
Eigensystems for 3× 3 Symmetric Matrices (Revisited)

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2011. All Rights Reserved.

Created: October 9, 2006
Last Modified: May 19, 2011

Contents

1 About the Previous Version of This Document 2

2 The Motivation 2

3 Roots of Cubic Polynomials 3

3.1 The General Equation . 3

3.2 The Characteristic Equation . 4

3.3 Understanding the Numerical Issues . 5

3.4 Computing the Roots . 7

4 Computing the Eigenvectors 8

4.1 Theoretical Construction . 8

4.1.1 Three Distinct Eigenvalues . 8

4.1.2 Two Distinct Eigenvalues . 8

4.1.3 One Distinct Eigenvalue . 9

4.1.4 Theoretical Algorithm . 9

4.2 Numerical Construction . 15

4.3 An Alternate Construction . 18

5 Performance Measurements 21

1

http://www.geometrictools.com/

1 About the Previous Version of This Document

The previous version of this document has been a quite popular download and a source of the question: Do
you have an implementation to download? I finally decided to implement the method, knowing that the
mathematics is simple yet realizing the classic problem with floating-point arithmetic would rear its ugly
head. Indeed, it did and led to my rewriting this document.

The previous version had one inaccuracy, which had to be resolved for an implementation. The 3×3 symmet-
ric matrix A has the characteristic equation p(λ) = det(A− λI) = 0, where p(λ) is a cubic polynomial. The
q variable that is calculated during the polynomial root construction is first used to classify the multiplicity
of the roots. I mentioned that the case q > 0 meant there is exactly one real-valued root to p(λ) = 0, which
implies A is diagonal. This is incorrect; the correct interpretation is that the cubic polynomial has one
real-valued root and two non-real-valued roots (complex-valued roots with nonzero imaginary parts). For
the problem at hand, all the roots must be real-valued. As it turns out, the only choices for the eigensolver
are q < 0 (three distinct real-valued roots) or q = 0 (all real-valued roots, one having at least a multiplicity
of 2).

The numerical problems first occur in computing the roots, as expected, but can be dealt with appropriately.
However, eigenvector construction also must be handled carefully. It is necessary to compute correctly the
rank of the matrix M = A− λI, a number that is 0, 1, or 2 (and not 3 since M is necessarily singular).

2 The Motivation

A standard result from linear algebra is that an n × n symmetric matrix A with real-valued entries must
have n real-valued and unit-length eigenvectors V1 through Vn that are mutually orthogonal. Each vector
satisfies the eigenvector equation, AVi = λiVi, where λi is the eigenvalue associated with the eigenvector.
The eigenvalues are not necessarily distinct. Let R = [V1 · · · Vn], where the columns of the matrix
are the eigenvectors; this matrix is orthogonal. Also, let D = Diag(λ1, . . . , λn), a diagonal matrix whose
diagonal entries are the eigenvalues. The n eigenvector equations can be written as a single matrix equation,
AR = RD. Since R is orthogonal, R−1 = RT, so equivalently A = RDRT.

Various iterative numerical methods may be applied to A to extract the eigenvectors (stored in R) and
eigenvalues (stored in D). One method uses Jacobi transformations to approximate R by a composition
of rotation matrices, Q = Q1 · · ·Qk, with k large enough so that QTAQ is effectively diagonal. Another
method uses either Givens reductions or Householder reductions to obtain a matrix, Q, in a fixed number of
steps so that B = QTAQ is tridiagonal. The matrix B is then factored to RDRT using an iterative scheme
such as the QR or QL algorithms. These methods are designed to be accurate and robust.

When n = 3, the polynomial p(λ) = det(A− λI) has degree 3. Closed-form equations exist for the roots of
the polynomial, so in theory it is possible to construct the eigenvalues and eigenvectors using a noniterative
approach. An application that frequently computes the eigenvalues and eigenvectors of A will benefit from
this approach if the computational time is less than that of the iterative approach. At the same time, the
noniterative approach must be numerically robust.

2

3 Roots of Cubic Polynomials

We first look at the construction of roots to any cubic polynomial with real-valued coefficients. Those cubic
polynomials obtained as characteristic polynomials det(A− λI) have some unique properties that allow the
root finding to be specialized.

3.1 The General Equation

Consider the cubic polynomial equation λ3 − c2λ2 + c1λ − c0 = 0, where the coefficients c0, c1, and c2 are
real-valued numbers. The squared term may be eliminated by the change of variables, λ = ξ+ c2/3, leading
to the equation ξ3 + aξ + b = 0, where

a =
3c1 − c22

3
, b =

−2c32 + 9c1c2 − 27c0
27

, q =
b2

4
+
a3

27
(1)

The quantity q is not part of the coefficients of the ξ-polynomial, but it is used in the equations for the
roots. There are a few cases to consider for the root construction. The ξ-roots are computed; the λ-roots
are obtained from the change of variables λ = ξ + c2/3.

