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1 Introduction

It is, of course, well known how to solve systems of linear equations. Given n equations in m unknowns,∑m
j=0 aijxj = bi for 0 ≤ i < n, let the system be represented in matrix form by Ax = b where A = [aij ] is

n×m, x = [xj ] is m× 1, and b = [bi] is n× 1. The n× (m + 1) augmented matrix [A|b] is constructed and
row-reduced to [E|c]. The augmented matrix has the properties:

• The first nonzero entry in each row is 1.

• If the first nonzero entry in row r is in column c, then all other entries in column c are 0.

• All zero rows occur last in the matrix.

• If the first nonzero entries in rows 1 through r occur in columns c1 through cr, then c1 < . . . < cr.

If there is a row whose first m entries are zero, but the last entry is not zero, then the system of equations has
no solution. If there is no such row, let ρ = rank([E|c]) denote the number of nonzero rows of the augmented
matrix. If ρ = m, the system has exactly one solution. In this case E = Im, the m×m identity matrix, and
the solution is x = c. If ρ < m, the system has infinitely many solutions, the solution set having dimension
m − ρ. In this case, the zero rows can be omitted to obtain the ρ × (m + 1) matrix [Iρ|F |c+] where Iρ is
the ρ× ρ identity matrix, F is ρ× (m− ρ), and c+ consists of the first ρ entries of c. Let x be partitioned
into its first ρ components x+ and its remaining m− ρ components x−. The general solution to the system
is x+ = c+ − Fx− where the x− are the free parameters in the system.

Generic numerical linear system solvers for square systems (n = m) use row-reduction methods so that
(1) the order of time for the algorithm is small, in this case O(n3), and (2) the calculations are robust
in the presence of a floating point number system. It is possible to solve a linear system using cofactor
expansions, but the order of time for the algorithm is O(n!) which makes this an expensive method for large
n. However, n = 3 for many computer graphics applications. The overhead for a generic row-reduction
solver normally uses more cycles than a simple cofactor expansion, and the matrix of coefficients for the
application are usually not singular (or nearly singular) so that robustness is not an issue, so for this size
system the cofactor expansion is a better choice.

Systems of polynomial equations also arise regularly in computer graphics applications. For example, de-
termining the intersection points of two circles in 2D is equivalent to solving two quadratic equations in
two unknowns. Determining if two ellipsoids in 3D intersect is equivalent to showing that a system of three
quadratic equations in three unknowns does not have any real-valued solutions. Computing the intersec-
tion points between a line and a polynomial patch involves setting up and solving systems of polynomial
equations. A method for solving such systems involves eliminating variables in much the same way that
you do for linear systems. However, the formal calculations have a flavor of cofactor expansions rather than
row-reductions.

2 Linear Equations in One Formal Variable

To motivate the general idea, consider a single equation a0 + a1x = 0 in the variable x. If a1 6= 0, there is a
unique solution x = −a0/a1. If a1 = 0 and a0 6= 0, there are no solutions. If a0 = a1 = 0, any x is a solution.
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Now consider two equations in the same variable, a0 + a1x = 0 and b0 + b1x = 0 where a1 6= 0 and b1 6= 0.
The first equation is multiplied by b1, the second equation is multiplied by a1, and the two equations are
subtracted to obtain a0b1 − a1b0 = 0. This is a necessary condition that a value x be a solution to both
equations. If the condition is satisfied, then solving the first equation yields x = −a0/a1. In terms of the
row-reduction method for linear systems discussed in the last section, n = 2, m = 1, and the augmented
matrix is listed below with its reduction steps: a1 −a0

b1 −b0

 ∼

 a1b1 −a0b1

a1b1 −a1b0

 ∼

 a1b1 −a0b1

0 a0b1 − a1b0

 ∼

 1 −a0/a1

0 a0b1 − a1b0


The condition a0b1 − a1b0 is exactly the one mentioned in the previous section to guarantee that there is at
least one solution.

The row-reduction presented here is a formal construction. The existence of solutions and the solution x
itself are obtained as functions of the parameters a0, a1, b0, and b1 of the system. These parameters are not
necessarily known scalars and can themselves depend on other variables. Suppose that a0 = c0 + c1y and
b0 = d0 + d1y. The original two equations are a1x + c1y + c0 = 0 and b1x + d1y + d0 = 0, a system of two
equations in two unknowns. The condition for existence of solutions is 0 = a0b1 − a1b0 = (c0 + c1y)b1 −
a1(d0 + d1y) = (b1c0 − a1d0) + (b1c1 − a1d1)y. This condition is the result of starting with two equations
in unknowns x and y and eliminating x to obtain a single equation for y. The y-equation has a unique
solution as long as b1c1 − a1d1 6= 0. Once y is computed, then a0 = c0 + c1y is computed and x = −a0/a1 is
computed.

