
The Minimal Cycle Basis for a Planar Graph

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: November 2, 2005
Last Modified: March 1, 2008

Contents

1 Introduction 2

2 Minimal Cycles and Bases 3

3 Constructing a Cycle Basis 5

4 Constructing a Minimal Cycle 18

4.1 Classification of Directed Edges . 20

4.1.1 Clockwise-Most Edges . 20

4.1.2 Counterclockwise-Most Edges . 23

4.2 Removing the Minimal Cycle . 24

5 Iterative Extraction of Primitives 24

5.1 Extracting Isolated Vertices . 26

5.2 Extracting Filaments . 26

5.3 Extracting Minimal Cycles . 31

1

http://www.geometrictools.com/

1 Introduction

A planar graph G = (V, E) consists of a finite set of vertices V, each vertex V a point in the plane, and a
set of edges E ⊆ V × V, each edge a pair of vertices (V1,V2). The graph is assumed to be undirected, so
(V1,V2) and (V2,V1) represent the same edge. Also, a vertex is never connected to itself by an edge, so
(V,V) 6∈ E for any V ∈ V. Given an edge (V1,V2), V2 is said to be adjacent to V1, and vice versa. Each
vertex has a (possibly empty) set of adjacent vertices. A vertex with exactly one adjacent vertex is said to
be an end point. A vertex with three or more adjacent vertices is said to be a branch point. When the edges
are viewed as line segments in the plane, it is required that no two edges intersect at an interior point of one
of the edges. Vertices are the only places where edges may meet.

G consists of various primitives of interest. An isolated vertex I ∈ V has no adjacent vertices; that is,
(I,V) 6∈ E for every V ∈ V.

A cycle is an ordered sequence of n distinct vertices, 〈Vi〉ni=1, such that (Vi,Vi+1) ∈ E for 1 ≤ i < n and
(Vn,V1) ∈ E . An isolated cycle is one for which each Vi has exactly two adjacent vertices for 1 ≤ i ≤ n.

A filament is an ordered sequence of n distinct vertices, 〈Vi〉ni=1 = 〈V1, . . . ,Vn〉, such that (Vi,Vi+1) ∈ E
for 1 ≤ i < n, each Vi for 2 ≤ i ≤ n− 1 has exactly two adjacent vertices, and each of V1 and Vn is an end
point or a branch point. Moreover, the filament cannot be a subsequence of any cycle. An isolated filament
is a filament for which both V1 and Vn are end points and is necessarily an open polyline.

The set of points S in the plane that are graph vertices or points on graph edges is a union of isolated
vertices, filaments, and cycles, but it is not necessarily a disjoint union. A branch point of a filament is
necessarily part of another filament or part of a cycle.

Figure 1.1 shows a planar graph with various primitives of interest.

2

Figure 1.1 A planar graph to illustrate graph primitives.

The primitives of the graph are listed below:

• isolated vertices: I0 = 〈V0〉, I1 = 〈V17〉

• filaments: F0 = 〈V6,V5,V4〉, F1 = 〈V2,V7,V11〉, F2 = 〈V14,V15,V16〉 (isolated)

• cycles: C0 = 〈V1,V3,V4,V2〉, C1 = 〈V8,V9,V10〉 (isolated), C2 = 〈V11,V12,V13〉,
C3 = 〈V12,V20,V19,V18,V13〉, C4 = 〈V19,V20,V21〉, C5 = 〈V11,V12,V20,V19,V18,V13〉,
C6 = 〈V12,V20,V21,V19,V18,V13〉, C7 = 〈V11,V12,V20,V21,V19,V18,V13〉,
C8 = 〈V20,V22,V23,V24〉, C9 = 〈V25,V26,V27〉 (isolated)

The filament 〈V6,V5,V4〉 has one end point and the filament 〈V14,V15,V16〉 has two end points, so these
are easy to detect in a graph. The filament 〈V2,V7,V11〉 does not have end points. This filament is more
complicated to detect because it is necessary to determine that it is not a subsequence of a cycle. The
detection of isolated cycles is not difficult, but the other cycles are more complicated to detect because of
their sharing of edges.

2 Minimal Cycles and Bases

Some of the cycles shown in Figure 1.1 are special. Figure 2.1 shows the previous figure with the isolated
vertices and filaments removed.

3

Figure 2.1 The cycles of the graph of Figure 1.1.

The isolated cycles C0, C1, and C9 catch your attention because they are separated from the rest of the
graph. These cycles are examples of minimal cycles, whose definition will be given in a moment. For the
purposes of the discussion, associate a solid polygon with each cycle. The polygon itself is the closed polyline
corresponding to the ordered sequence of cycle vertices; the solid polygon includes the region bounded by
the polygon. Cycles C0, C1, and C9 correspond to solid polygons which do not contain any other cycles.

Cycles C2 and C3 share an edge. Their solid polygons share only the common edge, and the union of the solid
polygons is itself a solid polygon which corresponds to cycle C5. The cycles C2 and C3 are also examples
of minimal cycles in the sense each one is not the union of solid polygons corresponding to other cycles.
Similarly, the cycle C4 is a minimal cycle.

Cycles C4 and C8 share the vertex V20, but they have no common edge. It is not possible to construct a
larger cycle by a union, 〈V19,V20,V22,V23,V24,V20,V21〉. This sequence violates the constraint that its
vertices be distinct (V20 occurs twice, a violation). Thus, C8 is a candidate to be a minimal cycle. The solid
polygon for C8, which includes all of the region bounded by the cycle, happens to contain the cycle C9. But
because C8 and C9 have no common edges, they are deemed minimal.

Formally, these examples are summarized into the following definition. A cycle C is a minimal cycle if its
solid polygon contains no other cycles or if its solid polygon contains cycles that share at most one vertex
with C. The sharing of two (or more vertices) implies a “short circuit” in the cycle C. A short-circuit path
partitions the solid polygon of C into two smaller solid subpolygons. Consequences of the definition include

• The set of all minimal cycles for a graph is unique.

• The solid polygon of any cycle is the union of solid polygons of minimal cycles.