Case 1. Let a = 0 and b = 0. The polynomial equation is ξ3 = 0, so zero is a root of multiplicity 3. The
ξ-roots are

ξ0 = ξ1 = ξ2 = 0

Case 2. Let a = 0 and b 6= 0. The polynomial equation is ξ3 = −b. Define ρ = (−b)1/3, the real-valued
cube root of −b. If b > 0, the ξ-roots are

ξ0 = ρ, ξ1 = ρ(cos(π/3) + i sin(π/3)), ξ2 = ρ(cos(π/3)− i sin(π/3))

If b < 0, the ξ-roots are

ξ0 = ρ, ξ1 = ρ(cos(2π/3) + i sin(2π/3)), ξ2 = ρ(cos(2π/3)− i sin(2π/3))

Case 3. Let a 6= 0 and b = 0. The polynomial equation is ξ3 + aξ = 0. The ξ-roots are

ξ0 = 0, ξ1 =
√
−a, ξ2 = −

√
−a

Case 4. Let a 6= 0 and b 6= 0. The trick to solving the equation is to make use of a trigonometric identity,

4 cos3 θ − 3 cos θ − cos(3θ) = 0

Make the change of variables ξ = ρ cos θ to obtain

ρ3 cos3 θ + aρ cos θ + b = 0

The left-hand side has a form similar to that of the trigonometric identity as long as (ρ3, aρ, b) is a vector
parallel to (4,−3,− cos(3θ)). To be parallel, the cross product must be the zero vector,

(0, 0, 0) = (4,−3,− cos(3θ))× (ρ3, aρ, b) = (aρ cos(3θ)− 3b,−ρ3 cos(3θ)− 4b, ρ(4a+ 3ρ2))

3

When ρ is not zero, the last and first components may be solved for

ρ = 2

√
−a
3
, cos(3θ) =

3b

aρ

If a = 0, then ρ = 0. If a < 0, then ρ = 2
√
|a|/3, which is a real-valued number. However, if a > 0, then

ρ = 2
√
|a|/3 i, which is pure imaginary (non-real-valued).

The equation cos(3θ) = 3b/(aρ) poses a more subtle problem. If ρ is pure imaginary, we must resort to
complex analysis to interpret what it means for the cosine of an angle to equal a complex number. Even if ρ
is real-valued, we still need to resort to complex analysis. This is evident when |2b/(aρ)| > 1. We know that
for real numbers, | cos(3θ)| ≤ 1. When using complex numbers, it is possible for the complex-valued cosine to
have magnitude larger than 1. the complex-valued sine function is defined by sin(z) = (eiz−e−iz)/(2i) and the
complex-valued cosine function is defined by cos(z) = (eiz + e−iz)/2. Thus, the equation cos(3θ) = 3b/(aρ)
may be solved using complex numbers using these definitions. That said, notice that if θ is a solution to the
equation, then so are θ + 2π/3 and θ + 4π/3. In summary, the ξ-roots are

ξ0 = ρ cos(θ), ξ1 = ρ cos(θ + 2π/3), ξ2 = ρ cos(θ + 4π/3)

In an implementation, three cosine evaluations are avoided by using a single sine and a single cosine evalua-
tion. That is, cos(θ+2π/3) = −(1/2) cos(θ)−(

√
3/2) sin(θ) and cos(θ+4π/3) = −(1/2) cos(θ)+(

√
3/2) sin(θ).

All Cases. The four cases may be combined, using some algebraic manipulation, to the following. Define

u = (−b/2 +
√
q)1/3, v = (−b/2−√q)1/3 (2)

The principal square roots and cube roots are implied by the expressions. The ξ-roots are

ξ0 = u+ v, ξ1 = −u+ v

2
+
u− v

2

√
−3, ξ2 = −u+ v

2
− u− v

2

√
−3 (3)

Even though the term
√
−3 appears in the expressions, the roots can still be real-valued. This is the case

when u − v is a pure imaginary number. Also notice the absence of explicit sine and cosine functions. In
fact, these functions will appear when computing the cube roots associated with u and v.

A closer analysis of Equations (1), (2), and (3) will lead to the classification

q > 0, one real root, two conjugate complex roots

q = 0, three real roots of which at least two are equal

q < 0, three distinct real roots

(4)

3.2 The Characteristic Equation

To match the notation of the previous section, we will consider the negated characteristic equation,

0 = −det(A− λI) = −det


a00 − λ a01 a02

a01 a11 − λ a12

a02 a12 a22 − λ

 = λ3 − c2λ2 + c1λ− c0

4

where

c0 = a00a11a22 + 2a01a02a12 − a00a212 − a11a202 − a22a201
c1 = a00a11 − a201 + a00a22 − a202 + a11a22 − a212
c2 = a00 + a11 + a22

The roots of the cubic polynomial may be computed as shown in the previous section for the general equation.
From that section, the relationship ρ =

√
−a/3 leads to

cos(3θ) =
3b

aρ
=

−b/2
(−a/3)

√
−a/3

Thinking of the right-hand side of the cos(3θ) equation as a ratio of the opposite side of a triangle to its
hypotenuse, the adjacent side has a value√

((−a/3)
√
−a/3)2 − (−b/2)2 =

√
−q

We may instead compute the tangent of 3θ as the ratio of opposite to adjacent. To compute θ in the correct
quadrant, though, an implementation will use instead atan2 and compute

θ = atan2(
√
−q,−b/2)/3

An ANSI implementation of atan2 will return zero when its two arguments are both zero, so there is no
need to trap this special case. The roots are therefore

λ0 = c2/3 + 2ρ cos(θ), λ1 = c2/3− ρ
(

cos(θ) +
√

3 sin(θ)
)
, λ2 = c2/3− ρ

(
cos(θ)−

√
3 sin(θ)

)
(5)

To revisit the classification of roots, consider the following. If a = 0, then ρ = 0 and the roots are

λ0 = λ1 = λ2 = c2/3

It is necessarily the case that b = 0 and q = 0. If a 6= 0, it is necessarily the case that a < 0. Suppose that
also q = 0. If b ≤ 0, it must be that θ = 0, in which case the roots are

λ0 = c2/3 + 2ρ, λ1 = c2/3− ρ, λ2 = c2/3− ρ

If instead b > 0, it must be that θ = π/3, in which case the roots are

λ0 = c2/3 + ρ, λ1 = c2/3− 2ρ, λ2 = c2/3 + ρ

In either case, there are two distinct roots, one of them repeated. If q 6= 0, it must be that q < 0. The three
real-valued roots of Equation (5) are distinct.

