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This document describes how to fit a set of data points with a B-spline tensor product surface using a least-
squares algorithm. A typical application is to fit height-field data on a rectangular grid with a control-point
surface as a way of reducing the amount of data needed to represent the height field.

1 Definition of B-Spline Tensor Product Surfaces

A B-spline tensor product surface is defined for a 2-dimensional array of (n0 + 1) × (n1 + 1) control points
Qi0i1 with 0 ≤ i0 ≤ n0 and 0 ≤ i1 ≤ n1,

X(u, v) =
n0∑

i0=0

n1∑
i1=0

Ni0,d0(u)Ni1,d1(v)Qi0i1 (1)

The numbers d0 and d1 are the degrees for the surface. They must satisfy 1 ≤ d0 ≤ n0 and 1 ≤ d1 ≤ n1.
The functions Ni0,d0(u) and Ni1,d1(v) are the B-spline basis functions. In the following discussion, I drop the
subscripts for simplicity and use t to denote the independent variable of the function. The basis functions
Ni,d(t) are defined recursively and require selection of a sequence of scalars ti for 0 ≤ i ≤ n + d + 1. The
sequence is nondecreasing; that is, ti ≤ ti+1. Each ti is referred to as a knot, the total sequence a knot vector.
The basis function that starts the recursive definition is

Ni,0(t) =

 1, ti ≤ t < ti+1

0, otherwise
(2)

for 0 ≤ i ≤ n + d. The recursion itself is

Ni,j(t) =
t− ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t

ti+j+1 − ti+1
Ni+1,j−1(t) (3)

for 1 ≤ j ≤ d and 0 ≤ i ≤ n + d− j. The support of a function is the smallest closed interval on which the
function has at least one nonzero value. The support of Ni,0(t) is clearly [ti, ti+1]. In general, the support of
Ni,j(t) is [ti, ti+j+1]. This fact means that locally the curve is influenced by only a small number of control
points, a property called local control.

The main classification of the knot vector is that it is either open or periodic. If open, the knots are either
uniform or nonuniform. Periodic knot vectors have uniformly spaced knots. The use of the term open is
perhaps a misnomer since you can construct a closed B-spline surface from open knot vectors. The standard
way to construct a closed surface uses periodic knot vectors. Uniform knots are

ti =


0 , 0 ≤ i ≤ d

i−d
n+1−d , d + 1 ≤ i ≤ n

1 , n + 1 ≤ i ≤ n + d + 1

(4)

Periodic knots are
ti =

i− d

n + 1− d
, 0 ≤ i ≤ n + d + 1 (5)

Equations (2) and (3) allow you to recursively evaluate the B-spline surface, but there are faster ways based
on the local control. This document does not cover the various evaluation schemes. You may find this topic
in any book on B-splines and most likely at online sites.
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2 Least-Squares Fitting

The sample data points are (rj0 , sj1 ,Pj0j1) with 0 ≤ j0 ≤ m0 and 0 ≤ j1 ≤ m1. It is assumed that
r0 < r1 < · · · < rm0 and s0 < s1 < · · · < sm1 . A B-spline surface that fits the data is parameterized
by (u, v) ∈ [0, 1]2, so the sample r-values and s-values need to be mapped to the parameter domain by
uj0 = (rj0 − r0)/(rm0 − r0) and vj1 = (sj1 − s0)/(sm1 − s0).

The fitted B-spline surface is formally presented in Equation (1), but the control points Qi0i1 are unknown
quantities to be determined later. The control points may be arranged formally as an (n0 + 1) × (n1 + 1)
matrix,

Q̂ =


Q00 · · · Q0n1

...
. . .

...

Qn00 · · · Qn0n1

 (6)

Similarly, the samples Pj0j1 may be arranged formally as an (m0 + 1)× (m1 + 1) matrix,

P̂ =


P00 · · · P0m1

...
. . .

...

Pm00 · · · Pm0m1

 (7)

For a specifed set of control points, the least-squares error function between the B-spline surface and sample
points is the scalar-valued function

E(Q̂) =
1
2

m0∑
j0=0

m1∑
j1=0

∣∣∣∣∣
n0∑

i0=0

n1∑
i1=0

Ni0,d0(uj0)Ni1,d1(vj1)Qi0i1 −Pj0j1

∣∣∣∣∣
2

(8)

The half term is just for convenience in the calculations. The quantity
n0∑

i0=0

n1∑
i1=0

Ni0,d0(uj0)Ni1,d1(vj1)Qi0i1 (9)

is the point on the B-spline surface at the scaled sample parameters (uj0 , vj1). The term within the double
summation (with indices j0 and j1) on the right-hand side of equation (8) measures the squared distance
between the sample point and its corresponding surface point. The error function measures the total ac-
cumulation of squared distances. The hope is that we may choose the control points to make this error as
small as possible.