Let us modify the problem once more and additionally set a1 = e0 + e1y and b1 = f0 + f1y. The two
equations are

e1xy + e0x + c1y + c0 = 0

f1xy + f0x + d1y + d0 = 0

This is a system of two quadratic equations in two unknowns. The condition for existence of solutions is

0 = a0b1 − a1b0

= (c0 + c1y)(f0 + f1y)− (e0 + e1y)(d0 + d1y)

= (c0f0 − e0d0) + ((c0f1 − e0d0) + (c1f0 − e1d0))y + (c0f1 − e1d1)y2.

This equation has at most two real-valued solutions for y. Each solution leads to a value for x = −a0/a1 =
−(c0 +c1y)/(e0 +e1y). The two equations define hyperbolas in the plane whose asymptotes are axis-aligned.
Geometrically the two hyperbolas can only intersect in at most two points.

Similar constructions arise when there are additional linear equations. For example, if a0 + a1x = 0,
b0 + b1x = 0, and c0 + c1x = 0, then solving pairwise leads to the conditions for existence: a0b1 − a1b0 = 0
and a0c1 − a1c0 = 0. If both are satisfied, then a solution is x = −a0/a1. Allowing a0 = a00 + a10y + a01z,
b0 = b00 + b10y + b01z, and c0 = c00 + c10y + c01z leads to three linear equations in three unknowns. The
two conditions for existence are two linear equations in y and z, an elimination of the variable x. These two
equations can be further reduced by eliminating y in the same manner. Note that in using this approach,
there are many quantites of the form AB−CD. This is where my earlier comment comes in about the method
having a “flavor of cofactor expansions”. These terms are essentially determinants of 2 × 2 submatrices of
the augmented matrix.
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3 Any Degree Equations in One Formal Variable

Consider the polynomial equation in x, f(x) =
∑n

i=0 aix
i = 0. The roots to this equation can be found

either by closed form solutions when n ≤ 4 or by numerical methods for any degree. How you go about
computing polynomial roots is not discussed in this document. If you have a second polynomial equation in
the same variable, g(x) =

∑m
j=0 bjx

j = 0, the problem is to determine conditions for existence of a solution,
just like we did in the last section. The assumption is that an 6= 0 and bm 6= 0. The last section handled the
case when n = m = 1.

3.1 Case n = 2 and m = 1

The equations are f(x) = a2x
2 + a1x + a0 = 0 and g(x) = b1x + b0 = 0 where a2 6= 0 and b1 6= 0. It must

also be the case that

0 = b1f(x)− a2xg(x) = (a1b1 − a2b0)x + a0b1 =: c1x + c0

where the coefficients c0 and c1 are defined by the last equality in the displayed equation. The two equations
are now reduced to two linear equations, b1x + b0 = 0 and c1x + c0 = 0.

A bit more work must be done as compared to the last section. In that section the assumption was made
that the leading coefficients were nonzero (b1 6= 0 and c1 6= 0). In the current construction, c1 is derived
from previously specified information, so we need to deal with the case when it is zero. If c1 = 0, then c0 = 0
is necessary for there to be a solution. Since b1 6= 0 by assumption, c0 = 0 implies a0 = 0. The condition
c1 = 0 implies a1b1 = a2b0. When a0 = 0, a solution to the quadratic is x = 0. To be also a solution of
g(x) = 0, we need 0 = g(0) = b0 which in turn implies 0 = a2b0 = a1b1, or a1 = 0 since b1 6= 0. In summary,
this is the case f(x) = a2x

2 and g(x) = b1x. Also when a0 = 0, another root of the quadratic is determined
by a2x+a1 = 0. This equation and b1x+b0 = 0 are the case discussed in the last section and can be reduced
appropriately.

One could also directly solve for x = −b0/b1, substitute into the quadratic, and multiply by b2
1 to obtain the

existence condition a2b
2
0 − a1b0b1 + a0b

2
1 = 0.

3.2 Case n = 2 and m = 2

The equations are a2x
2 + a1x + a0 = 0 and b2x

2 + b1x + b0 = 0 where a2 6= 0 and b2 6= 0. It must also be
the case that

0 = b2f(x)− a2g(x) = (a1b2 − a2b1)x + (a0b2 − a2b0) =: c1x + c0.

