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Let Vi, 0 ≤ i ≤ 3 be the vertices of the tetrahedron. The linear component is P + tD where D is a unit
length vector and t ∈ IR (line), t ≥ 0 (ray), or t ∈ [0, T ] (segment). The construction can be modified slightly
to handle D that is not unit length. The tetrahedron can be parameterized by V0 + s1E1 + s2E2 + s3E3

where Ei = Vi −V0, si ≥ 0, and s1 + s2 + s3 ≤ 1.

1 Line and Tetrahedron

1.1 Distance

Translate the tetrahedron and line by subtracting P. The tetrahedron vertices are now Ui = Vi −P for all
i. The line becomes tD. Project onto the plane containing the origin 0 and having normal D. The projected
line is the single point 0. The projected tetrahedron vertices are Wi = (I−DDT)Ui for all i. The boundary
of the projected solid tetrahedron is a convex polygon, either a triangle or a quadrilateral. Figure 1.1 shows
the line, tetrahedron, and projections.

Figure 1.1 Line, tetrahedron, and projections onto a plane perpendicular to the line.

If the convex polygon contains 0, the distance from the line to the tetrahedron is zero. Otherwise, the
distance from the line to the tetrahedron is the distance from 0 to the convex polygon. The projected values
are in a plane in 3D and can be projected into 2D with the standard technique of eliminating the coordinate
corresponding to the maximum absolute component of D. The distance between a point and convex polygon
can be computed in 2D. This value must be adjusted to account for the 3D-to-2D projection. For example,
if D = (d0, d1, d2) with |d2| = maxi{|di|} and r is the computed 2D distance, then the 3D distance is r/d2.
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1.2 Closest Points

The set of tetrahedron points closest to the line in many cases consists of a single point. In other cases,
the set can consist of a line segment of points. For example, consider the tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The line (1/4, 1/4, 0) + t(0, 0, 1) intersects the tetrahedron for t ∈ [0, 1/2], so
the corresponding points are zero units of distance from the tetrahedron. The line (−1,−1, 1/2)+ t(0, 0, 1) is√

2 units of distance from the tetrahedron. The closest points on the line are generated by t ∈ [0, 1/2] and the
closest points on the tetrahedron are (0, 0, t) for the same interval of t values. The line (1/2,−1/2, 0)+t(0, 0, 1)
is 1/2 units of distance from the tetrahedron. The closest points on the line are generated by t ∈ [0, 1/2]
and the closest points on the tetrahedron are (1/2, 0, t) for the same interval of t values.

Case 1. Let 0 be strictly inside the convex polygon. In this case, the line intersects the tetrahedron in
an interval of points. Let E = [E1 E2 E3] be the matrix whose columns are the specified edge vectors of
the tetrahedron. Let s be the 3 × 1 vector whose components are the si parameters. The line segment of
intersection is tD + P = Es + V0 for t ∈ [tmin, tmax]. The problem now is to compute the t-interval. The
edge vectors of the tetrahedron are linearly independent, so E is invertible. Multiplying the vector equation
by the inverse and solving for the tetrahedron parameters yields

s = E−1 (tD + P−V0) = At + B

where A = (a1, a2, a3) = E−1D and B = (b1, b2, b3) = E−1(P −V0). The parameters s must satisfy the
inequality constraints for the tetrahedron. The parameter t is therefore constrained by the four inequalities:

a1t + b1 ≥ 0, a2t + b2 ≥ 0, a3t + b3 ≥ 0, (a1 + a2 + a3)t + (b1 + b2 + b3) ≤ 1.

Each of these inequalities defines a semiinfinite interval of the form [t̄,∞) or (−∞, t̄]. In this particular case,
we know the intersection of the four intervals must be nonempty and of the form [tmin, tmax].

The division required to compute E−1 can be avoided. Let us assume that the tetrahedron is oriented so
that det(E) > 0. Multiply by the adjoint Eadj to obtain

det(E)s = Eadj (tD + P−V0) = αt + β.

The four t-inequalities are of the same form as earlier, but where ai refers to the components of α, bi refers
to the components of β, and the last inequality becomes a comparison to det(E) instead of to 1.

Case 2. Let 0 be on the convex polygon boundary or outside the polygon. Let C be the closest polygon
point (in 3D) to 0. The line tD + C intersects the tetrahedron with Ui vertices either in a single point or
in an interval of points. The method in case 1 may be used again, but now you need to be careful with the
interval construction when using floating point arithmetic. If the intersection is a single point, theoretically
tmin = tmax, but numerically you might wind up with an empty intersection. It is not difficult to trap this
and handle appropriately. Observe that cases 1 and 2 are handled by the same code since in case 1 you can
choose C = 0.

2 Ray and Tetrahedron

Use the line-tetrahedron algorithm for computing the closest line points with parameters I = [tmin, tmax]
(with possibly tmin = tmax). Define J = I ∩ [0,∞). If J 6= ∅, the ray-tetrahedron distance is the same as the
line-tetrahedron distance. The closest ray points are determined by J . If J = ∅, the ray origin P is closest
to the tetrahedron.
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3 Segment and Tetrahedron

Use the line-tetrahedron algorithm for computing the closest line points with parameters [tmin, tmax] (with
possibly tmin = tmax). Define J = I ∩ [0, T ]. If J 6= ∅, the segment-tetrahedron distance is the same as the
line-tetrahedron distance. The closest segment points are determined by J . If J = ∅, the closest segment
point is P when tmax < 0 or P + TD when tmin > T .
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