
Geodesics on Triangle Meshes

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: September 16, 2008

Contents

1 Introduction 3

2 Two Triangles 3

2.1 Setting Up the Minimization Problem . 4

2.2 Analysis of Convexity . 4

2.3 Examples . 5

2.4 Numerical Implementation . 7

3 Three Triangles 9

3.1 Setting Up the Minimization Problem . 10

3.2 Analysis of Convexity . 12

3.3 Examples . 12

3.4 Iterative Search for a Minimum . 23

3.4.1 Determining Whether a Minimum Search is Necessary 23

3.4.2 Searching for a Minimum . 24

3.5 Numerical Implementation . 26

4 More Than Three Triangles 30

4.1 Iterative Search for a Minimum . 31

4.1.1 The Case of Four Triangles . 32

4.1.2 The Case of Five Triangles . 34

4.2 Analysis of Convexity . 36

4.3 The Four-Triangle Numerical Implementation . 37

1

http://www.geometrictools.com/

4.4 The Five-Triangle Numerical Implementation . 43

4.5 The N -Triangle Numerical Implementation . 50

5 The General Case 51

2

1 Introduction

A geodesic on a surface is a curve connecting two points that is (locally) shorter than any other curve (nearby
the geodesic) that connects the two points. There may be multiple geodesics connecting two points. For
example, an ellipsoid for which there are two paths between antipodal points and a sphere for which there
are infinitely many paths between two antipodal points. In the plane, there is a unique path. The geodesic
of shortest length gives you the shortest path between two points.

Generally, this is a difficult problem for smooth surfaces (see my Riemannian PDF). The problem is somewhat
simpler when restricted to manifold triangle meshes, but it is still difficult to implement.

2 Two Triangles

The simplest example consists of two triangles sharing an edge. Figure 2.1 illustrates [left has M interior to
edge 〈A,B〉, right has M at endpoint].

Figure 2.1 Shortest paths between two vertices, P0 and P1, of a pair of triangles. The left image
shows the shortest path, 〈P0,M,P1〉, that passes through an interior point of the shared edge of
the triangles. The right image shows the shortest path, 〈P0,B,P1〉, that consists solely of edges of
the triangles.

We want the shortest path from P0 to P1, which will consist of a polyline with two segments. Suppose that
the shortest path along only the edges of the triangles is 〈P0,A,P1〉. We need to determine if there is a
point M along the edge 〈A,B〉 for which the path 〈P0,M,P1〉 is shorter than the path 〈P0,A,P1〉.

3

2.1 Setting Up the Minimization Problem

We may set this up as a minimization problem that is solvable using the methods of calculus. Parameterize
the shared edge points as

M(t) = A + t(B−A), t ∈ [0, 1] (1)

The length of the path 〈P0,M(t),P1〉 is

L(t) = |M(t)−P0|+ |P1 −M(t)| = |tD−∆0|+ |tD−∆1| (2)

where D = B−A and ∆i = Pi −A for i = 0, 1. The length of the path is rewritten as

L(t) =
(
at2 − 2b0t + c0

)1/2
+

(
at2 − 2b1t + c1

)1/2
(3)

where a = |D|2, bi = D ·∆i, and ci = |∆i|2 for i = 0, 1.

The value of t that minimizes L(t) is a root of the derivative L′(t) or is an interval endpoint 0 or 1. The
derivative is

L′(t) =
at− b0

(at2 − 2b0t + c0)
1/2

+
at− b1

(at2 − 2b1t + c1)
1/2

(4)

Setting L′(t) = 0 and subtracting one term to the right-hand side of the equation,

at− b0

(at2 − 2b0t + c0)
1/2

= − at− b1

(at2 − 2b1t + c1)
1/2

(5)

Squaring both sides, multiplying by the denominators, cancelling common terms and grouping the remaining
terms leads to the quadratic equation

a
[
a (c0 − c1) +

(
b2
1 − b2

0

)]
t2 + 2 [a (b0c1 − b1c0) + b0b1 (b0 − b1)] t +

(
b2
1c0 − b2

0c1

)
= 0 (6)

If t̄j are the real-valued roots in [0, 1] (j = 0 for a single root, j = 0 and j = 1 for two distinct roots), then
the minimum length is the smallest of L(0), L(1), and L(t̄j). The corresponding t-value is used to generate
M(t).

Equation (6) may be degenerate. In particular, all coefficients are identically zero when b0 = b1 and c0 = c1.
In this case, the equation L′(t) = 0 is equivalent to at− b0 = 0, so t = b0/a.