The two quadratic equations are reduced to a single linear equation whose coefficients c0 and c1 are defined
by the last equality in the displayed equation. If c1 = 0, then for there to be solutions it is also necessary
that c0 = 0. In this case, consider that

0 = b0f(x)− a0g(x) = (a2b0 − a0b2)x2 + (a1b0 − a0b1)x = −c0x
2 + (a1b0 − a0b1)x = (a1b0 − a0b1)x.

If a1b0−a0b1 6= 0, then the solution must be x = 0 and the consequences are 0 = f(0) = a0 and 0 = g(0) = b0.
But this contradicts a1b0− a0b1 6= 0. Therefore, if a1b2− a2b1 = 0 and a0b2− a2b0 = 0, then a1b0− a0b1 = 0
must follow. These three conditions imply that (a0, a1, a2)× (b0, b1, b2) = (0, 0, 0), so (b0, b1, b2) is a multiple
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of (a0, a1, a2) and the two quadratic equations were really only one equation. Now if c1 6= 0, we have reduced
the problem to the case n = 2 and m = 1. This was discussed in the previous subsection.

A variation is to compute a2g(x) − b2f(x) = (a2b1 − a1b2)x + (a2b0 − a0b2) = 0 and b1f(x) − a1g(x) =
(a2b1 − a1b2)x2 + (a0b1 − a1b0) = 0. Solve for x in the first equation, x = (a0b2 − a2b0)/(a2b1 − a1b2) and
replace in the second equation and multiply by the denominator term to obtain

(a2b1 − a1b2)(a1b0 − a0b1)− (a2b0 − a0b2)2 = 0.

3.3 General Case n ≥ m

The elimination process is recursive. Given that the elimination process has already been established for
the cases with degrees smaller than n, we just need to reduce the current case f(x) of degree n and g(x) of
degree m ≤ n to one with smaller degrees. It is assumed here that an 6= 0 and bm 6= 0.

Define h(x) = bmf(x)− anxn−m. The conditions f(x) = 0 and g(x) = 0 imply that

0 = h(x)

= bmf(x)− anxn−mg(x)

= bm

∑n
i=0 aix

i − anxn−m
∑m

i=0 bix
i

=
∑n

i=0 aibmxi −
∑m

i=0 anbix
n−m+i

=
∑n−m−1

i=0 aibmxi +
∑n−1

i=n−m(aibm − anbi−(n−m))xi

where it is understood that
∑−1

i=0(∗) = 0 (summations are zero whenever the upper index is smaller than
the lower index). The polynomials h(x) has degree at most n− 1. Therefore, the polynomials g(x) and h(x)
both have degrees smaller than n, so the smaller degree algorithms already exist to solve them.

4 Any Degree Equations in Any Formal Variables

A general system of polynomial equations can always be written formally as a system of polynomial equations
in one of the variables. The conditions for existence, as constructed formally in the last section, are new
polynomial equations in the remaining variables. Morever, these equations typically have higher degree than
the original equations. As variables are eliminated, the degree of the reduced equations increase. Eventually
the system is reduced to a single (high-degree) polynomial equation in one variable. Given solutions to this
equation, they can be substituted into the previous conditions of existence to solve for other variables. This
is similar to the “back substitution” that is used in linear system solvers.

5 Two Variables, One Quadratic Equation, One Linear Equation

The equations are Q(x, y) = α00+α10x+α01y+α20x
2+α11xy+α02y

2 = 0 and L(x, y) = b00+b10x+b01y = 0.
These can be written formally as polynomials in x,

f(x) = (α20)x2 + (α11y + α10)x + (α02y
2 + α01y + α00) = a2x

2 + a1x + a0
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and
g(x) = (β10)x + (β01y + β00) = b1x + b0.

The condition for existence of f(x) = 0 and g(x) = 0 is h(x) = h0 + h1x + h2x
2 = 0 where

h0 = α02β
2
00 − α01β00β01 + α00β

2
01

h1 = α10β
2
01 + 2α02β00β10 − α11β00β01 − α01β01β10

h2 = α20β
2
01 − α11β01β10 + α02β

2
10.

Given a root x to h(x) = 0, the formal value of y is obtained from L(x, y) = 0 as y = −(b00 + b10x)/b01.

6 Two Variables, Two Quadratic Equations

Consider two quadratic equations F (x, y) = α00 + α10x + α01y + α20x
2 + α11xy + α02y

2 = 0 and G(x, y) =
β00 + β10x + β01y + β20x

2 + β11xy + β02y
2 = 0. These can be written formally as polynomials in x,

f(x) = (α20)x2 + (α11y + α10)x + (α02y
2 + α01y + α00) = a2x

2 + a1x + a0

and
g(x) = (β20)x2 + (β11y + β10)x + (β02y

2 + β01y + β00) = b2x
2 + b1x + b0.

