
Fast Inverse Square Root (Revisited)

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2010. All Rights Reserved.

Created: January 26, 2002
Last Modified: July 20, 2010

Contents

1 Introduction 2

2 The Original Version (January 26, 2002) 2

3 The Modified Version (July 16, 2010) 4

3.1 A Minimax Approach . 4

3.2 Analysis of the Algorithm . 5

3.2.1 Exponent e is Odd . 6

3.2.2 Exponent e is Even . 7

3.2.3 Summary of Cases . 8

3.3 Other Choices for Magic Numbers . 12

3.4 About the Original Magic Number . 16

4 Accurate Inverse Square Root 17

5 Other Algorithms 18

1

http://www.geometrictools.com/

1 Introduction

This document is about a fast approximation for computing the inverse square root of a 32-bit floating-point
number. The original version of this document is provided here just for the historical records. I had not
spent much time analyzing the algorithm, but provided enough of a hint as to how the algorithm depended
on the floating-point encoding of the input number. The modified version is in the second section, and is
draft material for a book I am writing entitled Numerical Computing for Games and Science. The book has
a lot of details and algorithms regarding IEEE 754-2008 floating-point number systems.

2 The Original Version (January 26, 2002)

The following code is an edited version of code posted to comp.graphics.algorithms on January 9, 2002.
The subject that started the thread was Fast 2D distance approximation of which the posted code was one
of the follow-ups. The posted code is purported to be from Quake3 and provides an approximation to the
inverse square root of a number, 1/

√
x.

float InvSqrt (float x)

{

float xhalf = 0.5f*x;

int i = *(int*)&x;

i = 0x5f3759df - (i >> 1); // This line hides a LOT of math!

x = *(float*)&i;

x = x*(1.5f - xhalf*x*x); // repeat this statement for a better approximation

return x;

}

So what does this code really do and what is that magic number 0x5f3759df?

The idea is to specify an x and compute y so that y = 1/
√
x. Define F (y) = 1/y2 − x. The y you want is

the positive root of F (y) = 0. You can solve this with Newton’s method. Choose an initial guess y0. The
iteration scheme is

yn+1 = yn − F (yn)/F ′(yn), n ≥ 0

where F ′(y) = −2/y3 is the derivative of F (y). The equation reduces to

yn+1 =
yn(3− xy2

n)

2
.

In the limit as you increase n, the yn values converge to the true value of 1/
√
x. If y0 is a good initial guess,

then 1 or 2 iterations should give you a decent approximation. The source code had the second iteration
commented out, so I suspect one iteration was good enough for Quake3’s purposes.

Now the problem is selecting a good initial guess. This is where the line of code involving x, manipulated
as an integer via variable i, is clever. The IEEE 32-bit float has a mantissa M filling bit positions 0 through
22, an 8-bit biased exponent E filling bits 23 through 30, and a sign bit in position 31. The function expects
nonnegative input, so the sign bit is 0 for the input x. The bias is 127. The true exponent is e = E − 127.
The corresponding number in readable form is x = 1.M ∗ 2e. You want y0 to be a good approximation to
1/
√
x = (1/

√
1.M) ∗ 2−e/2.

2

The biased exponent for −e/2 is −e/2 + 127. In terms of integer arithmetic, this is 0xbe - (E >> 1) where
E is the biased exponent for x. Now look at the magic number 0x5f3759df that shows up in the code. The
sign bit is 0. The next 8 bits form the hex number 0xbe. No coincidence! The statement

i = 0x5f3759df - (i >> 1);

implicitly computes the biased exponent −e/2 + 127.

Now you need an approximation for 1/
√

1.M = 1/
√

1 +M where 0 ≤ M < 1. Define G(M) = 1/
√

1 +M .
You can approximate this by a linear function T (M) = 1− (M/2) using a Taylor series expansion at M = 0.
The approximation is good for M near zero, but not good at M = 1. In fact, as M increases the difference
between G(M) and T (M) increases (G is always larger). To try to balance the differences, you want a better
fitting line, one that cuts through the graph of G(M). The one corresponding to the posted code is

L(M) = 0.966215−M/4

Figure 2.1 shows the graph of G(M), the linear function T (M), and the linear function L(M).