2.2 Analysis of Convexity

More analysis of the minimization problem will be helpful for understanding the general case when the number
of edges emanating from A and between 〈A,P0〉 and 〈A,P1〉 is more than one. The second derivative of
the length function is

L′′(t) =
ac0 − b2

0

(at2 − 2b0t + c0)
3/2

+
ac1 − b2

1

(at2 − 2b1t + c1)
3/2

(7)

Notice that
aci − b2

i = (D ·D) (∆i ·∆i)− (D ·∆i)
2 = (D×∆i) · (D×∆i) > 0 (8)

Consequently, L′′(t) > 0 for all t ≥ 0. A function L(t) for which L′′(t) > 0 is said to be a convex function.
Convex functions have at most one value T for which L′(T) = 0. If such a T exists, then L′′(T) > 0, so
L(T) is a local minimum. By the convexity, L(T) must be the unique global minimum. If L(t) is restricted
to an interval [tmin, tmax], then the minimum of L on the interval is either L(tmin), L(tmax), or L(T) when
T ∈ [tmin, tmax]. Figure 2.2 shows the graph of L(t) for t ≥ 0 when L′(0) < 0.

4

Figure 2.2 The graph of the path-length function L(t) for which the global minimum occurs at
T > 0. In the limit, L(∞) = ∞, L′(∞) = 2

√
a, and L′′(∞) = 0, which imply that the graph has an

asymptote as shown.

2.3 Examples

Example 2.1 Let P0 = (1,−1, 0), P1 = (0, 1, 0), A = (0, 0, 0), and B = (2, 2, 0). Figure 2.3 shows the
configuration.

Figure 2.3 Finding the shortest path from P0 = (1,−1, 0) to P1 = (0, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. The red
segment is the shortest path.

5

The derived quantities are D = (2, 2, 0), ∆0 = (1,−1, 0), ∆1 = (0, 1, 0), a = 8, b0 = 1, b1 = 2, c0 = 2, and
c1 = 1. The length function and its derivative are

L(t) =
(
8t2 + 2

)1/2
+

(
8t2 − 4t + 1

)1/2
, L′(t) =

8t

(8t2 + 2)1/2
+

8t− 2

(8t2 − 4t + 1)1/2
(9)

Observe that L′(0) = −2 < 0, so the graph of L(t) is similar to that shown in Figure 2.2. Consequently,
there must be a shorter path from P0 to P1 that passes through an interior point of the edge 〈A,B〉. The
quadratic equation in Equation (6) is 96t2 − 64t + 8 = 0 and has roots r0 = 1/6 and r1 = 1/2. The root
r0 leads to the global minimum shown in Figure 2.2. The root r1 is extraneous and was generated by the
squaring operation that led to the quadratic equation. However, in a numerical program we do not know
which are the extraneous roots, so we evaluate all: L(r0) =

√
5 and L(r1) = 3. The length of the shorter path

is L(r0) =
√

5, which is consistent with our expectation that the path should be a line segment connecting
(1,−1, 0) and (0, 1, 0). The middle point of the path is M(r0) = (1/3, 1/3, 0). ./

Example 2.2 This example shows that the quadratic equation of Equation (6) can be degenerate. Let
P0 = (1, 0, 0), P1 = (0, 1, 0), A = (0, 0, 0), and B = (2, 2, 0). Figure 2.4 shows the configuration.

Figure 2.4 Finding the shortest path from P0 = (1, 0, 0) to P1 = (0, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. The red
segment is the shortest path.

The derived quantities are D = (2, 2, 0), ∆0 = (1, 0, 0), ∆1 = (0, 1, 0), a = 8, b0 = b1 = 2, and c0 = c1 = 1.
The length function and its derivative are

L(t) = 2
(
8t2 − 4t + 1

)1/2
, L′(t) =

2(8t− 2)

(8t2 − 4t + 1)1/2
(10)

Observe that L′(0) = −4 < 0, so the graph of L(t) is similar to that shown in Figure 2.2. Consequently,
there must be a shorter path from P0 to P1 that passes through an interior point of the edge 〈A,B〉. The
quadratic equation in Equation (6) degenerates to the tautology 0 = 0. Using Equation (10) directly, the
derivative is zero at t = 1/4. The minimum length is L(1/4) =

√
2, which is consistent with our expectation

that the path should be a line segment connecting (1, 0, 0) and (0, 1, 0). The middle point of the path is
M(1/4) = (1/2, 1/2, 0). ./

6

Example 2.3 This example shows that the initial path consisting of edges only might be the shortest path.
Let P0 = (0,−1, 0), P1 = (0, 2, 0), A = (1, 0, 0), and B = (2, 0, 0). Figure 2.5 shows the configuration.

