
Moving at Constant Speed

David Eberly
Geometric Tools, Inc.
http://www.geometrictools.com
Copyright c© 1998-2006. All Rights Reserved.

Created: January 10, 2001

1 Introduction

See the newer document Moving Along a Curve with Specified Speed.

A frequently asked question in comp.graphics.algorithms is how to move an object (typically the eyepoint
of a camera model) along a parameterized curve with constant speed. The method to do this requires the
curve to be reparameterized by arc length. The following construction applies in 2D or 3D.

Let the curve be parameterized as ~X(t) for t ∈ [a, b]. Imagine a particle moving along the curve, its position
being ~X(t) at the time t. The derivative is denoted d ~X(t)/dt and is the velocity vector for the particle. This
vector is tangent to the curve at position ~X(t). The speed of the particle is the length of the velocity vector,
|d ~X/dt|. If |d ~X(t)| = c, a constant for all t, then the particle travels with constant speed along the curve. If
c = 1, then the particle travels with unit speed along the curve.

For example, consider ~X(s) = (cos(s), sin(s)) for s ∈ [0, 2π]. The curve is a circle in the plane and is
centered at (0, 0) and has radius 1. The derivative is d ~X/ds = (− sin(s), cos(s)) and has length |d ~X/ds| = 1.
A particle traveling on this curve moves with constant speed. A different parameterization of the circle is
~Y (t) = (r cos(t2), r sin(t2)) for t ∈ [0,

√
2π]. The derivative is d~Y /dt = (−2rt sin(t2), 2rt cos(t2)) and has

length |d~Y /dt| = 2rt. The speed increases with time, so the particle does not move with constant speed.

Suppose that you were given ~Y (t), the parameterization of the circle for which the particle does not travel
with constant speed. And suppose you want to change the parameterization so that the particle does travel
with constant speed. That is, you want to relate the parameter t to a new parameter s, say by a function
t = f(s), so that ~X(s) = ~Y (t) and the particle moves with constant speed with respect to the parameter s.
In the contrived example, t =

√
s, but how do you actually find this relationship between t and s generally?

2 Reparameterization by Arc Length

If |d ~X/ds| = 1 for all s, the parameter s represents length measured while traveling along the curve, called
arc length. For each “small” change ds in arc length, the length of the difference in positions is the same
“small” change |d ~X| = |ds|. Given any other curve parameter t (representing time), the speed at which a
particle travels along the curve is ds/dt. Observe that this is “change in distance” (ds) per “change in time”

1

http://www.geometrictools.com/Documentation/MovingAlongCurveSpecifiedSpeed.pdf

(dt). Applying the chain rule from Calculus,

d~Y (t)
dt

=
d ~X(s)

dt
=

d ~X(s)
ds

ds

dt
.

Computing lengths yields ∣∣∣∣∣d~Y (t)
dt

∣∣∣∣∣ =

∣∣∣∣∣d ~X(s)
ds

ds

dt

∣∣∣∣∣ =
∣∣∣∣ds

dt

∣∣∣∣
since |d ~X/ds| = 1. If we also assume the particle traveling along the curve can never backtrack (reverse
direction and visit positions already encountered earlier), then ds/dt ≥ 0 and

ds

dt
=

∣∣∣∣∣d~Y

dt

∣∣∣∣∣ .

As expected, the speed of traversal along the curve is the length of the velocity vector. This equation tells
you how ds/dt depends on time t. To obtain a relationship between s and t, you have to integrate this to
obtain s as a function g(t) of time:

s = g(t) =
∫ t

a

∣∣∣∣∣d~Y (τ)
dt

∣∣∣∣∣ dτ.

When t = a, s = g(a) = 0. This makes sense since the particle’s initial position is at t = a and has not yet
moved; distance traveled is zero. When t = b, s = g(b) = L is the total distance L traveled along the curve.

Given the time t, we can determine the corresponding arc length s from the integration. However, what is
needed is the inverse problem. Given an arc length s, we want to know the time t at which this arc length
occurs. The idea in the original application is that you decide the distance that the object should move
first, then figure out what position ~Y (t) corresponds to it. Abstractly, this means inverting the function g
to obtain

t = g−1(s).

Mathematically, the chances of inverting g in terms of elementary functions are slim to none. You have to
rely on numerical methods to compute t ∈ [a, b] given a value of s ∈ [0, L].

3 Numerical Solution

Define F (t) = g(t) − s. Given a value s, the problem is now to find a value t so that F (t) = 0. This is a
root–finding problem that can be solved using Newton’s method. If t0 ∈ [a, b] is an initial guess for t, then
Newton’s method produces a sequence

ti+1 = ti −
F (ti)
F ′(ti)

, i ≥ 0

where

F ′(t) =
dF

dt
=

dg

dt
=

∣∣∣∣∣d~Y (t)
dt

∣∣∣∣∣ .

The iterate t1 is determined by t0, F (t0), and F ′(t0). Evaluation of F ′(t0) is straightforward since you
already have a formula for ~Y (t) and can compute d~Y (t)/dt from it. Evaluation of F (t0) requires computing
g(t0), an integration that can be done using standard numerical integrators.

2

A reasonable choice for initial iterate is t0 = a + (s/L)(b − a). The value s/L is the fraction of arc length
at which the particle should be located. The initial iterate applys that same fraction to the parameter
interval [a, b]. The subsequent iterates are computed until either F (ti) is sufficiently close to zero (sufficiency
determined by the application) or until a maximum number of iterates has been computed (maximum
determined by the application). Pseudocode is

Point Y (float t); // The parameterization of the curve, a <= t <= b.
Point DY (float t); // The derivative of Y(t), a <= t <= b.
float Speed (float t) { return Length(DY(t)); }
float ArcLength (float t) { return Integral(a,t,Length(DY()); }

float GetT (float s) // 0 <= s <= total_arc_length
{

float L = ArcLength(b); // precompute L if you frequently call GetT
float t = a + s*(b-a)/L; // precompute (b-a)/L if you frequently call GetT

for (int i = 0; i < max; i++) // ‘max’ is application-specified
{

float F = ArcLength(t) - s;
if (Abs(F) < epsilon) // ‘epsilon’ is application-specified

return t;

float DF = Speed(t);
t -= F/DF; // warning: DF = 0 might be a problem

}

// maximum iterations exceeded, you might want to trap this
return t;

}

The function Integral(a,t,f()) is any numerical integrator that computes the integral of f(τ) over the
interval [a, t].

3

	Introduction
	Reparameterization by Arc Length
	Numerical Solution