The second consequence suggests the terminology that the set of minimal cycles is a cycle basis, analogous
with the concept of a basis of vectors for a vector space. In the current example, the minimal basis is
M = {C0, C1, C2, C3, C4, C8, C9}. The remaining cycles are set unions: C5 = C2 ∪ C3, C6 = C3 ∪ C4, and
C7 = C2 ∪ C3 ∪ C4. The set M is referred to as the minimal cycle basis for the planar graph.

Once again thinking of the cycles as solid polygons, other bases are possible. For the current example, the
following set is a basis: B = {C0, C1, C5, C6, C7, C8, C9}. The other cycles are obtained using set-theoretic
operations on the solid polygons: C2 = C7 \ C6 (set difference), C3 = C5 ∩ C6 (set intersection), and
C4 = C7 \ C5. The difference between the minimal cycle basis M and the cycle basis B is that cycles are

4

constructed from M only using the set union operation (only “addition” is required). Cycles constructed
from B require other set operations (“subtraction” is required as well as “addition”).

3 Constructing a Cycle Basis

The standard procedure for locating cycles in a connected graph is to create a minimal spanning tree and its
associated set of back edges. A minimal spanning tree is constructed via a depth-first search of the graph.
The tree is not unique because it depends on the choice of vertex to start the search and on the order of
adjacent vertices stored at each vertex. Whenever a vertex is visited, it is labeled as such. If the current
vertex is Vc and the search takes you to an adjacent vertex Va which has already been visited, the graph
must have a cycle which contains the edge e = (Vc,Va). The edge e is said to be a back edge and is removed
from the graph. The depth-first search continues from Vc, detecting other cycles and removing the back
edges. If B is the set of back edges and if E ′ = E \ B is the set of original graph edges with the back edges
removed, then the graph G′ = (V, E ′) has the topology of a tree, and is called a minimal spanning tree.

If e ∈ B is a back edge, insert it into the minimal spanning tree’s edges to form a set E ′′ = E ′ ∪ {e}. The
resulting graph G′′ = (V, E ′′) has exactly one cycle, which may be constructed by applying a depth-first
search from the vertex Va. A visited vertex is marked, pushed on a stack to allow the recursive traversal
through its adjacent vertices, and then popped if the search of its adjacent vertices is completed without
locating the cycle. When Va is visited the second time, the stack contains this same vertex. The stack is
popped to produce the ordered sequence of vertices that form the cycle. The process is repeated for each
back edge.

For a graph with multiple connected components, the depth-first search is applied repeatedly, each time
processing one of the connected components.

As an example, consider the planar graph of Figure 2.1. The adjacent vertices of a vertex are assumed to
be ordered by increasing index. For example, V1 has the ordered adjacent vertices V2 and V3. V20 has
the ordered adjacent vertices V12, V19, V21, V22, and V24. Table 3.1 shows the stack for the traversal, the
adjacent vertex about to be visited, and the actions taken when that vertex is visited. A visited vertex is
marked by an overline. A vertical bar separates the stack (on the left) from the adjacent vertex about to be
visited (on the right). The symbol ∅ denotes the empty stack.

5

Table 3.1 Construction of the minimal spanning tree starting at vertex v1.

stack adjacent actions

∅ v1 mark v1

v̄1 v2 mark v2

v̄1v̄2 v4 mark v4

v̄1v̄2v̄4 v3 mark v3

v̄1v̄2v̄4v̄3 v̄1 delete (v3, v1) from G, insert in B

v̄1v̄2v̄4v̄3 v3 has no unvisited adjacents, pop stack

v̄1v̄2v̄4 v4 has no unvisited adjacents, pop stack

v̄1v̄2 v2 has no unvisited adjacents, pop stack

v̄1 v1 has no unvisited adjacents, pop stack

∅ proceed to next unvisited vertex

Figure 3.1 shows the graph with the back edge (V3,V1) removed.

Figure 3.1 The planar graph with back edge (V3,V1) removed. The current set of back edges is
B = {(V3,V1)}.

The next unvisited vertex is V8. Table 3.2 shows information similar to that of Table 3.1.

6

Table 3.2 Construction of the minimal spanning tree, continued.

stack adjacent actions

∅ v8 mark v8

v̄8 v9 mark v9

v̄8v̄9 v10 mark v10

v̄8v̄9v̄10 v̄8 delete (v10, v8) from G, insert in B

v̄8v̄9v̄10 v10 has no unvisited adjacents, pop stack

v̄8v̄9 v9 has no unvisited adjacents, pop stack

v̄8 v8 has no unvisited adjacents, pop stack

∅ proceed to next unvisited vertex

Figure 3.2 shows the graph with the back edge (V10,V8) removed.

Figure 3.2 The planar graph with back edge (V10,V8) removed. The current set of back edges is
B = {(V3,V1), (V10,V8)}.

The next unvisited vertex is V11. Table 3.3 shows the continuation of the traversal.

Table 3.3 Construction of the minimal spanning tree, continued.

stack adjacent actions

∅ v11 mark v11

v̄11 v12 mark v12

v̄11v̄12 v13 mark v13

v̄11v̄12v̄13 v̄11 delete (v13, v11) from G, insert in B

Figure 3.3 shows the graph with the back edge (V13,V11) removed.

7

Figure 3.3 The planar graph with back edge (V13,V11) removed. The current set of back edges
is B = {(V3,V1), (V10,V8), (V13,V11)}.

The traversal continues, as shown in Table 3.4.

Table 3.4 Construction of the minimal spanning tree, continued.

stack adjacent actions

v̄11v̄12v̄13 v18 mark v18

v̄11v̄12v̄13v̄18 v19 mark v19

v̄11v̄12v̄13v̄18v̄19 v20 mark v20

v̄11v̄12v̄13v̄18v̄19v̄20 v̄12 delete (v20, v12) from G, insert in B

Figure 3.4 shows the graph with the back edge (V20,V12) removed.

Figure 3.4 The planar graph with back edge (V20,V12) removed. The current set of back edges
is B = {(V3,V1), (V10,V8), (V13,V11), (V20,V12)}.

The traversal continues, as shown in Table 3.5.

8

Table 3.5 Construction of the minimal spanning tree, continued.

stack adjacent actions

v̄11v̄12v̄13v̄18v̄19v̄20 v21 mark v21

v̄11v̄12v̄13v̄18v̄19v̄20v̄21 v̄19 delete (v21, v19) from G, insert in B

Figure 3.5 shows the graph with the back edge (V21,V19) removed.