Figure 2.1

For 0 ≤M < 1, L(M) produces numbers in [0.715215, 0.966215] which are not normalized. Instead write

L(M) = (1.93243−M/2)/2.

The values 1.93243 −M/2 are 1+something, so are normalized. The actual floating point representation
used for 1.93243 is 0x3ff759df. When you subtract 1 from the exponent to account for the division by 2 in
L(M), you get 0x5f3759df, the magic number in the code. Therefore, the statement

i = 0x5f3759df - (i >> 1);

also implicitly computes the mantissa for the initial guess y0.

I do not know why 0.966215−M/4 was chosen in the first place. I thought it might be based on requiring
the slope to be −1/4 and choosing a constant C using a least squares integral approach that minimizes the
integral of squared errors between C −M/4 and 1/

√
1 +M where the integration is on 0 ≤ M ≤ 1, but a

quick check showed this is not the case.

3

3 The Modified Version (July 16, 2010)

In February 2003, Chris Lomont provided a document that was motivated by my January 2002 draft. The
essence of the problem is to look at the floating-point representation for the input, but my hasty analysis of
the trailing significand of the input was incomplete. I mentioned the linear approximation used for generating
initial guesses for Newton’s method, but as it turns out, the analysis of the trailing significand leads to a
polyline approximation with three line segments.

3.1 A Minimax Approach

Lomont has a lengthy analysis of the problem as an attempt to show how the magic number might be chosen,
the hope to justify the choice 0x5f3759df in the posted source code. The analysis shows how to choose the
magic number to minimize the maximum relative error over all relevant floating-point numbers. Although
not explicitly mentioned, it is sufficient to analyze the problem for all floating-point numbers in the interval
[1/2, 2). There are n = 224 numbers in the interval, call them xi for 1 ≤ i ≤ n. If c is the magic number,
the initial guess for Newton’s method are generated by

float Initial (float x, float c)

{

float xhalf = 0.5f*x;

int i = *(int*)&x;

i = c - (i >> 1);

x = *(float*)&i;

return x;

}

The problem is to choose c such that

E(c) = max
i

∣∣∣∣∣
1
xi
− Initial(xi, c)

1
xi

∣∣∣∣∣ = max
i
|1− x Initial(xi, c)|

is minimized. This is referred to as a minimax problem, where the minimum is

ε = min
c
E(c) = min

c
max

i
|1− x Initial(xi, c)|

The original magic number is corig = 0x5f3759df. The magic number from the minimax analysis is cminmax =
0x5f37642f.

Lomont reports his numerical tests to verify that indeed, cminmax leads to a smaller maximum relative error
than does corig. However, he observes that after the Newton iterate, the maximum relative error for corig

is smaller than that for cminmax. He says: “Yet surprisingly, after one Newton iteration, it has a higher
maximal relative error.”, “The reason the better approximation turned out worse must be in the Newton
iteration.”, and “Out of curiosity, I searched numerically for a better constant.” The result is not surprising.
The goal is to choose the magic number so that the accuracy of the output after the Newton iteration is best
according to some optimization criterion. Indeed, the “curious search” is where the analysis should have
been in the first place—a minimax analysis after the Newton iterate is computed. This analysis leads to a
magic number clomont = 0x5f375a86 with minimax error (approximately) 0.00175122. This number may be
obtained without understanding the line of code containing the magic number. For example,

4

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

// First pass: cMin = 0x5f330000, cMax = 0x5f380000, cDelta = 0x100
// Second pass: Select cMin and cMax to bound the minimum observed
// from the first pass. cMin = 0x5f375a00, cMax = 0x5f375c00, cDelta = 1