3.3 Understanding the Numerical Issues

Now let us take a closer look at the a, b, and q values for polynomials with only real-valued roots. This will
help us understand how to deal with the numerical problems that arise when attempting to compute the
roots using floating-point arithmetic.

5

Let the real-valued roots be λ0, λ1, and λ2, not necessarily distinct. For the sake of argument, let the roots
be ordered by λ0 ≤ λ1 ≤ λ2. The polyonomial is

p(λ) = (λ− λ0)(λ− λ1)(λ− λ2)

= λ3 − (λ0 + λ1 + λ2)λ2 + (λ0λ1 + λ0λ2 + λ1λ2)λ− (λ0λ1λ2)

= λ3 − c2λ2 + c1λ− c0

Equating the ci with the root expressions and substituting into Equation (1) leads to

a = −((λ1 − λ0)2 + (λ2 − λ0)2 + (λ2 − λ1)2)/6

b = (2λ0 − λ1 − λ2)(λ0 − 2λ1 + λ2)(−λ0 − λ1 + 2λ2)/27

q = −(λ1 − λ0)2(λ2 − λ0)2(λ2 − λ1)2/108

(6)

These expressions make it clear that a ≤ 0 and q ≤ 0. For a to be zero, all the roots must be equal. For q
to be zero, at least two roots must be equal. Any of three conditions makes b zero. The first condition is
λ0 = (λ1+λ2)/2, which states that λ0 is the average of λ1 and λ2. Since λ0 is the smallest root, the only way
it can be the average is if λ0 = λ1 = λ2. The second condition is λ2 = (λ0 + λ1)/2, which similarly implies
λ0 = λ1 = λ2. The third condition is λ1 = (λ0 +λ2)/2, which can happen even when there are three distinct
roots (q < 0). Notice that b = 0 and q < 0 imply θ = π/2, in which case the roots are λ0 = c2/3 − ρ

√
3,

λ1 = c2/3, and λ2 = c2/3 + ρ
√

3.

The maximum difference of the roots is ∆ = λ2 − λ0. Define λ1 − λ0 = µ∆ and λ2 − λ1 = (1 − µ)∆; it is
necessary that µ ∈ [0, 1]. An algebraic construction will show that

a = −(µ2 − µ+ 1)∆2/3 ∈ [−∆2/3,−∆2/4]

b = (−2µ3 + 3µ2 + 3µ− 2)∆3/27 ∈ [−2∆3/27, 2∆3/27]

q = −µ2(1− µ)2∆6/108 ∈ [−∆6/108,−∆6/1728]

(7)

The calculations that are the least robust are for a root that is repeated two or three times, in theory, but
the numerical round-off errors in computing c0, c1, c2, a, b, and q make it appear as if the roots are all
distinct (and nearly the same floating-point values).

In the case of three repeated roots, theoretically ∆ = 0 but numerically ∆ is a very small floating-point
number. Theoretically, a = 0 and q = 0 but numerically a = O(∆2) and q = O(∆6). You expect both a and
q to be nearly zero with q a much smaller quantity than a.

In the case of two distinct roots, say λ0 = λ1 < λ2, theoretically µ = 0 but numerically µ is a small floating-
point number. ∆ is relatively large in comparison, so you expect that a is sufficiently far away from zero (it
looks like −∆2/3). However, you expect that q is nearly zero (it is O(µ2)).

There are a few sources of numerical round-off errors that cause the problems. First, the entries of A
already can reflect round-off errors in whatever process was using A. For example, if you choose a diagonal
matrix D = dI for some scalar d, you may think of its diagonal entries as exactly the eigenvalues you seek
(multiplicity 3). Now numerically generate a rotation matrix R and compute A = RDRT. Theoretically, A =
D but numerically the off-diagonal terms are numbers very close to zero. This can lead to the construction
of three distinct roots, all of them nearly the same floating-point number. Second, the computation of c0, c1,
and c2 can have some subtractive cancellation that affects further computations. Third, the computation of

6

a, b, and q also are subject to subtractive cancellation. The worst offenders are the computations sqrt(-a/3)
and sqrt(-q). If the arguments are theoretically zero but numerically nonzero and on the order of 10−6, a
number that is effectively zero when using single-precision floating-point arithmetic, the square roots are on
the order of 10−3. Thus, the error is magnified by these operations.

If you precondition A by dividing by its maximum magnitude entry when that maximum is larger than 1, and
if you use high-precision calculations, the total of all these round-off errors tend not to affect the accuracy
of the root calculations. The problems, however, show up when you attempt to construct the eigenvectors
by solving the equations (A − λI)V = 0. It is important to correctly compute rank(A − λI). Small errors
in the eigenvalue calculations can lead to misclassification of the rank.

