3.1 illustrates the possibilities for the graph of the polynomial.

Figure 3.1 The positive root has multiplicity 2 when the inflection point has a positive polynomial
value. The negative root has multiplicity 2 when the inflection point has a negative polynomial
value.

A simple way to distinguish which of these cases applies is to notice that in one case the inflection point
of the graph has a positive function value and in the other case the inflection point has a negative function
value. The inflection point occurs when p′′(λ) = 0, at λ′ = c2/3, and the polynomial value to test is p(λ′).

If c0 = 0 and c1 6= 0, the characteristic polynomial is p(λ) = λ(λ2 − c2λ + c1). Zero is a root of multiplicity
one. The other roots are not zero. A Sturm sequence may be used to count the number of positive roots.
The polynomials are

q0(λ) = λ2 − c2λ + c1

q1(λ) = 2λ− c2

q2(λ) = 1
4c2

2 − c1 = c3

where the last equality defines c3. The signs that determine the positive and negative root counts are

λ sign q0 sign q1 sign q2 sign changes

−∞ + − sign c3 n−∞

0 sign c1 sign −c2 sign c3 n0

∞ + + sign c3 n∞

The number of positive roots is n0−n∞ and the number of negative roots is n−∞−n0. The total number of
distinct roots is ndistinct = n−∞ − n∞. If this number is 1, the only possibility is that a positive root occurs
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with multiplicity 2.

If c0 = c1 = 0 and c2 6= 0, the characteristic polynomial is p(λ) = λ2(λ− c2). The third root is λ = c2 6= 0.

If c0 = c1 = c2 = 0, then p(λ) = λ3 and the only root is zero. In this case, the matrix A is the zero matrix
and the classification is trivial.

3.2 The Case All di 6= 0

The Sturm sequence approach allows us to compute the signs of the di, but we also need to know the sign
of r = −c +

∑2
i=0 e2

i /(4di). The ei values come from e = RTb. But to compute R requires solving the
eigensystem for A, something that requires real number arithmetic. As it turns out, a slightly different
formulation of the problem allows us to circumvent this issue.

Since the di are all not zero, the matrix A is invertible. Define u = −A−1b/2. The quadratic equation
factors into

(x− u)TA(x− u) = uTAu− c

Using the eigendecomposition for A = RDRT and defining y = RT(x− u), the equation is further modified
to

d0y
2
0 + d1y

2
1 + d2y

2
2 = yTDy =

1
4
bTA−1b− c = r

The last equality defines a new r, which is a quantity whose sign we can compute from the original quadratic
equation coefficients. The analysis of the signs of di and r is exactly as described in Section 2.1.

3.3 The Case Exactly One di = 0

In the case when d0 = 0 < d1 ≤ d2, the quadratic equation reduces to

d1z
2
1 + d2z

2
2 + e0z0 = −c + e2

1/(4d1) + e2
2/(4d2) = r

The categorization of the solution set required us to analyze the sign of e0 and r, as well as those of d1 and
d2. If e0 6= 0, the solution is an elliptic paraboloid. Notice that

e0

e1

e2

 = e = RTb =


v0 · b

v1 · b

v2 · b


where vi are unit-length eigenvectors for A. At first glance it appears that we need to actually compute the
ei for the sign test on e0 and the construction of r. In fact, we do not have to do this.

Since A has an eigenvalue zero of multiplicity 1, the rank of A is 2. We need only determine the two rows
of A that are linearly independent, say, w0 and w1. An eigenvector (not necessarily unit length) is the
cross product, p0 = w0 ×w1. Since the intent is to use only rational arithmetic, the normalization is not
done. We may choose any two vectors p1 and p2 such that the pi are mutually orthogonal and have rational
components. We may as well choose p1 = w0 and p2 = p0 × p1.
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The value of e0 = v0 · b is zero exactly when the rational value e′0 = p0 · b is zero. The latter quantity is
rational and is used to determine whether or not e0 is zero. If it is not zero, then we know the solution set
is an elliptic paraboloid.

If e′0 = 0, then define the matrix P = [p0 | p1 | p2] in which case

PTAP =


0 0 0

0 pT
1 Ap1 pT

1 Ap2

0 pT
2 Ap1 pT

2 Ap2

 , PTb =


0

p1 · b

p2 · b


If we define the 2× 2 symmetric matrix F = [fij ], where fij = pT

i Apj for i, j ∈ {1, 2}, and the 2× 1 vector
g = [gi], where gi = pi · b for i ∈ {1, 2}, and y = [yi], where yi = pi · x for i ∈ {1, 2}, then the quadratic
equation (2) becomes

yTFy + gTy + c = 0

This is a quadratic equation in two variables.

The eigenvalues of F are d1 and d2, both nonzero, so we may use the centered factorization just as we did
in the three-variable case when all eigenvalues were nonzero. Define u = −F−1g/2, so that

(y− u)TF (y− u) = uTFu− c = gTF−1g/4− c = r

The newly define r value is computable using rational arithmetic, and the sign tests on d1, d2, and r proceed
as shown in Section 2.2.

The cases for when only d1 is zero or only d2 is zero are similarly handled.

3.4 The Case Exactly Two di = 0

The rank of A is one, so A must have one nonzero row and the other two rows are scalar multiples of it
(possibly zero rows). If p2 is a nonzero row, we may choose two orthogonal vectors p0 and p1 that are
also orthogonal to p2. Moreover, these vectors may be chosen with rational components, and they are
linearly independent eigenvectors corresponding to the zero eigenvalue. And it is also the case that p2 is an
eigenvector for the nonzero eigenvalue λ = c2.

For i ∈ {0, 1}, the value ei = vi · b is zero exactly when e′i = pi · b is zero. If either e′0 or e′1 is not zero, the
solution set is a parabolic cylinder. If both are zero, then we need to test the sign of r. This involves e2,
which we cannot compute using rational numbers. The technique shown in Section 3.3 is used and effectively
scales e2 to a rational number e′2.

Define the matrix P = [p0 | p1 | p2] in which case

PTAP =


0 0 0

0 0 0

0 0 pT
2 Ap2

 , PTb =


0

0

p2 · b


Define f2 = pT

2 Ap2 = c2|p2|2, where we have used the fact that p2 is an eigenvector for eigenvalue c2; that
is, Ap2 = c2p2. Define e′2 = p2 · b. The quadratic equation (2) becomes

f2y
2
2 + e′2y2 + c = 0
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This is a quadratic equation in one variable that factors into

f2

(
y2 +

e′2
2f2

)2

= −c + (e′2)
2/(4f2) = r

The signs of f2 and r are analyzed as in Sections 2.5 and 2.6.

The class QuadricSurface in the files WmlQuadricSurface.* has the implementation using the exact rational
arithmetic support in the library.
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