FILE* output = fopen("results.txt", "wt");
uint32_t cMin = <value>, cMax = <value>, cDelta = <value>;
for (uint32_t c = cMin; c < cMax; c += cDelta)
{

double maxError = 0.0;
for (uint32_t i = 0; i < (1 << 24); ++i)
{

union { uint32_t encoding; float number; } u;
u.encoding = 0x3F000000u + i; // u.number in [0.5,2)
double x = u.number;
double xhalf = 0.5*x;
double z = sqrt(x);
u.encoding = c - (u.encoding >> 1);
double y = x*(1.5 - xhalf*x*x);

double error = fabs(1.0 - y*z);
if (error > maxError)
{

maxError = error;
}

}

uint64_t uMaxError = *(uint64_t*)&maxError;
fprintf(output, "c = 0x%.8x , error = 0x%.16I64x\n", c, uMaxError);

}
fclose(output);

Browsing the results after the second pass, you will find the value of c that minimizes the maximum. I
actually found 0x5f375a5 to be the minimum, but a difference of one bit can be explained by round-off
errors if the experiment was coded in a mathematically equivalent manner but different from a floating-point
perspective (different from for expressions, use of 32-bit or 64-bit in different ways, and so on).

3.2 Analysis of the Algorithm

Let x = 1.t ? 2e be the positive input to the inverse square root function. The integer t is the trailing
significand and the notation 1.t represents a number in the interval [1, 2). The bits of t are the bits of the
fractional part of the number. For a 32-bit floating-point number, t has 23 bits,

t = t22t21 · · · t1t0

and the significand 1.t is

1.t = 1 +
t22

21
+
t21

22
+ · · · t1

222
+

t0
223

The unbiased exponent e is an integer. Floating-point numbers store a biased exponent, which is e+ 127 for
32-bit numbers.

The inverse square root of x is

1√
x

=
1√
1.t

? 2−e/2 =


√

2√
1.t
? 2−e/2−1/2, e is odd

2√
1.t
? 2−e/2, e is even

The right-hand equality splits the representation based on the parity of the exponent e. The reason is that
the exponent of the result must be an integer value and the significand must be a number in [1, 2). Observe

5

that
√

2/
√

1.t ∈ [1,
√

2) ⊂ [1, 2) and 2/
√

1.t ∈ [
√

2, 2) ⊂ [1, 2). At this early stage of the analysis, it suffices
to choose approximations 1.α(t) to

√
2/
√

1.t and 1.β(t) to 2/
√

1.t, where α(t) and β(t) are nonnegative
integer-valued functions of t. We may do so independently of the exponent e, and we may even do so
independent of floating-point encodings. There are a lot of possibilities. However, the posted FastInvSqrt

is an algorithm that implicitly imposes the approximations to the significands, and they are based on the
floating-point encoding of x.

Let us look at computing the biased exponent for the output. When e is odd, say, e = 2p + 1, then the
biased exponent ē = e+ 127 is even. The floor of ē is bē/2c = p+ 64. Moreover,

190− (ē >> 1) = 190− bē/2c = −p− 1 + 127 = −e/2− 1/2 + 127

Therefore, 190− (ē >> 1) is the biased exponent for 1/
√
x when ē is the even biased exponent for x.

When e is even, say, e = 2p, then the biased exponent ē = e+ 127 is odd. The floor of ē is bē/2c = p+ 63.
Moreover,

189− (ē >> 1) = 189− bē/2c = −p− 1 + 127 = −e/2 + 127

Therefore, 189− (ē >> 1) is the biased exponent for 1/
√
x when ē is the odd biased exponent for x.

Now consider the binary encoding of the magic number in the posted code,

c = 0x5f3759df = 0 [10111110] [r22 r21 ... r1 r0] = 0 [10111110] [01101110101100111011111]

where the bit groups make clear the biased exponent bits and the trailing significand bits. Observe that the
biased exponent is 190. The binary encoding for x is i and has representation

i = 0 [e7 e6 e5 e4 e3 e2 e1 e0] [t22 t21 ... t1 t0]
(i >> 1) = 0 [0 e7 e6 e5 e4 e3 e2 e1] [e0 t22 ... t1]

The difference c − (i >> 1) involves a subtraction of the trailing significands and a subtraction of the
exponents. The latter subtraction is 190 − (ē >> 1). There is a complication, however. The subtraction
of the trailing significands might require a carry out of the exponent bits, making the exponent subtraction
189− (ē >> 1). We have seen these expressions previously, when representing 1/

√
x in normal form. A more

detailed analysis is required, which involves four cases depending on the parity of ē and whether or not a
carry out of the exponent is required in the subtraction. The analysis will be general for r = r22 · · · r0.