3.4 Computing the Roots

As mentioned, A is preconditioned by dividing by its maximum magnitude entry when that maximum is
larger than 1. The roots are computed in double precision. The pseudocode is shown below. The global
variables are inv3, which is computed once as 1/3, and root3, which is computed once as

√
3.

void ComputeRoots (Matrix3 A, double root[3])

{

double a00 = (double)A[0][0];

double a01 = (double)A[0][1];

double a02 = (double)A[0][2];

double a11 = (double)A[1][1];

double a12 = (double)A[1][2];

double a22 = (double)A[2][2];

double c0 = a00*a11*a22 + 2.0*a01*a02*a12 - a00*a12*a12 - a11*a02*a02 - a22*a01*a01;

double c1 = a00*a11 - a01*a01 + a00*a22 - a02*a02 + a11*a22 - a12*a12;

double c2 = a00 + a11 + a22;

double c2Div3 = c2*inv3;

double aDiv3 = (c1 - c2*c2Div3)*inv3;

if (aDiv3 > 0.0) { aDiv3 = 0.0; }

double mbDiv2 = 0.5*(c0 + c2Div3*(2.0*c2Div3*c2Div3 - c1));

double q = mbDiv2*mbDiv2 + aDiv3*aDiv3*aDiv3;

if (q > 0.0) { q = 0.0; }

double magnitude = sqrt(-aDiv3);

double angle = atan2(sqrt(-q),mbDiv2)*inv3;

double cs = cos(angle);

double sn = sin(angle);

root[0] = c2Div3 + 2.0*magnitude*cs;

root[1] = c2Div3 - magnitude*(cs + root3*sn);

root[2] = c2Div3 - magnitude*(cs - root3*sn);

// Sort the roots here to obtain root[0] <= root[1] <= root[2].

}

7

4 Computing the Eigenvectors

The main problem caused by floating-point round-off errors is the correct classification of the rank of A−λI.
The theoretical results are discussed first, followed by the numerical implementation that attempts to be
robust. In this discussion, the eigenvalues are ordered by λ0 ≤ λ1 ≤ λ2. The related singular matrices are
Mi = A− λiI for all i. The eigenvectors selected by the algorithm are unit-length, mutually perpendicular,
and named V0, V1, and V2.

4.1 Theoretical Construction

The eigenvector construction depends on the multiplicity of the eigenvalues. Each possibility is discussed
here.

4.1.1 Three Distinct Eigenvalues

Suppose that the eigenvalues are distinct: λ0 < λ1 < λ2. Each eigenvalue has a corresponding eigenspace of
dimension 1. The construction for the eigenspace of λ0 is shown here. An eigenvector V0 is a nonzero vector
that solves M0V0 = 0. The fact that the eigenspace must be 1-dimensional means that rank(M0) = 2. Two
rows of M0 must be linearly independent, the other row dependent on them. For the sake of argument,
suppose the first two rows of M0 are linearly independent. As 3× 1 vectors, call them r0 and r1. As a block
matrix of row vectors,

M0 =


rT0

rT1

αrT0 + βrT1


for some scalars α and β. When you multiply the matrix times an eigenvector, you get

0

0

0

 = M0V0 =


rT0

rT1

αrT0 + βrT1

V0 =


rT0 V0

rT1 V0

αrT0 V0 + βrT1 V0


Thus, rT0 V0 = 0 and rT1 V0 = 0, which says geometrically that V0 is perpendicular to both r0 and r1. The
cross product of the rows has this property, so

V0 =
r0 × r1
|r0 × r1|

Similar constructions applied to M1 and M2 produce V1 and V2.

4.1.2 Two Distinct Eigenvalues

Let λ0 = λ1 < λ2. Since λ2 has multiplicity 1, the construction in the previous section produces an
eigenvector V2 from the matrix M2.

8

The eigenvalue λ0 has multiplicity 2, so rank(M0) = 1. One row of M2 is linearly independent and the other
rows are multiples of it. For the sake of argument, suppose the first row of M0 is linearly independent. As
a 3× 1 vector, call it r0. As a block matrix of row vectors,

M0 =


rT0

αrT0

βrT0


for some scalars α and β. When you multiply the matrix times an eigenvector, you get

0

0

0

 = M0Vi =


rT0

αrT0

βrT0

Vi =


rT0 Vi

αrT0 Vi

βrT0 Vi


for i = 0 or i = 1. Thus, rT0 Vi = 0, which says geometrically that the Vi are in the plane perpendicular to
r0. Any two unit-length and mutually perpendicular vectors in this plane may be chosen for the eigenvectors
associated with λ0.

4.1.3 One Distinct Eigenvalue

If λ0 has multiplicity 3, then A was already a scalar times the identity, A = λ0I. Any orthonormal basis of
space may be chosen for the eigenvectors. The simplest is

V0 = (1, 0, 0), V1 = (0, 1, 0), V2 = (0, 0, 1)

It must be that rank(M0) = rank(M1) = rank(M2) = 0 (the matrices are all the zero matrix).

4.1.4 Theoretical Algorithm

The pseudocode for the eigensolver is the following. The ComputeRoots function was described previously.
The othre functions will be described later in this section.