Figure 3.5 The planar graph with back edge (V21,V19) removed. The current set of back edges
is B = {(V3,V1), (V10,V8), (V13,V11), (V20,V12), (V21,V19)}.

The traversal continues, as shown in Table 3.6.

9

Table 3.6 Construction of the minimal spanning tree, continued.

stack adjacent actions

v̄11v̄12v̄13v̄18v̄19v̄20v̄21 v21 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18v̄19v̄20 v22 mark v22

v̄11v̄12v̄13v̄18v̄19v̄20v̄22 v23 mark v23

v̄11v̄12v̄13v̄18v̄19v̄20v̄22v̄23 v24 mark v24

v̄11v̄12v̄13v̄18v̄19v̄20v̄22v̄23v̄24 v̄20 delete (v24, v20) from G, insert in B

v̄11v̄12v̄13v̄18v̄19v̄20v̄22v̄23v̄24 v24 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18v̄19v̄20v̄22v̄23 v23 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18v̄19v̄20v̄22 v22 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18v̄19v̄20 v20 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18v̄19 v19 has no unvisited adjacents, pop stack

v̄11v̄12v̄13v̄18 v18 has no unvisited adjacents, pop stack

v̄11v̄12v̄13 v13 has no unvisited adjacents, pop stack

v̄11v̄12 v12 has no unvisited adjacents, pop stack

v̄11 v11 has no unvisited adjacents, pop stack

∅ proceed to next unvisited vertex

Figure 3.6 shows the graph with the back edge (V24,V20) removed.

Figure 3.6 The planar graph with back edge (V24,V20) removed. The current set of back edges
is B = {(V3,V1), (V10,V8), (V13,V11), (V20,V12), (V21,V19), (V24,V20)}.

The next unvisited vertex is V25. Table 3.7 shows the continuation of the traversal.

10

Table 3.7 Construction of the minimal spanning tree, continued.

stack adjacent actions

∅ v25 mark v25

v̄25 v26 mark v26

v̄25v̄26 v27 mark v27

v̄25v̄26v̄27 v̄25 delete (v27, v25) from G, insert in B

Figure 3.7 shows the graph with the back edge (V27,V25) removed.

Figure 3.7 The planar graph with back edge (V27,V25) removed. The current set of back edges
is B = {(V3,V1), (V10,V8), (V13,V11), (V20,V12), (V21,V19), (V24,V20), (V27,V25)}.

Figure 3.7 shows the collection of minimal spanning trees for the graph G. The set of back edges has 7
elements, the same number of cycles as the bases M and B mentioned previously in this document. This
number is not coincidence. All bases have the same number of cycles, analogous to the bases of a finite
dimensional vector space having the same number of linearly independent vectors. The cycle construction
from the minimal spanning trees and the back edges leads to a cycle basis.

The back edges are reinserted into the graph, one at a time, and a depth-first search is used to locate the
cycle. The back edge (V3,V1) is inserted into the trees of Figure 3.7. Figure 3.8 shows the modified graph
with the back edge shown in gray.

11

Figure 3.8 The trees of Figure 3.7 with back edge (V3,V1) inserted and shown in gray.

Table 3.8 shows the depth-first traversal of the modified graph. The traversal starts at V1.

Table 3.8 The depth-first traversal for back edge (V3,V1).

stack adjacent actions

∅ v1 mark v1

v̄1 v2 mark v2

v̄1v̄2 v4 mark v4

v̄1v̄2v̄4 v3 mark v3

v̄1v̄2v̄4v̄3 v̄1 cycle located

The stack is popped to produce the cycle 〈V3,V4,V2,V1〉.

The back edge (V10,V8) is inserted into the trees of Figure 3.7. Figure 3.9 shows the modified graph with
the back edge shown in gray.

Figure 3.9 The trees of Figure 3.7 with back edge (V10,V8) inserted and shown in gray.

12

Table 3.9 shows the depth-first traversal of the modified graph. The traversal starts at V8.

Table 3.9 The depth-first traversal for back edge (V10,V8).

stack adjacent actions

∅ v8 mark v8

v̄8 v9 mark v9

v̄8v̄9 v10 mark v10

v̄8v̄9v̄10 v̄8 cycle located

The stack is popped to produce the cycle 〈V10,V9,V8〉.

The back edge (V13,V11) is inserted into the trees of Figure 3.7. Figure 3.10 shows the modified graph with
the back edge shown in gray.

Figure 3.10 The trees of Figure 3.7 with back edge (V13,V11) inserted and shown in gray.

Table 3.10 shows the depth-first traversal of the modified graph. The traversal starts at V11.

Table 3.10 The depth-first traversal for back edge (V13,V11).

stack adjacent actions

∅ v11 mark v11

v̄11 v12 mark v12

v̄11v̄12 v13 mark v13

v̄11v̄12v̄13 v̄11 cycle located

The stack is popped to produce the cycle 〈V13,V12,V11〉.

The back edge (V20,V12) is inserted into the trees of Figure 3.7. Figure 3.11 shows the modified graph with
the back edge shown in gray.

13

Figure 3.11 The trees of Figure 3.7 with back edge (V20,V12) inserted and shown in gray.

Table 3.11 shows the depth-first traversal of the modified graph. The traversal starts at V12.

Table 3.11 The depth-first traversal for back edge (V13,V11).

stack adjacent actions

∅ v12 mark v12

v̄12 v11 mark v11

v̄12v̄11 v11 has no unvisited adjacents, pop stack

v̄12 v13 mark v13

v̄12v̄13 v18 mark v18

v̄12v̄13v̄18 v19 mark v19

v̄12v̄13v̄18v̄19 v20 mark v20

v̄12v̄13v̄18v̄19v̄20 v̄12 cycle located

The stack is popped to produce the cycle 〈V20,V19,V18,V13,V12〉.

The back edge (V21,V19) is inserted into the trees of Figure 3.7. Figure 3.12 shows the modified graph with
the back edge shown in gray.

14

Figure 3.12 The trees of Figure 3.7 with back edge (V21,V19) inserted and shown in gray.