3.2.1 Exponent e is Odd

Let e be odd, so ē is even. If i is the binary encoding for x, then i >> 1 has trailing significand 0(t >> 1),
which represents the integer t = t22 · · · t1 prepended with a zero. The subtraction c − (i >> 1) is written
formally as

0 1 0 1 1 1 1 1 0 r22 r21 · · · r0

− 0 0 e7 e6 e5 e4 e3 e2 e1 0 t22 · · · t1

0 p7 p6 p5 p4 p3 p2 p1 p0 d22 d21 · · · d0

and 1.d is the significand of the initial guess used for Newton’s method. If r22 were chosen to be 1, then there
is no carry out from the exponent bits on a subtraction. However, the original magic number has r22 = 0.

6

Because the bits of t vary over all possible choices of 0 and 1, there must be values of t that lead to a carry
out. Specifically, r ≥ 0(t >> 1), then there is no carry out on subtraction and

1.d = 1.r − 0.0(t >> 1)

The initial approximation is therefore

1√
x

.
= (1.r − 0.0(t >> 1)) ? 2190−(ē>>1)

If r < 0(t >> 1), then there is a carry out on subtraction. It is necessary that r22 = 0 and d22 = 1 in this
case. The result is

1.d = 2.r − 0.0(t >> 1)

where the 2 in 2.r is the consequence of the carry out. The initial approximation is therefore

1√
x

.
= (2.r − 0.0(t >> 1)) ? 2189−(ē>>1) =

(
2.r − 0.0(t >> 1)

2

)
? 2190−(ē>>1)

where the 189 occurs because of the carry out but the right-hand side adjusts the term to 190 so that the
significand is in [1, 2).

3.2.2 Exponent e is Even

Let e be even, so ē is odd. If i is the binary encoding for x, then i >> 1 has trailing significand 1(t >> 1),
which represents the integer t22 · · · t1 prepended with a one. The subtraction c− (i >> 1) is written formally
as

0 1 0 1 1 1 1 1 0 r22 r21 · · · r0

− 0 0 e7 e6 e5 e4 e3 e2 e1 1 t22 · · · t1

0 p7 p6 p5 p4 p3 p2 p1 p0 d22 d21 · · · d0

and 1.d is the significand of the initial guess used for Newton’s method. Because the bits of t vary over
all possible choices of 0 and 1, there must be values of t that lead to a carry out. Observe that for the
original magic number, r22 = 0 in which case there must always be a carry out. For the sake of completeness,
however, here are the two possibilities when r22 is chosen to be 1. If r ≥ 1(t >> 1), then there is no carry
out on subtraction and

1.d = 1.r − 0.1(t >> 1)

The initial approximation is therefore

1√
x

.
= (1.r − 0.1(t >> 1)) ? 2190−(ē>>1)

If r < 1(t >> 1), then there is a carry out on subtraction. The result is

1.d = 2.r − 0.1(t >> 1)

where the 2 in 2.r is the consequence of the carry out. The initial approximation is therefore

1√
x

.
= (2.r − 0.1(t >> 1)) ? 2189−(ē>>1) =

(
2.r − 0.1(t >> 1)

2

)
? 2190−(ē>>1)

where the 189 occurs because of the carry out but the right-hand side adjusts the term to 190 so that the
significand is in [1, 2).