9

void Eigensolver (Matrix3 A, Real evalue[3], Vector3 evector[3])

{

double root[3];

ComputeRoots(A,root);

evalue[0] = (Real)root[0];

evalue[1] = (Real)root[1];

evalue[2] = (Real)root[2];

Matrix3 M0 = A - evalue[0]*I; // I is the identity matrix

int rank0 = ComputeRank(M0);

if (rank0 == 0)

{

// evalue[0] = evalue[1] = evalue[2]

evector[0] = Vector3(1,0,0);

evector[1] = Vector3(0,1,0);

evector[2] = Vector3(0,0,1);

return;

}

if (rank0 == 1)

{

// evalue[0] = evalue[1] < evalue[2]

GetComplement2(M0.GetRow(0),evector[0],evector[1]);

evector[2] = evector[0].Cross(evector[1]);

return;

}

// rank0 == 2

GetComplement1(M0.GetRow(0),M0.GetRow(1),evector[0]);

Matrix3 M1 = A - evalue[1]*I;

int rank1 = ComputeRank(M1); // zero rank detected earlier, rank1 must be positive

if (rank1 == 1)

{

// evalue[0] < evalue[1] = evalue[2]

GetComplement2(evector[0],evector[1],evector[2]);

return;

}

// rank1 == 2

GetComplement1(M1.GetRow(0),M1.GetRow(1),evector[1]);

// rank2 == 2 (eigenvalues must be distinct at this point, rank2 must be 2)

evector[2] = evector[0].Cross(evector[1]);

}

10

The function GetComplement1 simply computes the normalized cross product of its first two arguments,
assigning the result to the last argument.

void GetComplement1 (Vector3 U, Vector3 V, Vector3& W)

{

W = U.Cross(V);

W.Normalize();

}

The function GetComplement2 constructs two unit-length and perpendicular vectors in the plane perpendic-
ular to the first argument. Those vectors are assigned to the last two arguments of the function. There are
infinitely many possibilities, but the simplest to compute that is also numerically robust is listed here.

void GetComplement1 (Vector3 U, Vector3& V, Vector3& W)

{

U.Normalize();

if (|U[0]| >= |U[1]|)

{

Real invLength = 1/sqrt(U[0]*U[0] + U[2]*U[2]);

V[0] = -U[2]*invLength;

V[1] = 0;

V[2] = U[0]*invLength;

W[0] = U[1]*V[2];

W[1] = U[2]*V[0] - U[0]*V[2];

W[2] = -U[1]*V[0];

}

else

{

Real invLength = 1/sqrt(U[1]*U[1] + U[2]*U[2]);

V[0] = 0;

V[1] = U[2]*invLength;

V[2] = -U[1]*invLength;

W[0] = U[1]*V[2] - U[2]*V[1];

W[1] = -U[0]*V[2];

W[2] = U[0]*V[1];

}

}

The function ComputeRank is the workhorse. A side effect of the function is that the input matrix has been
modified so that the linearly independent rows occur first in the matrix for access by the caller. Assuming
exact arithmetic, a robust implementation is the following.

int ComputeRank (Matrix3& M)

{

// Compute the maximum magnitude matrix entry.

Real abs, save, max = -1;

int row, col, maxRow = -1, maxCol = -1;

for (row = 0; row < 3; row++)

{

for (col = row; col < 3; col++)

{

11

abs = |M[row][col]|;

if (abs > max)

{

max = abs;

maxRow = row;

maxCol = col;

}

}

}

if (max == 0)

{

// The rank is 0. The eigenvalue has multiplicity 3.

return 0;

}

// The rank is at least 1. Swap the row containing the maximum-magnitude

// entry with row 0.

if (maxRow != 0)

{

for (col = 0; col < 3; col++)

{

save = M[0][col];

M[0][col] = M[maxRow][col];

M[maxRow][col] = save;

}

}

// Row-reduce the matrix...

// Scale row 0 to generate a 1-valued pivot.

Real invMax = 1/M[0][maxCol];

M[0][0] *= invMax;

M[0][1] *= invMax;

M[0][2] *= invMax;

// Eliminate the maxCol column entries in rows 1 and 2.

if (maxCol == 0)

{

M[1][1] -= M[1][0]*M[0][1];

M[1][2] -= M[1][0]*M[0][2];

M[2][1] -= M[2][0]*M[0][1];

M[2][2] -= M[2][0]*M[0][2];

M[1][0] = 0;

M[2][0] = 0;

}

else if (maxCol == 1)

{

M[1][0] -= M[1][1]*M[0][0];

M[1][2] -= M[1][1]*M[0][2];

M[2][0] -= M[2][1]*M[0][0];

M[2][2] -= M[2][1]*M[0][2];

M[1][1] = 0;

12

M[2][1] = 0;

}

else

{

M[1][0] -= M[1][2]*M[0][0];

M[1][1] -= M[1][2]*M[0][1];

M[2][0] -= M[2][2]*M[0][0];

M[2][1] -= M[2][2]*M[0][1];

M[1][2] = 0;

M[2][2] = 0;

}

// Compute the maximum-magnitude entry of the last two rows of the

// row-reduced matrix.

max = -1;

maxRow = -1;

maxCol = -1;

for (row = 1; row < 3; row++)

{

for (col = 0; col < 3; col++)

{

abs = |M[row][col]|;

if (abs > max)

{

max = abs;

maxRow = row;

maxCol = col;

}

}

}

if (max == 0)

{

// The rank is 1. The eigenvalue has multiplicity 2.

return 1;

}

// If row 2 has the maximum-magnitude entry, swap it with row 1.

if (maxRow == 2)

{

for (col = 0; col < 3; col++)

{

save = M[1][col];

M[1][col] = M[2][col];

M[2][col] = save;

}

}

// Scale row 1 to generate a 1-valued pivot.

invMax = 1/M[1][maxCol];

M[1][0] *= invMax;

M[1][1] *= invMax;

M[1][2] *= invMax;

13

// The rank is 2. The eigenvalue has multiplicity 1.

return 2;

}

The first part of the pseudocode checks to see if M is the zero matrix. If it is, the rank is zero. If it is not,
the row with the maximum-magnitude entry is swapped with row 0 and used to row-reduce the remaining
rows. For the sake of argument, suppose that the maximum-magnitude entry, call this value µ, occurs in
row 2 and column 1.