Figure 2.5 Finding the shortest path from P0 = (0,−1, 0) to P1 = (0, 2, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. Those
segments also form the shortest path that lies inside the triangles.

The derived quantities are D = (1, 0, 0), ∆0 = (−1,−1, 0), ∆1 = (2,−1, 0), a = 1, b0 = b1 = −1, c0 = 2,
and c1 = 5. The length function and its derivative are

L(t) =
(
t2 + 2t + 2

)1/2
+

(
t2 + 2t + 5

)1/2
, L′(t) =

t + 1

(t2 + 2t + 2)1/2
+

t + 1

(t2 + 2t + 5)1/2
(11)

Observe that L′(0) = 1/
√

2 + 1/
√

5 > 0. The convexity of L(t) guarantees that L(t) is increasing for t ≥ 0,
in which case the minimum length is L(0) and the blue-colored path in Figure 2.5 is the shortest path. ./

2.4 Numerical Implementation

As indicated previously, the t-value that minimizes L(t) on [0, 1] is either t = 0, t = 1, or a value t ∈ (0, 1)
that is a root to the quadratic polynomial of Equation (6). Example 2.2, however, shows that the quadratic
polynomial may be degenerate. To avoid the tedious details of processing the quadratic polynomial to trap
degeneracies, and to be robust, a numerical implementation can use bisection to locate the root to L′(t) = 0.

The inputs to the algorithm are P0, P1, A, and B. The outputs are tmin ∈ [0, 1], the t-value at which L(t) is
minimum; the length of the shortest path, Lmin; and the point M = A+ tmin(B−A) for which 〈P0,M,P1〉
is the shortest path.

If L′(0) ≥ 0, then tmin = 0 and M = A. If L′(0) < 0, then evaluate L′(1). If L′(1) ≤ 0, by the convexity
of L(t), it must be that L(1) < L(0). In this case, tmin = 1 and M = B. The final case is L′(1) > 0.
Because L′(0) < 0 and L′(1) > 0, there must be a root to L(t) = 0 on the interval (0, 1). By the convexity
of L(t), the root must be unique. Bisection is used to locate the root. The implementation allows you to
specify the number of digits of accuracy for the root, call this δ > 0. The maximum number of iterations
to locate the root using bisection is n = dδ log2(10)e, where the notation dxe refers to the smallest integer
larger than x. For example, if you want 8 digits of accuracy, then the maximum number of iterations is

7

n = d8 log2(10)e = 27. The source code computes all iterations and does not attempt to exit early based on
a convergence criterion. Alternate implementations may be designed to speed up the root finding.

Pseudocode for computing the shortest path through two triangles is shown next. The variables prefixed
with an m are assumed to be accessible by the function FDer. The ampersands in the GetPath function
indicate that the corresponding variables are the outputs of the function.

void GetPath (Vector3 P0, Vector3 P1, Vector3 A, Vector3 B, Real& tmin, Real& lmin, Vector3& M)
{

Vector3 Delta0 = P0 - A;
Vector3 Delta1 = P1 - A;
Vector3 D = B - A;
Real mDelta0SqrLength = Dot(Delta0,Delta0);
Real mDelta1SqrLength = Dot(Delta1,Delta1);
Real mDSqrLength = Dot(D,D);
Real mDDotDelta0 = Dot(D,Delta0);
Real mDDotDelta1 = Dot(D,Delta1);

Real der0 = FDer(0);
if (der0 >= 0)
{

tmin = 0;
lmin = sqrt(mDelta0SqrLength) + sqrt(mDelta1SqrLength);
M = A;
return;

}

Real der1 = FDer(1);
if (der1 <= 0)
{

tmin = 1;
lmin = Length(P0 - B) + Length(P1 - B);
M = B;
return;

}

// der0 < 0 and der1 > 0, so bisect to find the root
tmin = GetFRoot(0,der0,1,der1);
M = A + tmin * D;
lmin = Length(P0 - M) + Length(P1 - M);

}

Real FDer(Real s) const
{

Real numer0 = mDSqrLength * s - mDDotDelta0;
Real numer1 = mDSqrLength * s - mDDotDelta1;
Real denom0 = sqrt(s*(numer0 - mDDotDelta0) + mDelta0SqrLength);
Real denom1 = sqrt(s*(numer1 - mDDotDelta1) + mDelta1SqrLength);
return numer0/denom0 + numer1/denom1;

}

Real GetFRoot (Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
Real root = 0;
for (int i = 0; i < numIterations; i++)
{

root = (s0 + s1)/2;
Real derRoot = FDer(root);
Real product = derRoot * der0;
if (product < 0)
{

s1 = root;
der1 = derRoot;

}
else if (product > 0)
{

s0 = root;
der0 = derRoot;

8

}
else
{

break;
}

}
return root;

}

3 Three Triangles

A typical configuration of three triangles is shown in Figure 3.1.