Table 3.12 shows the depth-first traversal of the modified graph. The traversal starts at V19.

Table 3.12 The depth-first traversal for back edge (V13,V11).

stack adjacent actions

∅ v19 mark v19

v̄19 v18 mark v18

v̄19v̄18 v13 mark v13

v̄19v̄18v̄13 v12 mark v12

v̄19v̄18v̄13v̄12 v11 mark v11

v̄19v̄18v̄13v̄12v̄11 v11 has no unvisited adjacents, pop stack

v̄19v̄18v̄13v̄12 v12 has no unvisited adjacents, pop stack

v̄19v̄18v̄13 v13 has no unvisited adjacents, pop stack

v̄19v̄18 v18 has no unvisited adjacents, pop stack

v̄19 v20 mark v20

v̄19v̄20 v21 mark v21

v̄19v̄20v̄21 cycle located

The stack is popped to produce the cycle 〈V21,V20,V19〉.

The back edge (V24,V20) is inserted into the trees of Figure 3.7. Figure 3.13 shows the modified graph with
the back edge shown in gray.

15

Figure 3.13 The trees of Figure 3.7 with back edge (V24,V20) inserted and shown in gray.

Table 3.13 shows the depth-first traversal of the modified graph. The traversal starts at V20.

Table 3.13 The depth-first traversal for back edge (V24,V20).

stack adjacent actions

∅ v20 mark v20

v̄20 v19 mark v19

v̄20v̄19 v18 mark v18

v̄20v̄19v̄18 v13 mark v13

v̄20v̄19v̄18v̄13 v12 mark v12

v̄20v̄19v̄18v̄13v̄12 v11 mark v11

v̄20v̄19v̄18v̄13v̄12v̄11 v11 has no unvisited adjacents, pop stack

v̄20v̄19v̄18v̄13v̄12 v12 has no unvisited adjacents, pop stack

v̄20v̄19v̄18v̄13 v13 has no unvisited adjacents, pop stack

v̄20v̄19v̄18 v18 has no unvisited adjacents, pop stack

v̄20v̄19 v19 has no unvisited adjacents, pop stack

v̄20 v21 mark v21

v̄20v̄21 v21 has no unvisited adjacents, pop stack

v̄20 v22 mark v22

v̄20v̄22 v23 mark v23

v̄20v̄22v̄23 v24 mark v24

v̄20v̄22v̄23v̄24 v̄20 cycle located

The stack is popped to produce the cycle 〈V24,V23,V22,V20〉.

16

Finally, the back edge (V27,V25) is inserted into the trees of Figure 3.7. Figure 3.14 shows the modified
graph with the back edge shown in gray.

Figure 3.14 The trees of Figure 3.7 with back edge (V27,V25) inserted and shown in gray.

Table 3.14 shows the depth-first traversal of the modified graph. The traversal starts at V25.

Table 3.14 The depth-first traversal for back edge (V27,V25).

stack adjacent actions

∅ v25 mark v25

v̄25 v26 mark v26

v̄25v̄26 v27 mark v27

v̄25v̄26v̄27 v̄25 cycle located

The stack is popped to produce the cycle 〈V27,V26,V25〉.

We were fortunate in that this construction has produced the minimal cycle basis M . Generally, the construc-
tion will not lead to this basis. For example, Figure 3.15 shows a graph for which the minimum spanning tree
construction leads to the minimal cycle basis. The same assumption is made as in the previous example–the
adjacent vertices for a vertex are ordered by increasing index.

17

Figure 3.15 A graph for which the minimum spanning tree construction produces the minimal
cycle basis. Left: The graph. Right: The two minimal cycles.

Figure 3.16 shows the same graph, but with a different naming for the vertices. The cycle basis has two
cycles, but one of the cycles is not minimal.

Figure 3.16 The graph of Figure 3.15, but the vertices are named differently. Left: The graph.
Right: The two cycles, the first one not minimal.

The construction of a minimal spanning tree produces a topological sort of the vertices. The sorting depends
on the choice of first vertex and the visitation order of the adjacent vertices. To obtain a minimal cycle
basis, we need to incorporate geometric information into the graph traversal.

4 Constructing a Minimal Cycle

Let us make the simplifying assumption that the vertex V0 of minimum x-value is part of a cycle. In the
event two or more vertices have minimum x-value, choose the one with the minimum y-value. Figure 4.1
shows a configuration as described here.

18

Figure 4.1 A graph for which V0, the vertex of minimum x-value, is part of a cycle. A supporting
line for the graph is V0 + tD, where D = (0,−1).

The initial vertex V0 is contained in many cycles of which only two are minimal.

An important observation is that the edge (V0,V1) can be part of only one minimal cycle. Using the fact
that V0 has minimum x-value of all the vertices, as you walk along the edge from V0 to V1 the region to
your right is outside the convex hull of the vertices and consequently no portion of that region can be interior
to a minimal cycle. Generally, the region to your left might (or might not) contain portions that are interior
to a minimal cycle. Since we have assumed V0 is part of a cycle as shown in the figure, the region to the left
has portions contained in a minimal cycle that contains V0. In this case, the edge (V0,V1) belongs to that
minimal cycle. Generally, we do not know if this edge is part of a cycle, but a graph traversal will determine
this for us. The general algorithm is the topic of the next section.

The vertex V0 has four adjacent vertices. What makes the directed edge (V0,V1) special is its geometric
property that it is the clockwise-most edge with respect to the vertical line through V0 with direction
D = (0,−1). The vertical line is a supporting line for the graph in the sense that the graph lies to one side of
the line, but allows one or more vertex/edge points to touch it. The choice for the supporting line is directly
related to V0 having the minimum x-value. The directed edge (V0,V4) is the counterclockwise-most edge
with respect to D.

The first edge of a minimal cycle is (V0,V1). A decision must be made about which adjacent vertex of
V1 to select to continue traversing the minimal cycle. Figure 4.1 shows that V1 has two adjacent vertices,
V6 and V7. We know that the interior of the solid polygon of the minimal cycle is immediately to the
left of the directed edge (V0,V1). We wish to keep the interior immediately to the left when we traverse
through V1. The adjacent vertex to visit next is therefore V7. Notice that the directed edge (V1,V7) is the
counterclockwise-most edge with respect to the line V0 + t(V1 −V0), where the line direction is that of the
previous directed edge of traversal.