7

3.2.3 Summary of Cases

The initial approximation for the inverse square root of x = 1.t ? 2e for a magic number c corresponding to
a biased exponent 190 and a trailing significand r is summarized next, where ē = e+ 127,

1√
x

.
=



(1.r − 0.0(t >> 1)) ? 2190−(ē>>1); ē even, r ≥ 0.0(t >> 1)(
2.r−0.0(t>>1)

2

)
? 2190−(ē>>1); ē even, r < 0.0(t >> 1)

(1.r − 0.1(t >> 1)) ? 2190−(ē>>1); ē odd, r ≥ 0.1(t >> 1)(
2.r−0.1(t>>1)

2

)
? 2190−(ē>>1); ē odd, r < 0.1(t >> 1)

(1)

Both constants corig and cminmax have bit r22 set to zero, so the case for even ē and r ≥ 0.1(t >> 1) cannot
occur. The initial approximation is therefore a polyline with three segments. In the following images, the
horizontal axis represents x ∈ [1/2, 2). The right-most vertical gray line is at x = 1/2. The left-most vertical
gray line is where r = 0.0(t >> 1). The vertical axis represents the interval [0.70, 1.44]. The blue curve is
1/
√
x for x ∈ [1/2, 1) and the cyan curve is 1/

√
x for x ∈ [1, 2). The red segment is the initial guess for ē

even and r ≥ 0.0(t >> 1). The orange segment is the initial guess for ē even and r < 0.0(t >> 1). The
magenta segment is the initial guess for ē odd and r < 0.1(t >> 1).

Figure 3.1 shows the initial approximation for corig.

8

Figure 3.1 Image corresponding to the initial approximation when the magic number is corig.

Figure 3.2 shows the approximation for corig after the Newton iterate.

9

Figure 3.2 Image corresponding to the output after the Newton iterate when the magic number is
corig.

Figure 3.3 shows the initial approximation for cminmax.

10

Figure 3.3 Image corresponding to the initial approximation when the magic number is cminmax.

Figure 3.4 shows the approximation for cminmax after the Newton iterate.

11

Figure 3.4 Image corresponding to the output after the Newton iterate when the magic number is
cminmax.

It is difficult visually to distinguish between the two images when the Newton iterate is applied.

3.3 Other Choices for Magic Numbers

The following table shows choices of magic numbers that minimize various norms for the data.

12

type minimize magic number

original Who knows. 0x5f3759df

L1 abs
∑

i |1/
√
xi − yi| 0x5f34ca30

L2 abs
∑

i |1/
√
xi − yi|2 0x5f360131

L3 abs
∑

i |1/
√
xi − yi|3 0x5f366be2

L∞ abs maxi |1/
√
xi − yi| 0x5f370c57

L1 rel
∑

i |1−
√
xiyi| 0x5f34bf4e

L2 rel
∑

i |1−
√
xiyi|2 0x5f360739

L3 rel
∑

i |1−
√
xiyi|3 0x5f3680e5

L∞ rel maxi |1−
√
xiyi| 0x5f375a85

The last table entry is the choice suggested by Lomont because it leads to the minimum over all magic
numbers of the maximum relative error. If you minimize the L1 norm for the relative errors, the maximum
relative error is not quite twice that for the L∞ norm for the relative errors. However, if you compute both
approximations over all floating-point numbers in [1/2, 2) and count how many times the 0x5f34bf4e-based
approximation has a smaller relative error than the 0x5f375a85-based approximation, you will find that the
former wins 11859800 times and the latter wins 4917417 times (for a total of 224 = 166777215 values). The
0x5f360739-based approximation wins 12778028 times and loses 4499189 times, which amounts to winning
about 3/4 of the time. Although the minimax relative error is attractive, having a more accurate answer 3/4
of the time might cause you to choose a magic number different from 0x5f375a85. If you use the original
magic number 0x5f3759df, you win 12685492 times and lose only 4091725 times.

Comparing Figures 3.2 and 3.4, it is difficult to see much difference. However, now look at Figure 3.5, which
shows the initial approximation using 0x5f34bf4e,

13

Figure 3.5 Image corresponding to the initial approximation when the magic number is
0x5f34bf4e.

Comparing to Figures 3.1 and 3.4, you see that the approximation is better near the endpoints x = 0.5 and
x = 2 but worse near the segment between the gray vertical lines. Figure 3.6 shows the approximation for
0x5f34bf4e after the Newton iterate.

14

Figure 3.6 Image corresponding to the output after the Newton iterate when the magic number is
0x5f34bf4e.