Figure 3.1 Shortest paths between two vertices, P0 and P1, of a triple of triangles. The shortest
path is either the left-edge path, 〈P0,A,P1〉, the right-edge path, 〈P0,B0,B1,P1〉, or a path through
the interior, 〈P0,M0,M1,P1〉.

9

3.1 Setting Up the Minimization Problem

As in the two-triangle example, this may be set up as a minimization problem. Parameterize the points on
the shared edges as

M0(t0) = A + t0(B0 −A), t0 ∈ [0, 1]

M1(t1) = A + t1(B1 −A), t1 ∈ [0, 1]
(12)

The length of the path 〈P0,M0(t0),M1(t1),P1〉 is

L(t0, t1) = |M0(t0)−P0|+ |M1(t1)−M0(t0)|+ |P1 −M1(t1)|

= |t0D0 −∆0|+ |t1D1 − t0D0|+ |t1D1 −∆1|
(13)

where Di = Bi −A and ∆i = Pi −A for i = 0, 1.

The pair (t0, t1) that minimizes L(t0, t1) satisfies one of the conditions

1. The gradient is zero, ∇L(t0, t1) = (0, 0).

2. The point is interior to one of the four edges on the parameter domain: (t0, 0), (t0, 1), (0, t1), or (1, t1),
where t0 ∈ (0, 1) and t1 ∈ (0, 1).

3. The point is one of the four corners of the parameter domain: (0, 0), (1, 0), (0, 1), or (1, 1).

We can rule out immediately that the minimum value occurs on the edges (t0, 0) and (0, t1). For example,
suppose the minimum occurs at (t0, 0) for some t0 ∈ (0, 1]. The geodesic path would be 〈P0,M0(t0),A,P1〉.
However, notice that the triangle edge 〈P0,A〉 has smaller length than the sum of the lengths of the triangle
edges 〈P0,M0(t0)〉 and 〈M0(t0),A〉, so in fact 〈P0,A,P1〉 is a shorter path than the one implied by choosing
t0 ∈ (0, 1] and t1 = 0. A similar argument rules out the minimum occuring for t0 = 0 and t1 ∈ (0, 1].

The gradient of L is a two-tuple consisting of the first-order partial derivatives of L with respect to t0 and
t1. These are

∂L

∂t0
=
|D0|2t0 −D0 ·∆0

|t0D0 −∆0|
+
|D0|2t0 −D0 ·D1t1
|t0D0 − t1D1|

(14)

and
∂L

∂t1
=
|D1|2t1 −D0 ·D1t0
|t0D0 − t1D1|

+
|D1|2t1 −D1 ·∆1

|t1D1 −∆1|
(15)

Although L(t0, t1) is a continuous function at (0, 0), its partial derivatives are discontinuous at (0, 0).

To solve ∇L = (0, 0), it is convenient to define ai = |Di|2, bi = Di · ∆i, ci = |∆i|2, `i = |tiDi − ∆i|,
d0 = D0 ·D1, and λ0 = |t0D0 − t1D1|. The two equations to solve are

a0t0 − b0

`0
+

a0t0 − d0t1
λ0

= 0,
a1t1 − d0t0

λ0
+

a1t1 − b1

`1
= 0 (16)

In each equation, subtracting a term to the right-hand side, squaring the resulting sides, and subtracting to
the left-hand sides leads to the polynomial equations

p0(t0, t1) = λ2
0(a0t0 − b0)2 − `20(a0t0 − d0t1)2 = 0

p1(t0, t1) = λ2
0(a1t1 − b1)2 − `21(a1t1 − d0t0)2 = 0

(17)

10

Some algebra will show that

p0 = (a0c0 − b2
0)(2d0t1 − a0t0)t0 + (a1b

2
0 − c0d

2
0)t

2
1 + (a0a1 − d2

0)(a0t0 − 2b0)t0t21

p1 = (a1c1 − b2
1)(2d0t0 − a1t1)t1 + (a0b

2
1 − c1d

2
0)t

2
0 + (a0a1 − d2

0)(a1t1 − 2b1)t1t20
(18)