The minimization is a calculus problem. The function E is quadratic in the components of Q̂, its graph a
paraboloid (in high dimensional space), so it must have a global minimum that occurs when all its first-order
partial derivatives are zero. That is, the vertex of the parabola occurs where the first derivatives are zero.
The first-order partial derivatives are written in terms of the control points Qi0i1 rather than in terms of
the components of the control points:

∂E
∂Qk0k1

=
∑m0

j0=0

∑m1
j1=0

(∑n0
i0=0

∑n1
i1=0

Ni0,d0(uj0)Ni1,d1(vj1)Qi0i1
−Pj0j1

)
Nk0,d0(uj0)Nk1,d1(vj1)

=
∑m0

j0=0

∑m1
j1=0

∑n0
i0=0

∑n1
i1=0

Ni0,d0(uj0)Ni1,d1(vj1)Nk0,d0(uj0)Nk1,d1(vj1)Qi0i1

−
∑m0

j0=0

∑m1
j1=0

Nk0,d0(uj0)Nk1,d1(vj1)Pj0j1

=
∑m0

j0=0

∑m1
j1=0

∑n0
i0=0

∑n1
i1=0

aj0i0bj1i1aj0k0bj1k1Qi0i1
−

∑m0
j0=0

∑m1
j1=0

aj0k0bj1k1Pj0j1

(10)
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where aj0i0 = Ni0,d0(uj0) and bj1i1 = Ni1,d1(vj1). Equation (10) in matrix form is

∂E

∂Q̂
= ATAQ̂BTB −ATP̂B (11)

where ∂E/∂Q̂ is an (n0 + 1)× (n1 + 1) matrix, A = [arc] is a (m0 + 1)× (n0 + 1) matrix, and B = [brc] is a
(m1 + 1)× (n1 + 1) matrix.

Setting the partial derivatives equal to the zero matrix 0̂ leads to the matrix system of equations,

ATAQ̂BTB −ATP̂B = 0̂ (12)

The matrix ATA is symmetric, a property that is desirable in the numerical solution of systems. Moreover,
the matrix A is banded. This is a generalization of tridiagonal. A banded matrix has a diagonal with
(potentially) nonzero entries. It has a contiguous set of upper bands and a contiguous set of lower bands,
each band with (potentially) nonzero entries. All other entries in the matrix are zero. In our case, the
number of upper bands and the number of lower bands are the same, namely d0 + 1. The bandedness is
a consequence of the local control for B-spline surfaces (the supports of the B-spline basis functions are
bounded intervals). A similar analysis shows that BTB is symmetric and banded with d1 + 1 upper bands
and d1 + 1 lower bands.

The direct approach to solving the equation (12) is to invert the matrices ATA and BTB,

Q̂ =
(
ATA

)−1
ATP̂B

(
BTB

)−1
=

[(
ATA

)−1
AT

]
P̂

[(
BTB

)−1
BT

]T

= XPY T (13)

where the last equality defines matrices X and Y . The problem, though, is that the matrix inversions can
be ill conditioned because the matrices have eigenvalues that are nearly zero. The ill conditioning causes
a Gaussian elimination, even with full pivoting, to have problems. For the application of fitting a height
field, the heights are sampled on a rectangular lattice. In this case, the ill conditioning is not an issue
as long as you choose a B-spline surface with uniform knots. Regardless, an approach different from the
direct inversions is called for, both to minimize the effects of ill conditioning and to take advantage of the
bandedness of the matrices. Recall that Gaussian elimination to solve a linear system with an n× n matrix
is an O(n3) algorithm. The solution to a linear system with a tridiagonal matrix is O(n). The same is true
for a banded matrix with a small number of bands relative to the size of the matrix.

The numerical method of choice for symmetric, banded matrix systems is the Cholesky decomposition. The
book Matrix Computations by G. Golub and C. van Loan has an excellent discussion of the topic. The algo-
rithm starts with a symmetric matrix and factors it into a lower-triangular matrix, G, times the transpose of
that lower-triangular matrix, GT, which is necessarily upper triangular. That is, the Cholesky decomposition
is

ATA = GGT (14)

A numerically stable LU solver may be used first to invert G, then to invert GT. For the application of
fitting height-field data, the choice of uniform knots leads to good stability, but also required is to make
certain that the number of control points is smaller than the number of samples by a half. This is essentially
a Nyquist-frequency argument. If you have as many control points as samples, the B-spline surface can have
large oscillations.

The matrix X is computed as the solution to ATAX = AT using the Cholesky decomposition to invert the
matrix ATA. Similarly, the matrix Y is computed as the solution to BTBY = BT. The matrix of control
points, Q̂, is then computed from Equation (13).
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3 Implementation

A sample application to illustrate the fit is in the folder

GeometricTools/WildMagic4/SampleFoundation/BSplineSurfaceFitter

A 64× 64 height field is fitted with a B-spline surface that has 32× 32 control points. The fitted surface is
evaluated on a 64× 64 grid so that the fitted surface and original height field may be compared.
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