Comparing to Figures 3.2 and 3.4, a quick glance might convince you there is no significant difference.
However, based on the order of the pixel draw, notice that the images for the original and minimax magic
numbers show many more red and magenta pixels than for the L1 image when outside the strip bounded by
the gray vertical lines. When inside the vertical lines, the L1 image shows a somewhat larger error than for
the other images. The L1-based approximation wins more often, which tends to happen a lot outside the
vertical strip.

One minor variation that might help improve the approximation is to add a small value to the Newton
iterate,

y = y(3/2− x ∗ y ∗ y/2) + ε

15

I have not experimented much, but did notice that for various choices of magic number, you can reduce the
maximum relative error with a judicious choice of ε.

3.4 About the Original Magic Number

I tried many experiments to attempt to construct the original magic number in some formal mathematical
manner. Of course, you can always choose a large enough p so that the minimum of the Lp norm occurs at
the original number, but I doubt that is how the number was chosen.

The closest I came was with the following code.

FILE* output = fopen("results.txt", "wt");
for (uint32_t magic = 0x5f3759d0u; magic < 0x5f3759f0u; magic += 1u)
{

double maxError = 0.0;
const int jmax = 128;
for (uint32_t j = 0; j <= jmax; ++j)
{

float x = 0.5f + 1.5f*j/(float)jmax;
double z = sqrt((double)x);
float xhalf = 0.5f*x;
uint32_t bits = *(uint32_t*)&x;
bits = magic - (bits >> 1);
x = *(float*)&bits;
double y = x*(1.5f - xhalf*x*x);
double error = fabs(1.0 - y*z);
if (error > maxError)
{

maxError = error;
}

}

uint64_t uMaxError = *(uint64_t*)&maxError;
fprintf(output, "magic = 0x%.8x , error = 0x%.16I64x , %10.8lf\n", magic, uMaxError, maxError);

}
fclose(output);

The minimum of the maximum errors occurs for magic number 0x5f3759d4, which is quite close to 0x5f3759df.
If you compute everything using float, the minimum of the maximum errors has floating-point encoding
0x3ae524ea. This number is attained by 0x5f3759d8 through 0x5f3759db. The next maximum error larger
than the minimum is 0x3ae5250b and is attained by 0x5f3759c4 through 0x5f3759d7. The next error
larger than this one is 0x3ae5281e and is attained by 0x5f3759dc through 0x5f3759e5. As you can see, the
maximum-error function is quite flat and sensitive to whether you use 32-bit or 64-bit arithmetic. Moreover,
a small change in jmax can cause the minimizing magic number to vary quite a bit. If you change jmax to 127,
the minimum of the maximum errors is 0x3ae43e1c and is attained by 0x5f3756de through 0x5f3756e3. It
is quite possible that the inventor of the original magic number solved the minimax problem for only a small
subset of numbers (such as 128) on the interval [1/2, 2). Slight variations in the terms of the expressions, use
of 32-bit or 64-bit values, and perhaps non-IEEE-compliant floating-point hardware might have contributed
to the final choice of magic number (that is not possible to reproduce easily without knowledge of exactly
the minimization performed). If a minimax approach is used, it should be computed over all floating-point
numbers in [1/2, 2).

16

4 Accurate Inverse Square Root

The fast approximation to the inverse square root may be used as the basis for computing more accurate
values for the inverse square root function. The pseudocode is

typedef union { uint32_t encoding; float number; } binary32;
const uint32_t magic = <some magic number>;
binary32 x, y;
float xHalf, yPrev;
int numIterates;

x.number = <some number in [1/2,2)>;
xHalf = 0.5f*x.number;
y.encoding = magic - (x.encoding >> 1);
yPrev = 0.0f;
numIterates = 0;
while (y.number != yPrev)
{

yPrev = y.number;
y.number *= 1.5f - xHalf*y.number*y.number;
++numIterates;

}

The following table shows the iterations for several magic numbers. The iteration counts per line are for
all the floating-point numbers in [1/2, 2). The range 0x5f300000 through 0x5f3fffff was exhaustively
searched (the program ran for a few days using all four cores on a quad core machine).