M =


m00 m01 m02

m10 m11 m12

m20 µ m22


The last row is swapped with the first row and then is divided by µ to obtain

M ′ =


m′20 1 m′22

m10 m11 m12

m00 m01 m02


where m′20 = m20/µ and m′22 = m22/µ. The row reduction leads to

M ′′ =


m′20 1 m′22

m10 −m11m
′
20 0 m12 −m11m

′
22

m00 −m01m
′
20 0 m02 −m01m

′
22

 =


m′′00 1 m′′02

m′′10 0 m′′12

m′′20 0 m′′22


where the last equality defines the double-primed quantities.

The same process is used to determine whether one of the last two rows of M ′′ is another linearly independent
vector. If all the entries in the last two rows are zero, then the rank of M is 1. The row (m′20, 1,m

′
22 is

accessed by the caller of ComputeRank and is then passed to GetComplement2.

Otherwise, the rank of M ′′ is 2. Another row-reduction is applied. For the sake of argument, suppose that
the maximum-magnitude entry, call it ν, of the last two rows of M ′′ is in row 2 and column 1. Then

M ′′ =


m′′00 1 m′′02

ν 0 m′′12

m′′20 0 m′′22


No row swapping is necessary, so divide row 1 by ν.

M ′′′ =


m′′00 1 m′′02

1 0 m′′′12

m′′20 0 m′′22


where m′′′12 = m′′12/nu. The rows (m′′00, 1,m

′′
02) and (1, 0,m′′′12) are accessed by the caller of ComputeRank and

are then passed to GetComplement1. It is not necessary to row-reduce the last row, but if you did, it will be
the zero vector (0, 0, 0).

14

4.2 Numerical Construction

The problem in an implementation is determining the multiplicity of a root. The theoretical classification
is in Equation (4). For the eigenvalue problem we know that q ≤ 0. If q < 0, there are three distinct
eigenvalues. You expect that rank(M0) = rank(M1) = rank(M2) = 2. Numerically, it is possible that q is
just slightly negative (due to round-off errors) yet the numerically computed ranks are not all 2.

In the event that theoretically q = 0, the condition that distinguishes between one or two distinct eigenvalues
depends on the parameter a. If a = 0, there is only one distinct eigenvalue; otherwise, a < 0 and there are
two distinct eigenvalues. If a = 0 theoretically, you expect that rank(M0) = rank(M1) = rank(M2) = 0. it is
possible numerically that a is just slightly negative (due to round-off errors) yet the numerically computed
ranks for the Mi are not all zero.

The pseudocode for ComputeRank has exact comparisons of the maximum-magnitude entry to zero, because
the pseudocode assumes exact arithmetic. Of course, equality comparisons are generally not robust when
using floating-point arithmetic. I implemented the algorithm anyway, but compared the magnitudes of the
matrix entries to a small tolerance. The pseudocode

if (max == 0)

{

// The rank is 0. The eigenvalue has multiplicity 3.

return 0;

}

was implemented as

Real epsilon = (Real)1e-05;

if (max < epsilon)

{

// The rank is (numerically) 0. The eigenvalue has multiplicity 3.

return 0;

}

The specified epsilon led to fewer misclassifications than did the canned value Mathf::ZERO TOLERANCE.
Similarly, the pseudocode

if (max == 0)

{

// The rank is 1. The eigenvalue has multiplicity 2.

return 1;

}

was implemented as

if (max < epsilon)

{

// The rank is (numerically) 1. The eigenvalue has multiplicity 2.

15

return 1;

}

Using this approach but with double-precision arithmetic for computing the roots, Eigensolver worked
quite well. The actual code was sprinkled with assertions to try to trap misclassifications and see what the
results were. The modified pseudocode is

void Eigensolver (Matrix3 A, float evalue[3], Vector3 evector[3])

{

double root[3];

ComputeRoots(A,root);

evalue[0] = (float)root[0];

evalue[1] = (float)root[1];

evalue[2] = (float)root[2];

Matrix3 M0, M1, M2;

int rank0, rank1, rank2;

Vector3 row0, row1;

M0 = A - evalue[0]*I; // I is the identity matrix

rank0 = ComputeRank(M0);

if (rank0 == 0)

{

// evalue[0] = evalue[1] = evalue[2]

M1 = A - evalue[1]*I;

M2 = A - evalue[2]*I;

rank1 = ComputeRank(M1);

rank2 = ComputeRank(M2);

assert(rank1 == 0 && rank1 == 0);

evector[0] = Vector3(1,0,0);

evector[1] = Vector3(0,1,0);

evector[2] = Vector3(0,0,1);

return;

}

if (rank0 == 1)

{

// evalue[0] = evalue[1] < evalue[2]

M1 = A - evalue[1]*I;

M2 = A - evalue[2]*I;

rank1 = ComputeRank(M1);

rank2 = ComputeRank(M2);

assert(rank1 == 1 && rank1 == 2);

row0 = M0.GetRow(0);

row0.Normalize();

assert(row0 != Vector3::ZERO);

GetComplement2(row0,evector[0],evector[1]);

evector[2] = evector[0].Cross(evector[1]);

assert(evector[2] != Vector3::ZERO);

