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1 Vector Fields

Let IRn denote n-tuples of real numbers. A vector field is a function V : IRn → IRn. The kth component of
V is a function ξk : IRn → IR. The vector field can be written as an n-tuple

V = (ξ1(x), . . . , ξn(x)), x ∈ IR

or can be thought of as an n × 1 column vector (when used in matrix calculations). We also can write the
vector field as a linear combination

V =
n∑

k=1

ξk(x)
∂

∂xk

where the symbols ∂/∂xk are placekeepers for the kth component. In this form V can be thought of as a
directional derivative operator V • ∇ which can be applied to functions f : IRn → IR.

Although the general notation uses indexed variables x = (x1, . . . , xn), for small dimensions we might use
different names. For example, if n = 2, then we might use (x, y) for the position vector; for n = 3 we might
use (x, y, z) for the position.

Example. Let V = (xy, x2) be a vector field on IR2. In directional derivative form,

V = xy
∂

∂x
+ x2 ∂

∂y
.

Let f(x, y) = sin(x + y2). The derivative of f in the direction V is

V f = (V • ∇)f = xy cos(x + y2) + 2x2y cos(x + y2).

Another notation we use for directional derivative is DV f . ./

As a directional derivative operator, V measures an infinitesimal rate of change in the direction indicated.
That is, V is a spatially varying tangent vector to certain curves. To determine the curves themselves, you
need to solve the following system of ordinary differential equations:

dx

dt
= V (x(t)), t > 0; x(0) = x0

where x0 is the starting point on the curve. The curve represents the global action of the vector field.

Example. Let V = (x, 0) with initial point (2,−1). The system of equations is

dx
dt = x, x(0) = 2
dy
dt = 0, y(0) = −1

The second equation says y is constant along the curve, so y(t) ≡ −1. The first equation has solution
x(t) = 2 exp(t). If you think of V as velocity of a particle initially at (2,−1), then the particle flows along
the straight line (x(t), y(t)) = (2 exp(t),−1), but has increasing speed. ./

Example. This example shows that solving the system may not always be as easy as you would like. Let
V = (−y, x) with initial point (x0, y0). The system of equations is

dx
dt = −y, x(0) = x0

dy
dt = x, y(0) = y0
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The equations are coupled. However, this is a linear problem and can be solved by methods learned in a
standard ordinary differential equations course. In matrix form the system is

d

dt

 x

y

 =

 0 −1

1 0

 x

y

 .

A matrix system of the form x′(t) = Ax(t) where A is a constant n × n matrix and x ∈ IRn, with initial
data x(0) = x0, has solution x(t) = exp(tA)x0 where the matrix exp(tA) is formally obtained by taking the
Taylor series for exp(z) and replacing z by the matrix tA. For our example, x

y

 = exp

t

 0 −1

1 0

  x0

y0

 =

 cos(t) − sin(t)

sin(t) cos(t)

 x0

y0

 .

Note that the end result is a rotation of the initial data, so the particle trajectories are circles. ./

2 Prolongations

Let x, u ∈ IR and think of u = u(x) (u is a function of x). If we make a change of variables g(x, y) = (x̄, ū)
such that ū = ū(x̄), then how is dū/dx̄ related to du/dx?

Example. Let the change of variables be x̄

ū

 =

 c −s

s c

 x

u


where c = cos(θ) and s = sin(θ) for some θ > 0. As long as du/dx is finite on the domain of u, then there is
a small enough angle θ so that ū is a function of x̄.

We can determine the relationship between the derivatives with a little bit of calculus (using the chain rule).
We have x̄ = cx− su, so taking derivatives with respect to x̄, we get

1 =
dx̄

dx̄
= c

dx

dx̄
− s

du

dx̄
= c

dx

dx̄
− du

dx

dx

dx̄

which implies that
dx

dx̄
=

1
c− sux

where ux = du/dx. We also have ū = sx + cu, so taking derivatives again with respect to x̄ gives us

dū

dx̄
= s

dx

dx̄
+ c

du

dx̄
= s

dx

dx̄
+ c

du

dx

dx

dx̄
=

s + cux

c− sux
.

The group action g(x, u) = (x̄, ū) and condition u = u(x) induce an action on the variables (x, u, ux), called
the first-order prolongation of g. We denote it by pr (1)g(x, u, ux). For our example,

pr (1)g(x, u, ux) =
(

cx− su, sx + cu,
s + cux

c− sux

)
.
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Note that when θ = 0, the mapping is the identity. Here we are given the group action, but we can compute
the infinitesimal action by taking the derivative with respect to θ at θ = 0. [In the last section we had V
and found g. Now we do the reverse process.]