type magic number 1 2 3 4 5 6 7 8 9 total

0x5f100000 16652454 24762 84010842

0x5f1fffff 1838715 14938426 75 82047440

0x5f200000 1838727 14938414 75 82047428

0x5f2fffff 3533067 13145836 98313 63674110

0x5f300000 3533129 13145775 98312 63674047

min average 0x5f32b693 43 148291 9498999 7111402 18481 57331635

L1 rel 0x5f34bf4e 23 90188 4848600 11834232 4173 62083992

L1 abs 0x5f34ca30 22 89631 4774551 11908992 4020 62159005

L2 abs 0x5f360131 10 38130 3129923 13607506 1647 63904298

L2 rel 0x5f360739 10 38038 3103521 13634026 1621 63930858

L3 abs 0x5f366be2 10 36545 2690612 14048669 1380 64346512

L3 rel 0x5f3680e5 9 36306 2613326 14126227 1348 64424247

L∞ abs 0x5f370c57 9 34431 2218971 14522371 1434 64822438

original 0x5f3759df 8 33540 2123222 14618634 1812 64920350

L∞ rel 0x5f375a85 9 33574 2122702 14619115 1816 64920803

0x5f375a86 10 33568 2122712 14619110 1816 64920802

0x5f3fffff 7 11703 688968 12826787 3249751 69646220

0x5f400000 1 11697 688972 12826767 3249779 69646274

0x5f4fffff 16696050 81166 83967246

0x5f500000 16696050 81166 83967246

0x5f5fffff 708710 16068094 412 99954998

0x5f600000 708696 16068108 412 99955012

0x5f6fffff 7277776 9499439 1 110162737

0x5f700000 7277750 9499465 1 110162763

0x5f7fffff 5947029 10829878 309 128271008

The table shows that magic number 0x5f32b693 produces the minimum average iterations, 57331635/16777216
.
=

3.42 iterations per floating-point number.

17

5 Other Algorithms

Just as we did for square roots, we may introduce a second sequence into the Newton’s method, yi+1 =
yi(1.5− 0.5xy2

i). Two possibilities are discussed.

Firstly, let zi = 1.5− 0.5xy2
i , in which case yi+1 = yizi. Observe that

zi+1 − zi = −0.5x(y2
i+1 − y2

i) = −0.5xy2
i (zi − 1)(zi + 1) = (zi − 1.5)(z2

i − 1)

Choosing an initial guess y0 and z0 = 1.5− 0.5xy2
0 , we then iterate the equations

yi+1 = yizi, zi+1 = zi + (zi − 1.5)(z2
i − 1)

It is also possible to set wi = zi − 1, which implies wi+1 = w2
i (wi + 1.5). In either case, the number

of arithmetic operations is larger than that for the y-only equation, so this is most likely not a useful
alternative in a floating-point system because of the additional costs per floating-point number.

Secondly, let zi = 0.5xyi, in which case yi+1 = yi(1.5− yizi). Observe that

zi+1 − zi = 0.5x(yi+1 − yi) = 0.5xyi(0.5− yizi) = zi(0.5− yizi)

Choosing an initial guess y0 and z0 = 0.5xy2
0 , we then iterate the equations

yi+1 = yi(1.5− yizi), zi+1 = zi(1.5− yizi)

The expression (1.5−yizi) need only be evaluated once per iteration. This requires two arithmetic operations.
The computation of yi+1 and zi+1 requires two more arithmetic operations, a total of four operations that
is the same as the y-only method. Unfortunately, numerical experiments showed that at least one more
iteration was required for convergence compared to the y-only method. Floating-point round-off errors
adversely affected this implementation, even though the algorithm is mathematically equivalent to the y-
only method.

18

	1 Introduction
	2 The Original Version (January 26, 2002)
	3 The Modified Version (July 16, 2010)
	3.1 A Minimax Approach
	3.2 Analysis of the Algorithm
	3.2.1 Exponent e is Odd
	3.2.2 Exponent e is Even
	3.2.3 Summary of Cases

	3.3 Other Choices for Magic Numbers
	3.4 About the Original Magic Number

	4 Accurate Inverse Square Root
	5 Other Algorithms

