
Minimum-Area Rectangle Containing a Convex
Polygon

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: June 2, 2000
Last Modified: February 9, 2008

Contents

1 Introduction 2

2 Proof of Edge Containment 2

3 The Algorithm 3

1

http://www.geometrictools.com/

1 Introduction

Given a convex polygon with ordered vertices Pi for 0 ≤ i < N , the problem is to construct the minimum-
area rectangle that contains the polygon. The rectangle is not required to be axis-aligned with the coordinate
system axes. It is the case that at least one of the edges of the convex polygon must be contained by an edge
of the minimum-area rectangle. Given this is so, an algorithm for computing the minimum-area rectangle
need only compute the tightest fitting bounding rectangles whose orientations are determined by the polygon
edges.

2 Proof of Edge Containment

The proof is by contradiction. Suppose that in fact no edge of the convex polygon is contained by an edge
of the minimum-area rectangle. The rectangle must be supported by four vertices of the convex polygon, as
illustrated by Figure 2.1

Figure 2.1 Minimum-area rectangle that has no coincident polygon edges.

The supporting vertices are drawn in red and labeled V0 through V3. Other polygon vertices are drawn in
blue. For the sake of the argument, rotate the convex polygon so that the axes of this rectangle are (1, 0)
and (0, 1) as shown in the figure.

Define U0(θ) = (cos θ, sin θ) and U1(θ) = (− sin θ, cos θ). There exists a value ε > 0 such that the Vi

are always the supporting vertices of the bounding rectangle with axes U0(θ) and U1(θ) for all angles θ
satisfying the condition |θ| <= ε. To compute the bounding rectangle area, the supporting vertices are
projected onto the axis lines V0 + sU0(θ) and V0 + tU1(θ). The intervals of projection are [0, s1] and [t0, t1]
where s1 = U0(θ) · (V2 −V0), t0 = U1(θ) · (V1 −V0), and t1 = U1(θ) · (V3 −V0).

Define K0 = (x0, y0) = V2 −V0 and K1 = (x1, y1) = V3 −V1. From Figure 1 it is clear that x0 > 0 and
y1 > 0. The area of the rectangle for |θ| ≤ ε is

A(θ) = s1(t1 − t0) = [K0 ·U0(θ)][K1 ·U1(θ)].

In particular, A(0) = x0y1 > 0.

2

Since A(θ) is differentiable on its domain and since A(0) is assumed to be the global minimum, it must be
that A′(0) = 0. Generally,

A′(θ) = [K0 ·U0(θ)][K1 ·U′
1(θ)] + [K0 ·U′

0(θ)][K1 ·U1(θ)]

= −[K0 ·U0(θ)][K1 ·U0(θ)] + [K0 ·U1(θ)][K1 ·U1(θ)]

Therefore, 0 = A′(0) = −x0x1 + y0y1, or x0x1 = y0y1. Since x0 > 0 and y1 > 0, it must be that
Sign(x1) = Sign(y0). Moreover, since A(0) is assumed to be the global minimum, it must be that A′′(0) ≥ 0.
Generally,

A′′(θ) = −[K0 ·U0(θ)][K1 ·U′
0(θ)]− [K0 ·U′

0(θ)][K1 ·U0(θ)]

+[K0 ·U1(θ)][K1 ·U′
1(θ)] + [K0 ·U′

1(θ)][K1 ·U1(θ)]

= −[K0 ·U0(θ)][K1 ·U1(θ)]− [K0 ·U1(θ)][K1 ·U0(θ)]

−[K0 ·U1(θ)][K1 ·U0(θ)]− [K0 ·U0(θ)][K1 ·U1(θ)]

= −2 {[K0 ·U0(θ)][K1 ·U1(θ)] + [K0 ·U1(θ)][K1 ·U0(θ)]}

In particular, A′′(0) = −2(x0y1 +x1y0) ≥ 0. However, note that x0y1 > 0 since A(0) > 0 and x1y0 > 0 since
Sign(x1) = Sign(y0), which implies that A′′(0) < 0, a contradiction.

3 The Algorithm

Pseudocode for the algorithm is given below.

ordered vertices P[0] through P[N-1];
define P[N] = P[0];

minimumArea = infinity;
for (i = 1; i <= N; i++)
{

U0 = P[i] - P[i-1];
U0 /= U0.Length();
U1 = (-U0.y,U0.x);
s0 = t0 = s1 = t1 = 0;
for (j = 1; j < N; j++)
{

D = P[j] - P[0];
test = Dot(U0,D);
if (test < s0) s0 = test; else if (test > s1) s1 = test;
test = Dot(U1,D);
if (test < t0) t0 = test; else if (test > t1) t1 = test;

}
area = (s1-s0)*(t1-t0);
if (area < minimumArea)

minimumArea = area;
}

3

	1 Introduction
	2 Proof of Edge Containment
	3 The Algorithm