The condition for existence is

0 = (a2b1 − a1b2)(a1b0 − a0b1)− (a2b0 − a0b2)2 =
4∑

i=0

hiy
i =: h(y)

where
h0 = d00d10 − d2

20

h1 = d01d10 + d00d11 − 2d20d21

h2 = d01d11 + d00d12 − d2
21 − 2d20d22

h3 = d01d12 + d00d13 − 2d21d22

h4 = d01d13 − d2
22

with
d00 = α20β10 − β20α10

d01 = α20β11 − β20α11

d10 = α10β00 − β10α00

d11 = α11β00 + α10β01 − β11α00 − β10α01

d12 = α11β01 + α10β02 − β11α01 − β10α02

d13 = α11β02 − β11α02

d20 = α20β00 − β20α00

d21 = α20β01 − β20α01

d22 = α20β02 − β20α02
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For each root ȳ to h(y) = 0, the quadratic F (x, ȳ) = 0 can be solved for values x̄. To make sure you have a
solution to both equations, test that G(x̄, ȳ) = 0.

7 Three Variables, One Quadratic Equation, Two Linear Equa-
tions

Let the three equations be F (x, y, z) =
∑

0≤i+j+k≤2 αijkxiyjzk, G(x, y, z) =
∑

0≤i+j+k≤1 βijkxiyjzk, and
H(x, y, z) =

∑
0≤i+j+k≤1 γijkxiyjzk. As polynomial equations in x, these are written as f(x) = a2x

2 +a1x+
a0 = 0, g(x) = b1x + b0 = 0, and h(x) = c1x + c0 = 0 where

a0 =
∑

0≤j+k≤2 α0jkyjzk

a1 =
∑

0≤j+k≤1 α1jkyjzk

a2 = α200

b0 = β010y + β001z + β000

b1 = β100

c0 = γ010y + γ001z + γ000

c1 = γ100

The condition for existence of x-solutions to f = 0 and g = 0 is

0 = a2b
2
0 − a1b0b1 + a0b

2
1 =

∑
0≤i+j≤2

dijy
izj =: D(y, z)

where
d20 = α200β

2
010 − β100α110β010 + β2

100α020

d11 = 2α200β010β001 − β100(α110β001 + α101β010) + β2
100α011

d02 = α200β
2
001 − β100α101β001 + β2

100α002

d10 = 2α200β010β000 − β100(α110β000 + α100β010) + β2
100α010

d01 = 2α200β001β000 − β100(α101β000 + α100β001) + β2
100α001

d00 = α200β
2
000 − β100α100β000 + β2

100α000

The condition for existence of x-solutions to g = 0 and h = 0 is

0 = b0c1 − b1c0 = e10y + e01z + e00 =: E(y, z)

where
e10 = β010γ100 − γ010β100

e01 = β001γ100 − γ001β100

e00 = β000γ100 − γ000β100
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We now have two equations in two unknowns, a quadratic equation D(y, z) = 0 and a linear equation
E(y, z) = 0. This case was handled in an earlier section. For each solution (ȳ, z̄), a corresponding x value is
computed by solving either G(x, ȳ, z̄) = 0 or H(x, ȳ, z̄) = 0 for x̄.

8 Three Variables, Two Quadratic Equations, One Linear Equa-
tion

Let the three equations be F (x, y, z) =
∑

0≤i+j+k≤2 αijkxiyjzk, G(x, y, z) =
∑

0≤i+j+k≤2 βijkxiyjzk, and
H(x, y, z) =

∑
0≤i+j+k≤1 γijkxiyjzk. As polynomial equations in x, these are written as f(x) = a2x

2 +a1x+
a0 = 0, g(x) = b2x

2 + b1x + b0 = 0, and h(x) = c1x + c0 = 0 where

a0 =
∑

0≤j+k≤2 α0jkyjzk

a1 =
∑

0≤j+k≤1 α1jkyjzk

a2 = α200

b0 =
∑

0≤j+k≤2 β0jkyjzk

b1 =
∑

0≤j+k≤1 β1jkyjzk

b2 = β200

c0 = γ010y + γ001z + γ000

c1 = γ100

The condition for existence of x-solutions to f = 0 and h = 0 is

0 = a2c
2
0 − a1c0c1 + a0c

2
1 =

∑
0≤i+j≤2

dijy
izj =: D(y, z)

where
d20 = α200γ

2
010 − γ100α110γ010 + γ2

100α020

d11 = 2α200γ010γ001 − γ100(α110γ001 + α101γ010) + γ2
100α011

d02 = α200γ
2
001 − γ100α101γ001 + γ2

100α002

d10 = 2α200γ010γ000 − γ100(α110γ000 + α100γ010) + γ2
100α010

d01 = 2α200γ001γ000 − γ100(α101γ000 + α100γ001) + γ2
100α001

d00 = α200γ
2
000 − γ100α100γ000 + γ2

100α000

The condition for existence of x-solutions to g = 0 and h = 0 is

0 = b2c
2
0 − b1c0c1 + b0c

2
1 =

∑
0≤i+j≤2

eijy
izj =: E(y, z)