The vector field V corresponding to g is

V =
(

dx̄

dθ

∣∣∣∣
θ=0

)
∂

∂x
+

(
dū

dθ

∣∣∣∣
θ=0

)
∂

∂u
= −u

∂

∂x
+ x

∂

∂u
.

The vector field corresponding to pr (1)g is given by

pr (1)V = V +
(

dūx̄

dθ

∣∣∣∣
θ=0

)
∂

∂ux
= −u

∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
.

I’ll leave the derivative details up to you.

The same idea can be applied to determining the relationships between higher-order derivatives. In our
example,

ūx̄x̄ =
d

dx̄

(
s + cux

c− sux

)
=

uxx

(c− sux)3

and
dūx̄x̄

dθ

∣∣∣∣
θ=0

= 3uxuxx.

The second-order group prolongation is

pr (2)g(x, u, ux, uxx) =
(

cx− su, sx + cu,
s + cux

c− sux
,

uxx

(c− sux)3

)
and the corresponding vector field is

pr (2)V = pr (1)V + 3uxuxx
∂

∂uxx
= −u

∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
.

An important point to note is that the prolongation vectors have place keepers x, u, ux, and uxx. These are
simply names for the components of the vector field and no analytic relationship between x and u is used.

3 Invariants

Given a vector field V : IRn → IRn, an invariant is a function f : IRn → IR such that the directional derivative
satisfies V f = 0. That is, f remains constant as you walk in the direction of V . Consequently the level sets
of f are the solution curves to the system of differential equations dx/dt = V (x).

Example. Consider the vector field
V = −y

∂

∂x
+ x

∂

∂y
.

An invariant is f(x, y) = x2 + y2 since V f = V • ∇f = (−y, x) • (2x, 2y) ≡ 0. The level curves of f are
circles, which is intuitive since as we saw before, V is the infinitesimal generator for rotation. ./
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For most vector fields we may not be able to guess at the invariants f , so we need a constructive method.
As indicated earlier, the level sets of an invariant f are solutions to a system of differential equations.

Example. For the vector field in the last example, the level curves of invariants are given by

dx
dt = −y, x(0) = x0

dy
dt = x, y(0) = y0

We saw earlier that this system has solution x = x0 cos(t)− y0 sin(t) and y = x0 sin(t) + y0 cos(t). It can be
shown that x2 + y2 = x2

0 + y2
0 . Another way of determining the level curves (for a system of 2 equations) is

to take the ratio of the two equations to get a single differential equation
dy

dx
=

x

−y
.

This equation is separable: xdx + ydy = 0. Integrate to get x2

2 + y2

2 = c for constant c. Substituting in the
initial data gives us x2 + y2 = x2

0 + y2
0 . ./

We can also look for invariants with respect to more than one vector field. Let Vk : IRn → IRn for k = 1, . . . ,m
be vector fields. A function f : IRn → IR is an invariant for the vector fields if Vkf = 0 for all k.

Example. Consider the vector fields on IR3,

V1 = 2
∂

∂x
− 3

∂

∂y
, V2 = 1

∂

∂x
+ 1

∂

∂z
.

A function f(x, y, z) is an invariant if 0 = V1f = (2,−3, 0) • ∇f and 0 = V2f = (1, 0, 1) • ∇f . The gradient
of f must be a vector which is orthogonal to both (2,−3, 0) and (1, 0, 1). Consequently ∇f is parallel to
(−3,−2, 3) = (2,−3, 0)× (1, 0, 1). An invariant is f(x, y, z) = −3x− 2y + 3z. ./

3.1 Independent Functions

One of the questions you should ask is: How many invariants are there for a vector field (or vector fields)?
For example, an invariant for the rotation vector field V = −y∂/∂x + x∂/∂y is f(x, y) = x2 + y2. Another
invariant is sin(x2 + y2). In fact for any differentiable function g : IR→ IR, g(f(x, y)) is an invariant. But in
some sense these all depend on the quantity x2 + y2.

Let fk : IRn → IR for k = 1, . . . ,m where m ≤ n be m differentiable functions. These are said to be
functionally independent at x ∈ IRn if the m× n matrix of first derivatives [∂fi/∂xj ] has full rank m.