Traversing to V7, the next vertex to visit is V8. The choice between V8 and V6 is made because the directed
edge (V7,V8) is counterclockwise-most with respect to the line V1 + t(V7 −V1), where the line direction
is that of the previous directed edge of traversal.

Similar reasoning takes us from V8 to V2, and then from V2 to V0, completing the minimal cycle.

19

4.1 Classification of Directed Edges

We need an algebraic classification to determine whether an edge is clockwise-most, counterclockwise-most,
or neither. This involves the concept of one vector between two other vectors. Figure 4.2 shows the two
configurations to handle.

Figure 4.2 Left: The vertex V is a convex vertex relative to the other vertices A0 and A1. Right:
The vertex V is a reflex vertex relative to the other vertices. In both cases, a vector P−V between
vectors A0 −V and A1 −V is shown in blue.

Think of the test for betweenness in terms of the cross product of the vectors as if they were in 3D with z
components of zero, and apply the right-hand rule. Define the 2D vectors D0 = A0−V, D1 = A1−V, and
D = P − V. Define the 3D vectors E0 = (D0, 0), E1 = (D1, 0), and E = (D, 0); that is, the vectors have
zero for their z components.

In the case V is convex with respect to its neighbors, D is between D0 and D1 when the cross products
E × E1 and E0 × E both have positive z components. That is, if you put your right hand in the direction
E with your thumb up (out of the plane of the page), and rotate your fingers towards your palm (rotating
about your thumb), you should reach E1. Similarly, if you put your right hand in the direction E0 and rotate
your fingers towards your palm, you should reach E. Note that

E×E1 =
(
0, 0,D ·D⊥

1

)
, E0 ×E =

(
0, 0,D0 ·D⊥

)
,

where (x, y)⊥ = (y,−x). The test for strict betweenness is therefore,

D0 ·D⊥ > 0 and D ·D⊥
1 > 0 (1)

In the case V is reflex with respect to its neighbors, D is between D0 and D1 (in that order) when it is not
between D1 and D0 (in that order). This is the negation of the test in Equation (1) with the roles of D0 and
D1 swapped, and with the strict containment condition, namely,

D1 ·D⊥ < 0 or D ·D⊥
0 < 0 (2)

4.1.1 Clockwise-Most Edges

The only time we need a clockwise-most edge is at the onset of the search for the minimal cycle. The
following discussion, though, presents the general algorithm for selecting the clockwise-most edge. The

20

previous vertex in a search is is denoted Vprev, the current vertex is denoted Vcurr, and the next vertex
is denoted Vnext. The previous direction is defined by Dprev = Vcurr − Vprev and the current direction is
defined by Dnext − Vcurr. For our application, V0 is the current vertex and there is no previous vertex.
However, the support line direction D = (0,−1) may be thought of as the previous direction, which implies
a previous vertex of V0 −D.

The next vertex is initially chosen to be an adjacent vertex not equal to the previous vertex. Figure 4.3
illustrates the configuration for a convex and a reflex current vertex.

Figure 4.3 Left: The current vertex is convex with respect to the previous vertex and the next
vertex. Right: The current vertex is reflex with respect to the previous vertex and the next vertex.
The gray regions are those to the left of the graph path being traversed.

When a current vertex is selected, its adjacent vertices are searched to determine which will be the next
vertex on the path. The first found adjacent vertex that is not the previous vertex is chosen as Vnext. Figure
4.3 illustrates the situation when the next vertex has been chosen.

The current vertex has other adjacent vertices to be tested if they should become the next vertex. In the
convex case, the left image of Figure 4.3 shows two adjacent vertices of Vcurr, A0 and A1, to be processed.
The adjacent vertex A0 is rejected because the edge to it is counterclockwise from the current clockwise-most
edge. The adjacent vertex A1 becomes the next vertex on the path because the edge to it is clockwise from
the current clockwise-most edge. The vector D = A1−Vcurr is between the vectors Vprev−Vcurr = −Dcurr

and Vnext −Vcurr = Dnext, in that order. The algebraic test for this is an application of Equation (2), since
the current vertex is reflex relative to the outside region:

Dnext ·D⊥ < 0 or D · (−Dcurr)
⊥

< 0

or equivalently,
Dcurr ·D⊥ < 0 or Dnext ·D⊥ < 0 (3)

In the reflex case, the right image of Figure 4.3 shows two adjacent vertices of Vcurr, A0 and A1, to be
processed. The adjacent vertex A0 is rejected because the edge to it is counterclockwise from the current
clockwise-most edge. The adjacent vertex A1 becomes the next vertex because the edge to it is clockwise
from the current clockwise-most edge. The vector D = A1 − Vcurr is between −Dcurr and Dnext. The
algebraic test for this is an application of Equation (1), since the current vertex is convex relative to the

21

outside region:
−Dcurr ·D⊥ > 0 and D ·D⊥

next > 0

or equivalently
Dcurr ·D⊥ < 0 and Dnext ·D⊥ < 0 (4)

Pseudocode for computing the clockwise-most edge is listed next.

Vertex GetClockwiseMost (Vertex vprev, Vertex vcurr)
{

if (vcurr has no adjacent vertices) return nil;

dcurr = vcurr.position - vprev.position;
vnext = adjacent vertex of vcurr not equal to vprev;
dnext = vnext.position - vcurr.position;
vcurrIsConvex = dnext.DotPerp(dcurr);

for each adjacent vertex vadj of vcurr do
{

dadj = vadj.position - vcurr.position;
if (vcurrIsConvex)
{

if (dcurr.DotPerp(dadj) < 0 or dnext.DotPerp(dadj) < 0)
{

vnext = vadj;
dnext = dadj;
vcurrIsConvex = dnext.DotPerp(dCurr);

}
}
else
{

if (dcurr.DotPerp(dadj) < 0 and dnext.DotPerp(dadj) < 0)
{

vnext = vadj;
dnext = dadj;
vcurrIsConvex = dnext.DotPerp(dCurr);

}
}

}

return vnext;
}

The first test for adjacent vertices is necessary when the current vertex is a graph end point, in which case
there are no edges to continue searching for the clockwise-most one. The DotPerp operation for two vectors
(x0, y0) and (x1, y1) produces the scalar x0y1 − x1y0.