16

return;

}

// rank0 == 2

row0 = M0.GetRow(0);

row1 = M0.GetRow(1);

row0.Normalize();

row1.Normalize();

assert(row0 != Vector3::ZERO && row1 != Vector3::ZERO);

GetComplement1(row0,row1,evector[0]);

assert(evector[0] != Vector3::ZERO);

M1 = A - evalue[1]*I;

rank1 = ComputeRank(M1);

assert(rank1 > 0);

if (rank1 == 1)

{

// evalue[0] < evalue[1] = evalue[2]

M2 = A - evalue[2]*I;

rank2 = ComputeRank(M2);

assert(rank2 == 1);

GetComplement2(evector[0],evector[1],evector[2]);

return;

}

// rank1 == 2

row0 = M1.GetRow(0);

row1 = M1.GetRow(1);

row0.Normalize();

row1.Normalize();

assert(row0 != Vector3::ZERO && row1 != Vector3::ZERO);

GetComplement1(row0,row1,evector[1]);

assert(evector[1] != Vector3::ZERO);

// rank2 == 2 (eigenvalues must be distinct at this point, rank2 must be 2)

M2 = A - evalue[2]*I;

rank2 = ComputeRank(M2);

assert(rank2 == 2);

evector[2] = evector[0].Cross(evector[1]);

assert(evector[2] != Vector3::ZERO);

}

The experiment involves generation of 228 symmetric matrices. A diagonal matrix D = (d0, d1, d2), di ∈
[−1, 1], and a rotation matrix R are randomly generated, and then the matrix is computed by A = RDRT.
The diagonal matrices are chosen so that 1/4 of them have d0 = d1 = d2, 1/4 of them have d0 = d1 < d2,
1/4 of them have d0 < d1 = d2, and 1/4 of them have d0 < d1 < d2. Of all these matrices, only one assertion
was triggered. However, valid eigenvectors were computed in that case.

When the double-precision root finder was replaced with a single-precision one, the number of triggered
assertions was significant. Regardless of the experiment, it appears that double-precision root finding is
necessary for accurate eigenvector construction. The problem is simply the magnification of error when
calling Sqrt(-a/3) and Sqrt(-q).

17

4.3 An Alternate Construction

Having to trap all the misclassifications in Eigensolver is tractable. However, here is an alternate construc-
tion that performs as well, yet has no assertions.

The maximum-magnitude entries for all three of the Mi = A − λiI are computed. If all three maxima are
smaller than Mathf::ZERO TOLERANCE, the three eigenvalues are assumed to be the same and the eigenvectors
are (1, 0, 0), (0, 1, 0), and (0, 0, 1). If at least one maximum-magnitude entry is larger than the tolerance, the
matrix producing the maximum of these is processed further to construct the eigenvectors of A. The function
PositiveRank returns true when the matrix has positive rank and also returns the maximum-magnitude
entry and the row of the matrix in which this entry occurs.

void Eigensolver (Matrix3 A, Real evalue[3], Vector3 evector[3])

{

Real amax = ComputeMaximumMagnitudeEntry(A);

if (amax > 1)

{

A /= amax;

}

double root[3];

ComputeRoots(A,root);

evalue[0] = (Real)root[0];

evalue[1] = (Real)root[1];

evalue[2] = (Real)root[2];

Real max[3];

Vector3 maxrow[3];

for (i = 0; i < 3; i++)

{

Matrix3 M = A - evalue[i]*I;

if (!PositiveRank(M,max[i],maxrow[i]))

{

if (amax > 1)

{

for (j = 0; j < 3; j++)

{

evalue[j] *= amax;

}

}

evector[0] = (1,0,0);

evector[1] = (0,1,0);

evector[2] = (0,0,1);

return;

}

}

k0 = index of maxrow[] that contains maximum of max[];

k1 = (k0+1) modulo 3;

k2 = (k1+1) modulo 3;

maxrow[k0].Normalize();

ComputeVectors(A,maxrow[k0],k1,k2,k0);

18

if (amax > 1)

{

for (j = 0; j < 3; j++)

{

evalue[j] *= amax;

}

}

}

Briefly, if the maximum-magnitude entry of A is larger than 1, the matrix is scaled so that its entries are
bounded by 1 in magnitude. If the scaling occurs, say by µ to produce A′ = A/µ, the eigensolver computes
the eigenvalues λ′ = λ/µ of A′, where λ are the corresponding eigenvalues of A. Throughout the code, once
the eigenvectors are computed, the eigenvalues need to be rescaled.

The eigenvalues are computed as the roots of a cubic polynomial. Double-precision arithmetic is used to
avoid the magnification of error that occurs in the function calls Sqrt(-a/3) and Sqrt(-q) in the root finder.
The ranks of Mi = A−λiI are computed numerically. If any of them report a rank of 0, the eigenvalues are
assumed to be all the same. The eigensolver returns the standard basis vectors as the eigenvectors.

If all the ranks are reported as positive, the matrix M corresponding to the maximum-magnitude entry out
of all the matrix entries is processed. The idea is to obtain a row vector whose length is as large as possible
in order to reduce the chances of round-off errors affecting the subsequent calculations.