Example. Let f1(x, y) = x2 + y2 and f2(x, y) = sin(x2 + y2). The first derivative matrix is ∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

 2x 2y

2x cos(x2 + y2) 2y cos(x2 + y2)

 .

The second row is just a scalar times the first row, so the matrix has rank 1 (not full rank), so the two
functions are dependent. ./

Example. Let f1(x, y) = x2 + y2 and f2(x, y) = x. The first derivative matrix is 2x 2y

1 0

 .
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For (x, y) 6= (0, 0), the matrix can be row-reduced to the identity, so the matrix has full rank. Thus, f1 and
f2 are functionally independent. ./

Example. Consider only the vector field on IR3,

V = 2
∂

∂x
− 3

∂

∂y
+ 0

∂

∂z
.

Two invariants are f1(x, y, z) = −3x − 2y and f2(x, y, z) = z. They are functionally independent since the
second derivative matrix  −3 −2 0

0 0 1


has full rank (2).

3.2 Lie Algebras

Given vector fields Vk : IRn → IRn for k = 1, . . . ,m, with m ≤ n, how many functionally independent
invariants are there? To answer this question we need a little background in Lie algebras.

Consider two vector fields

V (x) =
n∑

i=1

ai(x)
∂

∂xi
and W (x) =

n∑
j=1

bj(x)
∂

∂xj
.

Each vector field can be applied as a directional derivative to functions from IRn → IR. In particular, the
compositions V (Wf) and W (V f) are well-defined. Thus,

W (V f) =
∑n

j=1 bj
∂

∂xj

(∑n
i=1 ai

∂f
∂xi

)
=

∑n
j=1 bj

[∑n
i=1

(
ai

∂2f
∂xj∂xi

+ ∂ai

∂xj

∂f
∂xi

)]
=

∑n
i=1

∑n
j=1

(
ai

∂2f
∂xi∂xj

bj + bj
∂ai

∂xj

∂f
∂xi

)
and

V (Wf) =
∑n

i=1 ai
∂

∂xi

(∑n
j=1 bj

∂f
∂xj

)
=

∑n
i=1 ai

[∑n
j=1

(
bj

∂2f
∂xi∂xj

+ ∂bj

∂xi

∂f
∂xj

)]
=

∑n
i=1

∑n
j=1

(
ai

∂2f
∂xi∂xj

bj + aj
∂bi

∂xj

∂f
∂xi

)
where we assume that f is sufficiently smooth to guarantee that its mixed partial derivatives are the same.
The difference of the above quantities is

W (V f)− V (Wf) =
n∑

i=1

 n∑
j=1

∂ai

∂xj
bj −

∂bi

∂xj
aj

 ∂f

∂xi
=:

n∑
i=1

ci(x)
∂f

∂xi
.

This motivates the Lie product of two vector fields. Define the vector field

[V,W ] =
n∑

i=1

ci(x)
∂

∂xi
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where ci(x) was defined earlier. In terms of matrix operations, if DV and DW are the first derivative
matrices of the coefficient functions of V and W , then [V,W ] = (DV )W − (DW )V . Thus, the difference of
the mixed directional derivatives is

W (V f)− V (Wf) = [V,W ]f.

NOTE: Given two directions V (x) and W (x), the order of directional differentiation at x is irrelevant if and
only if [V (x),W (x)]f(x) = 0.

Given a collection of vector fields Vk : IRn → IRn for k = 1, . . . ,m with m ≤ n, the Lie algebra of the vector
fields is obtained by constructing the smallest vector space which contains all sums, scalar multiples, and
Lie products of the Vk. We will call this vector space L(V1, . . . , Vm).

3.3 Independent Invariants

Now we get back to the question of how many functionally independent invariants are there for a collection of
vector fields. First note that if f is an invariant, then by definition Vkf = 0 for all 1 ≤ k ≤ m. Intuitively if
the Vk are linearly independent, then the actions of Vk should require you to move around on a k-dimensional
surface. That gives you n − k degrees of freedom in which to “stack up” the level surfaces for invariants.
So you might expect to find n− k functionally independent invariants, one corresponding to each degree of
freedom.

However, the situation is slightly more complicated. Since Vkf = 0 for all k, it is easily seen that [Vi, Vj ]f =
(DVi)Vjf − (DVj)Vif = 0, so f is also an invariant for the vector field [Vi, Vj ]. It is possible that the Lie
product of two linearly independent vector fields is another vector field independent of the first two. In this
case, you lose a degree of freedom for the invariants.