22

4.1.2 Counterclockwise-Most Edges

The general algorithm for visiting the adjacent vertices of the current vertex and updating which one is the
next vertex is similar to that for the clockwise-most edges. In the left image of Figure 4.3, A1 is the valid
candidate for updating the current clockwise-most edge. A0 is the valid candidate for updating the current
counterclockwise-most edge. The condition for updating to A0 is

Dcurr ·D⊥ > 0 and Dnext ·D⊥ > 0 (5)

In the right image of Figure 4.3, A1 is the valid candidate for updating the current clockwise-most edge. A0

is the valid candidate for update the current counterclockwise-most edge. The condition for updating to A0

is
Dcurr ·D⊥ > 0 or Dnext ·D⊥ > 0 (6)

Pseudocode for computing the counterclockwise-most edge is listed next. It is identical in structure to
GetClockwiseMost, except that the former function implemented equations (3) and (4), but this function
implements equations (5) and (6).

Vertex GetCounterclockwiseMost (Vertex vprev, Vertex vcurr)
{

if (vcurr has no adjacent vertices) return nil;

dcurr = vcurr.position - vprev.position;
vnext = adjacent vertex of vcurr not equal to vprev;
dnext = vnext.position - vcurr.position;
vcurrIsConvex = dnext.DotPerp(dcurr);

for each adjacent vertex vadj of vcurr do
{

dadj = vadj.position - vcurr.position;
if (vcurrIsConvex)
{

if (dcurr.DotPerp(dadj) > 0 and dnext.DotPerp(dadj) > 0)
{

vnext = vadj;
dnext = dadj;
vcurrIsConvex = dnext.DotPerp(dCurr);

}
}
else
{

if (dcurr.DotPerp(dadj) > 0 or dnext.DotPerp(dadj) > 0)
{

vnext = vadj;
dnext = dadj;
vcurrIsConvex = dnext.DotPerp(dCurr);

}
}

23

}

return vnext;
}

The first test for adjacent vertices is necessary when the current vertex is a graph end point, in which case
there are no edges to continue searching for the clockwise-most one. The DotPerp operation for two vectors
(x0, y0) and (x1, y1) produces the scalar x0y1 − x1y0.

4.2 Removing the Minimal Cycle

In the example of Figure 4.1, we have now located the minimal cycle 〈V0,V1,V7,V8,V2〉. It would be
convenient to somehow prevent this cycle from affecting the searches for other graph primitives, including
other minimal cycles. A way to do this is to remove the minimal cycle from the graph, thus producing a
smaller graph which may be processed in the same manner. We know that the edge (V0,V1) is only used by
the minimal cycle we have already found. This edge may be safely removed from the graph. By inspection,
we also can see that the edge (V7,V8) may be removed. We are not so fortunate to have an inspection
system in a computer algorithm. If instead we had started with the graph shown in Figure 4.4, the edge
(V7,V8) cannot be removed because it participates in another minimal cycle.

Figure 4.4 A graph similar to that of Figure 4.1, but with an additional minimal cycle.

The edge (V7,V8) may be deleted at a later time once other primitives are processed, but we need to
remember that it was a cycle edge to avoid mistaking it for a filament when it is finally visited. We may do
so by tagging the minimal cycle edges with a label indicating the edges came from cycles.

5 Iterative Extraction of Primitives

The primitive associated with the vertex V0 of minimum x-value is either an isolated vertex, filament, or
a minmal cycle. We can traverse the graph starting at V0 and extract the corresponding primitive. Any

24

vertices and/or edges associated only with the primitive are removed from the graph, producing a smaller
graph to which the extraction process may again be applied. The process is iterative and will lead to
the construction of a minimal cycle basis, isolated vertices, and filaments. As mentioned previously, some
minimal cycle edges cannot be removed immediately when the cycle is discovered. The removal is postponed
and the cycle edges are tagged so they are not mistaken later for filaments.

Each extraction of a primitive requires finding the vertex of minimum x-value. To avoid searching for the
minimum each time, the vertices are sorted once in a preprocessing stage and stored in an ordered set. When
a vertex is removed from the graph, it is also removed from the ordered set. The ordered set is essentially
a heap, where the minimum element is always at the root (the first element of the set). The ordering is
lexicographical and uses the less-than predicate:

(x0, y0) < (x1, y1) whenever {(x0 < x1) or [(x0 = x1) and (y0 < y1)]}

In words, let V0 be the vertex of minimum x-value. If there are multiple vertices with minimum x-value,
choose the one with minimum y-value. If V0 has no adjacent vertices, it is an isolated vertex and removed
from the graph. If V0 has one adjacent vertex, it is an end point for a filament. The filament vertices are
visited one at a time, recorded for later use, and the filament edges and vertices are removed from the graph.
Figure 5.1 illustrates the two possibilities.

Figure 5.1 Two configurations for encountering a filament with one end point at V0.

In the left image of Figure 5.1, V0 is added to the primitive’s storage, edge (V0,V1) is removed from the
graph, V0 is removed from the graph and from the heap. The process is repeated. V1 is added to the
primitive’s storage, edge (V1,V2) is removed from the graph, and V1 is removed from the graph and from
the heap. Finally, V2 is added to the primitive’s storage. The vertex is not removed from the graph or
the heap because it is needed for the primitive sharing that vertex. In the right image of Figure 5.1, the
primitive is constructed similarly, and the graph vertices, graph edges, and heap are updated accordingly.
Since V2 is not shared by other primitives, it is removed from the graph and from the heap.