8



where
e20 = β200γ

2
010 − γ100β110γ010 + γ2

100β020

e11 = 2β200γ010γ001 − γ100(β110γ001 + β101γ010) + γ2
100β011

e02 = β200γ
2
001 − γ100β101γ001 + γ2

100β002

e10 = 2β200γ010γ000 − γ100(β110γ000 + β100γ010) + γ2
100β010

e01 = 2β200γ001γ000 − γ100(β101γ000 + β100γ001) + γ2
100β001

e00 = β200γ
2
000 − γ100β100γ000 + γ2

100β000

We now have two equations in two unknowns, quadratic equations D(y, z) = 0 and E(y, z) = 0. This case
was handled in an earlier section. For each solution (ȳ, z̄), a corresponding x value is computed by solving
F (x, ȳ, z̄) = 0 for values x̄. It should be verified that G(x̄, ȳ, z̄) = 0 and G(x̄, ȳ, z̄) = 0.

9 Three Variables, Three Quadratic Equations

Let the three equations be F (x, y, z) =
∑

0≤i+j+k≤2 αijkxiyjzk, G(x, y, z) =
∑

0≤i+j+k≤2 βijkxiyjzk, and
H(x, y, z) =

∑
0≤i+j+k≤2 γijkxiyjzk. As polynomial equations in x, these are written as f(x) = a2x

2 +a1x+
a0 = 0, g(x) = b2x

2 + b1x + b0 = 0, and h(x) = c2x
2 + c1x + c0 = 0 where

a0 =
∑

0≤j+k≤2 α0jkyjzk

a1 =
∑

0≤j+k≤1 α1jkyjzk

a2 = α200

b0 =
∑

0≤j+k≤2 β0jkyjzk

b1 =
∑

0≤j+k≤1 β1jkyjzk

b2 = β200

c0 =
∑

0≤j+k≤2 γ0jkyjzk

c1 =
∑

0≤j+k≤1 γ1jkyjzk

c2 = γ200

The condition for existence of x-solutions to f = 0 and g = 0 is

0 = (a2b1 − a1b2)(a1b0 − a0b1)− (a2b0 − a0b2)2 =
∑

0≤i+j≤4

dijy
izk =: D(y, z)

where

The condition for existence of x-solutions to f = 0 and h = 0 is

0 = (a2c1 − a1c2)(a1c0 − a0c1)− (a2c0 − a0c2)2 =
∑

0≤i+j≤4

eijy
izk =: E(y, z)
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where

The two polynomials D(y, z) and E(y, z) are fourth degree. The equations D(y, z) = 0 and E(y, z) = 0
can be written formally as polynomials equations in y, d(y) =

∑4
i=0 δiy

i and e(y) =
∑4

i=0 εiy
i where the

coefficients are polynomials in z with degree(di(z)) = 4− i and degree(ei(z)) = 4− i. The construction for
eliminating y results in a polynomial in z obtained by computing the determinant of the Bézout matrix for
d and e, the 4× 4 matrix M = [Mij ] with

Mij =
min(4,7−i−j)∑

k=max(4−j,4−i)

wk,7−i−j−k

for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3, with wi,j = δiγj − δjγi for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 4. In expanded form,

M =


w4,3 w4,2 w4,1 w4,0

w4,2 w3,2 + w4,1 w3,1 + w4,0 w3,0

w4,1 w3,1 + w4,0 w2,1 + w3,0 w2,0

w4,0 w3,0 w2,0 w1,0

 .

The degree of wi,j is 8− i−j. The Bézout determinant det(M(z)) is a polynomial of degree 16 in z. For each
solution z̄ to det(M(z)) = 0, corresponding values ȳ are obtained by solving the quartic equation D(y, z̄) = 0.
Finally, corresponding values x̄ are obtained by solving the quadratic equation F (x, ȳ, z̄) = 0. Any potential
solution (x̄, ȳ, z̄) should be tested if G(x̄, ȳ, z̄) = 0 and H(x̄, ȳ, z̄) = 0.
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