For the sake of argument, suppose M2 = A−λ2I produces the largest entry. Let R be the row that contains
that entry. It is necessary that an eigenvector V2 corresponding to λ2 be perpendicular to R; this simply
follows from M2V2 = 0, which says that the eigenvector is perpendicular to each row of M2. Now choose
vectors U0 and U1 so that {U0,U1,R} is an orthonormal set (unit-length and mutually perpendicular
vectors). Because V2 is perpendicular to R,

V2 = c0U0 + c1U1 (8)

for coefficients c0 = U0 · V2 and c1 = U1 · V2. We require the the eigenvectors be unit length, so it is
necessary that c20 + c21 = 1. Multiply Equation (8) by A to obtain

λ2V2 = AV2 = c0AU0 + c1AU1 (9)

Dot this equation with U0 and U1 to obtain the system of equations UT
0AU0 UT

0AU1

UT
0AU1 UT

1AU1

 c0

c1

 = λ2

 c0

c1

 (10)

In fact, this is another eigensystem but only 2 × 2. It may be solved similarly to how we are handling the
3× 3 systems (an algorithm recursive in dimension, so to speak).

Subtract the right-hand-side vector to the left so that the system is of the form p00 p01

p01 p11

 c0

c1

 =

 0

0

 (11)

19

where p00 = UT
0AU0−λ2, p01 = UT

0AU1, and p11 = UT
1AU1−λ2. If the maximum-magnitude entry of this

system is not zero (or sufficiently different from zero when using floating-point arithmetic), then our best
bet is to choose the row containing that entry to construct the eigenvector. Suppose that the entry occurs
in the first row; then  c0

c1

 =
1√

p200 + p201

 p01

−p00


If the entry occurs in the second row, then c0

c1

 =
1√

p201 + p211

 −p11
p01


In either case, we have constructed the eigenvector V2 = c0U0 + c1U1.

If the maximum-magnitude entry of the system is zero (or nearly zero when using floating-point arithmetic),
then it is sufficient to choose V2 to be either of U0 or U1. In the implementation, I choose V2 = U1 when
the maximum-magnitude entry is in the first row; otherwise, I choose V2 = U0.

Up to now, we have constructed eigenvector V2. The two other eigenvectors we need to construct must be
in the plane perpendicular to V2. We already know that R is in that plane. A second vector in the plane
is S = R × V2 and is necessarily unit-length and perpendicular to R. Just as in Equation (8), we may
represent

V0 = c0R + c1S

for coefficients c0 = R ·V0 and c1 = S ·V0. We require the the eigenvectors be unit length, so it is necessary
that c20 + c21 = 1. Similar to the construction of V2, namely, Equations (9) through (11), multiply by A and
dot the equation with R and S to obtain a system RTAR RTAS

RTAS STAS

 c0

c1

 = λ0

 c0

c1


Rewrite this as  p00 p01

p01 p11

 c0

c1

 =

 0

0


where p00 = RTAR− λ0, p01 = RTAS, and p11 = STAS− λ0. This may be solved as we did Equation (11)
for c0 and c1.

We now have constructed V2 and V0. The remaining eigenvector is V1 = V2 ×V0. The ordering of the
vectors is such they form a right-handed orthonormal set. When written as the columns of a matrix in the
order specified, the matrix must be a rotation matrix.

The function ComputeVectors in the pseudocode implements the discussion here.

The actual code for the noniterative eigensolver and a sample application are downloadable. The files for
Wild Magic 3 are

GeometricTools/WildMagic3/Foundation/Numerics/Wm3NoniterativeEigen3x3.{h,cpp}

GeometricTools/WildMagic3/SampleMiscellaneous/NoniterativeEigensolver.{h,cpp}

20

The files for Wild Magic 4 are

GeometricTools/WildMagic4/LibFoundation/NumericalAnalysis/Wm4NoniterativeEigen3x3.{h,cpp}

GeometricTools/WildMagic4/SampleFoundation/NoniterativeEigensolver.{h,cpp}

5 Performance Measurements

The sample application measures the accuracy of the solutions and the computational time required. The
input matrices are randomly generated. The main file has three conditional defines of which only one should
be enabled at a time.

The MEASURE NONITERATIVE mode solves 228 eigensystems using the noniterative method. To infer the
accuracy, the computed eigenvalues and eigenvectors are used to evaluate the error metric

µ = max{|(A− λ0I)V0|, |(A− λ1I)V1|, |(A− λ2I)V2|}

The application keeps track of the maximum of the µ values. In my testing, this was max(µ) = 6.03475e−6.
The iterative solver (using the implicit QL method) reported max(µ) = 1.135875e−6, so the maximum error
of the noniterative approach is comparable to that of the iterative approach.

The TIMING NONITERATIVE mode solves 224 eigensystems using the noniterative approach. A timer is used
to compute the execution time. On my Pentium D 3.2 GHz dual-core machine (running the application only
on one core), the total time was 37750 milliseconds.

The TIMING ITERATIVE mode solves the same 224 eigensystems as the noniterative approach solves. The
total time was 162280 milliseconds. The noniterative approach is comparable in accuracy and has a speed-up
of about 4.5, which is a significant savings in computation time.

21

	1 About the Previous Version of This Document
	2 The Motivation
	3 Roots of Cubic Polynomials
	3.1 The General Equation
	3.2 The Characteristic Equation
	3.3 Understanding the Numerical Issues
	3.4 Computing the Roots

	4 Computing the Eigenvectors
	4.1 Theoretical Construction
	4.1.1 Three Distinct Eigenvalues
	4.1.2 Two Distinct Eigenvalues
	4.1.3 One Distinct Eigenvalue
	4.1.4 Theoretical Algorithm

	4.2 Numerical Construction
	4.3 An Alternate Construction

	5 Performance Measurements