Example. Let V = (x1, x2, x3) and W = (x1, x2, 0). The Lie product is

[V,W ] = (DV )W − (DW )V =


1 0 0

0 1 0

0 0 1




x1

x2

0

−


1 0 0

0 1 0

0 0 0




x1

x2

x3

 =


0

0

−x3


The vectors V , W , and [V,W ] are linearly independent.

The last argument shows that the number of degrees of freedom is not n − k, but rather it should be
n− dim(L) where dim(L) is the dimension of the Lie algebra.

Example. Consider the example where x, u ∈ IR, u = u(x), and

V1 = −u
∂

∂x
+ x

∂

∂u
, V2 = 1

∂

∂x
, V3 = 1

∂

∂u
.

These correspond to rotation in (x, u), translation in x, and translation in u. We want to find some low-order
invariants of all three.

(1) Zero-order invariants: We want functions f such that Vkf = 0 for k = 1, 2, 3. The Lie algebra generated
by the vector fields is all of IR2, so n− dim(L) = 2− 2 = 0, so there are no zero-order invariants.

7



(2) First-order invariants: We want functions f such that pr (1)Vkf = 0 for k = 1, 2, 3. The prolongations
are

W1 = pr (1)V1 = −u
∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
, W2 = pr (1)V2 = V2, W3 = pr (1)V3 = V3.

Some computations will show you that

[W1,W2] = W3, [W1,W2] = −W1, [W2,W3] = 0.

So we get nothing new from the pairwise products. Since the Wk act on IR3 and are linearly independent,
n− dim(L) = 3− 3 = 0, so there are no first-order invariants.

(3) Second-order invariants: We want functions f such that pr (2)Vkf = 0 for k = 1, 2, 3. The prolongations
are

W1 = pr (2)V1 = −u
∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
+ (3uxuxx)

∂

∂uxx
, W2 = pr (2)V2 = V2, W3 = pr (2)V3 = V3.

Some computations will show you that

[W1,W2] = W3, [W1,W2] = −W1, [W2,W3] = 0.

So we get nothing new from the pairwise products. Since the Wk act on IR4 and are linearly independent,
n− dim(L) = 4− 3 = 0, so there is exactly one functionally independent second-order invariant.

To construct an invariant f = f(x, u, ux, uxx), we need Wkf = 0 for k = 1, 2, 3. Note that W2f = 0 implies
fx = 0 and W3f = 0 implies fu = 0. Thus, f = f(ux, uxx) only. To avoid confusion we will rename ux, uxx

to v and w. Then f = f(v, w) and W3f = 0 implies 0 = (1 + v2)fv + (3vw)fw = (1 + v2, 3vw) • ∇f . The
level curves of f must be solutions to the system of equations

dv
dt = 1 + v2

dw
dt = 3vw

Taking the ratio, we get dv/dw = (1 + v2)/(3vw). Separating variables leads to

3v

1 + v2
dv =

1
w

dw

and integrating gives us
3
2

ln(1 + v2) = ln(w) + ln(c)

for positive constant c. We can solve for c and replace v and w to get

f(ux, uxx) =
uxx

(1 + u2
x)3/2

= c

so f is the invariant. Notice that this is the curvature of the graph of u(x). If you translate or rotate the
graph of u, the curvature is preserved.
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Higher-order invariants can be constructed similarly. For a function u(x, y), the most important vector fields
on IR3 for us to consider are

1 ∂
∂x translation in x

1 ∂
∂y translation in y

−y ∂
∂x + x ∂

∂y rotation in (x, y)

x ∂
∂x + y ∂

∂y uniform magnification in (x, y)

(a + bu) ∂
∂u affine transformation of u

The corresponding global actions obtained by solving the system d(x̄, ȳ, ū)/dt = V (x̄, ȳ, ū) with initial data
(x̄(0), ȳ(0), ū(0)) = (x, y, u) are respectively

(x̄, ȳ, ū) = (x + t, y, u)

(x̄, ȳ, ū) = (x, y + t, u)

(x̄, ȳ, ū) = (x cos(t)− y sin(t), x sin(t) + y cos(t), u)

(x̄, ȳ, ū) = (x exp(t), y exp(t), u)

(x̄, ȳ, ū) = (x, y, u exp(bt) + at)

The ideas of invariants also apply when you have more than one dependent variable.
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