If V0 has two or more adjacent vertices, more work must be done to extract the primitive. The top-level
pseudocode is listed next.

void Graph::ExtractPrimitives (set<Primitive> primitives)

{

set<Vertex> heap = vertices; // lexicographically sorted

while (heap is not empty) do

{

Vertex v0 = heap.GetMin();

if (v0.numAdjacent == 0)

25

{

ExtractIsolatedVertex(v0,heap,primitives);

}

else if (v0.numAdjacent == 1)

{

ExtractFilament(v0,heap,primitives);

}

else

{

ExtractPrimitive(v0,heap,primitives); // filament or minimal cycle

}

}

}

5.1 Extracting Isolated Vertices

The function ExtractIsolatedVertex is the simplest to implement. The pseudocode is

void Graph::ExtractIsolatedVertex (Vertex v0, set<Vertex> heap, set<Primitive> primitives)

{

Primitive primitive(PT_ISOLATED_VERTEX);

primitive.insert(v0);

heap.remove(v0);

vertices.remove(v0);

primitives.insert(primitive);

}

5.2 Extracting Filaments

At first glance, an implementation for ExtractFilament appears to be simple when it is assumed that v0 is
a filament end point (exactly one adjacent vertex). For example,

void Graph::ExtractFilament (Vertex v0, set<Vertex> heap, set<Primitive> primitives)

{

Primitive primitive(PT_FILAMENT);

while (v0.numAdjacent == 1)

{

primitive.insert(v0);

v1 = v0.adjacent[0];

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

v0 = v1;

}

primitive.insert(v0);

if (v0.numAdjacent == 0)

{

26

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

}

primitives.insert(primitive);

}

This pseudocode works fine for the configurations shown in Figure 5.1. However, it does not work if the
initial point for the filament happens to be a branch point. Figure 5.2 shows such a configuration.

Figure 5.2 Left: A graph with a filament 〈V0,V1,V2〉. Right: A graph with a filament 〈V0,V1〉.
In both cases, the filament extraction must handle the fact that V0 is a branch point.

The first attempt at the pseudocode assumed that v0 has exactly one adjacent vertex. Branch points have
at least three adjacent vertices, but which adjacent vertex v1 is part of the filament? This is information
that is determined during the extraction of all primitives and must be passed to ExtractFilament. The
modified pseudocode is

void Graph::ExtractFilament (Vertex v0, Vertex v1, set<Vertex> heap, set<Primitive> primitives)

{

Primitive primitive(PT_FILAMENT);

if (v0.numAdjacent >= 3)

{

primitive.insert(v0);

edges.remove(v0,v1);

v0 = v1;

if (v0.numAdjacent == 1) v1 = v0.Adjacent[0];

}

while (v0.numAdjacent == 1)

{

primitive.insert(v0);

v1 = v0.adjacent[0];

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

v0 = v1;

}

27

primitive.insert(v0);

if (v0.numAdjacent == 0)

{

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

}

primitives.insert(primitive);

}

The extra block of code detects when V0 is a branch point. The vertex is copied to the primitive’s storage
and the edge (V0,V1) is removed to break the connection between the filament and the branch point. The
rest of the filament must be extracted. Figure 5.2 shows that there are two possibilities. In the left image of
the figure, the removal of edge (V0,V1) leads to the remainder of a filament that has at least one edge, in
this case edge (V1,V2). The pseudocode detects this by setting v0 to its adjacent vertex v1 and finding out
that it has exactly one adjacent vertex. This allows a continued traversal of the filament by setting v1 to the
adjacent vertex, V2 in the figure. In the right image of Figure 5.2, the removal of edge (V0,V1) leaves V1 as
an isolated vertex. The pseudocode detects this by setting v0 to the adjacent vertex v1 and determining that
it now has no adjacent vertices. The ensuing while loop is skipped, but the final if statement is executed
and the filament end point is stored in the primitive’s storage.

Even with this change, the ExtractFilament pseudocode is not sufficient to handle all the possibilities thrown
at it. Two situations occur during the extraction of a minimal cycle. Figure 4.1 shows the first situation. The
minimal cycle 〈V0,V1,V7,V8,V2〉 is detected. The edge (V0,V1) is removed because it is not shared by
an other primitive. The edge (V7,V8) must be removed during a later call to the extraction system. When
the system finds this edge, it appears as if it is a filament. As mentioned previously, this misclassification is
prevented by tagging the cycle edges. In the current example, the edges (V1,V7), (V7,V8), (V8,V2), and
(V2,V0) are all tagged as cycle edges. When (V7,V8) is visited later, the filament extraction code must
simply delete this edge.

The second situation is illustrated by Figure 5.3.

Figure 5.3 Left: A minimal cycle which has a filament connected to one vertex. Right: The graph
after the edge (V0,V1) is removed. The remaining cycled edges are marked with a ‘c’. The two
filaments with end points V0 and V1 must be removed.

The minimal cycle 〈V0,V1,V2,V3〉 is detected and the edge (V0,V1) is safely removed. The other three
cycle edges are tagged. The vertices V0 and V1 are end points for filaments. These filaments can be safely
removed because they are not shared by other primitives. If the filament starting at V0 were to be removed

28

without regard to the edge tags, then (V0,V3) is removed, but no other edges because V3 has more than
one adjacent vertex, even after the deletion of the filament edge. The filament starting at V1 is then deleted,
one edge at a time. If the edge tags are ignored, the edges (V1,V2) and (V2,3) are removed. After the
removal, V3 has exactly one adjacent vertex, namely, V4. The edge (V3,V4) appears to be a continuation
of the current filament, and would be removed itself, an error. By deleting only those edges tagged as cycle
edges, this error is avoided.

The final pseudocode for the filament extraction is listed next.

29

void Graph::ExtractFilament (Vertex v0, Vertex v1, set<Vertex> heap, set<Primitive> primitives)

{

if (IsCycleEdge(v0,v1))

{

if (v0.numAdjacent >= 3)

{

edges.remove(v0,v1);

v0 = v1;

if (v0.numAdjacent == 1) v1 = v0.Adjacent[0];

}

while (v0.numAdjacent == 1)

{

v1 = v0.adjacent[0];

pkV1 = pkV0->Adjacent[0];

if (IsCycleEdge(v0,v1))

{

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

v0 = v1;

}

else

{

break;

}

}

if (v0.numAdjacent == 0)

{

heap.remove(v0);

vertices.remove(v0);

}

}

else

{

Primitive primitive(PT_FILAMENT);

if (v0.numAdjacent >= 3)

{

primitive.insert(v0);

edges.remove(v0,v1);

v0 = v1;

if (v0.numAdjacent == 1) v1 = v0.Adjacent[0];

}

while (v0.numAdjacent == 1)

{

primitive.insert(v0);

v1 = v0.adjacent[0];

heap.remove(v0);

edges.remove(v0,v1);

30

vertices.remove(v0);

v0 = v1;

}

primitive.insert(v0);

if (v0.numAdjacent == 0)

{

heap.remove(v0);

edges.remove(v0,v1);

vertices.remove(v0);

}

primitives.insert(primitive);

}

}

The logic of the block of code for handling tagged edges is similar to that for the construction of a fila-
ment primitive, except that vertices and edges are deleted without creating a new primitive. The call to
IsCycleEdge inside the loop guarantees that the configuration of Figure 5.3 is handled correctly.

5.3 Extracting Minimal Cycles

The function ExtractPrimitive starts with an initial vertex V0 with two or more adjacent vertices and
extracts either a filament or a cycle. The algorithm is a traversal starting at V0, and the previous direction
is D = (0,−1). The adjacent vertex V1 to continue the traversal is the one for which V1 −V0 is clockwise-
most with respect to D. The remaining vertices in the traversal are chosen so that the current direction
is counterclockwise-most with respect to the previous direction, as discussed in the paragraphs containing
Figure 4.1. It the traversal leads you back to V0, a minimal cycle has been constructed; otherwise, V0 is
part of a filament.

In the case of a cycle, we know that the edge (V0,V1) may be safely removed without affecting the extraction
of other primitives. After removal of the edge, it is possible that V0 has exactly one adjacent vertex, call it
A. The edge (V0,A) may itself be safely removed. As long as the edge removal keeps producing vertices
with exactly one adjacent vertex, the process is repeated. This may result in an entire cycle being consumed,
or the process terminates once a branch point is reached. The same attempts at edge removal are made if
V1 has exactly one adjacent vertex after the removal of the edge (V0,V1). If the edge removal terminates
because branch points were encountered (an entire cycle was not consumed), the remaining edges in the
minimal cycle are tagged so they are not mistaken later for filament edges. Figure 5.4 illustrates some
possibilities.

31

Figure 5.4 Various configurations for minimal cycles containing (V0,V1). The safely removable
edges are drawn in gray. Any remaining cycle edges are tagged with ‘c’.

In the event the traversal with clockwise-most visitation does not form a cycle containing V0, it is because
the path either terminated at a vertex with exactly one adjacent vertex (an end point of a filament) or at
an already visited vertex. In the latter case, a cycle has been found, but it does not contain V0 and it is not
guaranteed to be a minimal cycle. Figure 5.5 illustrates the possibilities.

Figure 5.5 Left and Middle: Two configurations when (V0,V1) is not part of a minimal cycle. The
safely removable edges are drawn in gray. The arrows indicate the traversal path up to the point
that it was determined (V0,V1) is not part of a minimal cycle. Right: The graph has a minimal
cycle containing V0, but the extraction will actually find the filament 〈V2,V4,V5〉 first. Once this
is extracted, then the minimal cycle will be found.

The portions of the paths in gray are filaments, which the extractor function removes from the graph and
places in the primitive’s storage.

The pseudocode for the ExtractPrimitive function is listed next.

void Graph::ExtractPrimitive (Vertex v0, set<Vertex> heap, set<Primitive> primitives)

{

set<Vertex> visited;

list<Vertex> sequence;

sequence.insert(v0);

v1 = GetClockwiseMost(nil,v0);

32

vprev = v0;

vcurr = v1;

while (vcurr is not nil) and (vcurr is not v0) and (vcurr is not visited) do

{

sequence.insert(vcurr);

visited.insert(vcurr);

vnext = GetCounterclockwiseMost(vprev,vcurr);

vprev = vcurr;

vcurr = vnext;

}

if (vcurr is nil)

{

// Filament found, not necessarily rooted at v0.

ExtractFilament(v0,v0.adjacent[0],heap,primitives);

}

else if (vcurr is v0)

{

// Minimal cycle found.

Primitive primitive(MINIMAL_CYCLE);

primitive.insert(sequence);

for each edge e in sequence do

{

e.IsCycle = true;

}

edges.remove(v0,v1);

if (v0.numAdjacent == 1)

{

// Remove the filament rooted at v0.

ExtractFilament(v0,v0.adjacent[0],heap,primitives);

}

if (v1.numAdjacent == 1)

{

// Remove the filament rooted at v1.

ExtractFilament(v1,v1.adjacent[1],heap,primitives);

}

}

else // vcurr was visited earlier

{

// A cycle has been found, but is not guaranteed to be a minimal

// cycle. This implies v0 is part of a filament. Locate the

// starting point for the filament by traversing from v0 away

// from the initial v1.

while (v0.numAdjacent == 2)

{

if (v0.Adjacent[0] is not v1)

33

{

v1 = v0;

v0 = v0.Adjacent[0];

}

else

{

v1 = v0;

v0 = v0.Adjacent[1];

}

}

ExtractFilament(v0,v1,heap,primitives);

}

}

The ClockwiseMost function has nil passed as the “previous” vertex. The pseudocode for this function
computes the current direction from the previous and current vertices. A modification to handle the start-up
call must be made

if (vprev is not nil)

dcurr = vcurr.position - vprev.position;

else

dcurr = Vector(0,-1);

The last block of pseudocode handles the situations shown in Figure 5.6.

Figure 5.6 Left: V0 is a branch point, so is already the start of the filament. Middle: V0 has
two adjacent vertices, but must be adjusted to the end point shown. Right: V0 has two adjacent
vertices, but must be adjusted to the branch point shown.

In the left image, the filament runs from V0 to F. In the middle image, the filament runs from E to F. In
the right image, the filament runs from B to F.

34

	1 Introduction
	2 Minimal Cycles and Bases
	3 Constructing a Cycle Basis
	4 Constructing a Minimal Cycle
	4.1 Classification of Directed Edges
	4.1.1 Clockwise-Most Edges
	4.1.2 Counterclockwise-Most Edges

	4.2 Removing the Minimal Cycle

	5 Iterative Extraction of Primitives
	5.1 Extracting Isolated Vertices
	5.2 Extracting Filaments
	5.3 Extracting Minimal Cycles