It may also be shown that

σ = a0a1 − d2
0 = |D0 ×D1|2

s0 = a0c0 − b2
0 = |D0 ×∆0|2

s1 = a1c1 − b2
1 = |D1 ×∆1|2

w0 = a1b
2
0 − c0d

2
0 = c0|D0 ×D1|2 − a1|D0 ×∆0|2

w1 = a0b
2
1 − c1d

2
0 = c1|D0 ×D1|2 − a0|D1 ×∆1|2

(19)

where the leftmost equalities define the leftmost variables. The polynomials are rewritten as

p0 = s0(2d0t1 − a0t0)t0 + w0t
2
1 + σ(a0t0 − 2b0)t0t21

p1 = s1(2d0t0 − a1t1)t1 + w1t
2
0 + σ(a1t1 − 2b1)t1t20

(20)

The polynomials are each degree 4, so by eliminating t1, we obtain a polynomial in t0 whose degree is at
most 16. You may use the resultant of two polynomials for the elimination. As it turns out in this example,
the degree is 8 but the polynomial contains a factor of t40:

p(t0) = t40(k0 + k1t0 + k2t
2
0 + k3t

3
0 + k4t

4
0) (21)

where
k0 = (a0a1s0s1 − w0w1)2 − 4s0s1d

2
0(a0s1 + w1)(a1s0 + w0)

k1 = 4σ(b0w1(a0a1s0s1 − w0w1) + d0b1s0(a0s1(a1s0 + w0) + w0(a0s1 + w1))

+2d2
0b0s0s1(a0s1 + w1))

k2 = 2σ(2σ(b2
0w

2
1 − a0b

2
1s0w0)− a0(a1s0 + w1)(a0a1s0s1 − w0w1)

−4d0b0b1s0σ(2a0s1 + w1) + 2d2
0s0(a1s0 − a0s1)(a0s1 + w1))

k3 = 4a0σ
2(b0(2b2

1s0σ − w1(a1s0 + w1)) + d0b1s0((a0s1 − a1s0) + (a0s1 + w1)))

k4 = a2
0σ

2[(a1s0 + w1)2 − 4b2
1σs0]

(22)

For each root t̄0 of p, the polynomials

q0(t1) = p0(t̄0, t1), q1(t1) = p1(t̄0, t1) (23)

are (at most) quadratic in t1. Compute roots t̄1 that are common to both q0 and q1. As long as (t̄0, t̄1) ∈
[0, 1]2, the value L(t̄0, t̄1) is a candidate for the minimum of L.

To check for a minimum on the boundary of the (t0, t1) domain, we have already ruled out the boundary
when t0 = 0 and when t1 = 0. Now choose t1 = 1. The minimization along this boundary has already been
discussed previously. We are back to the case of two triangles, in this case, 〈P0,A,B0, 〉 and 〈B0,A,B1〉.
The reduction is similar for the boundary t0 = 1.

11

3.2 Analysis of Convexity

As in the case of two triangles, we may show that the length function L(t0, t1) is convex. For a function of
two variables, we do so by showing that the Hessian matrix, the matrix of second-order partial derivatives,
is positive definite.

Recall that the first-order partial derivatives are

Lt0 = (a0t0 − b0)/`0 + (a0t0 − d0t1)/λ0

Lt1 = (a1t1 − d0t0)/λ0 + (a1t1 − b1)/`1
(24)

The second-order partial derivatives are

Lt0t0 = (a0c0 − b2
0)/`30 + (a0a1 − d2

0)t
2
1/λ3

0 = s0/`30 + σt21/λ3
0

Lt0t1 = −(a0a1 − d2
0)t0t1/λ3

0 = −σt0t1/λ3
0

Lt1t1 = (a0a1 − d2
0)t

2
0/λ3

0 + (a1c1 − b2
1)/`31 = σt20/λ3

0 + s1/`31

(25)

where s0, s1, and σ are defined in Equation (19). Vector algebra identities lead to Thus, Lt0t0 > 0, Lt0t1 < 0,
and Lt1t1 > 0 for all t0 > 0 and t1 > 0.

Now define ei = si/`3i > 0 and f0 = σ/λ3
0 > 0. For t0 > 0 and t1 > 0, the second-order derivatives are

continuous, so the Hessian matrix is the symmetric matrix

H =

 Lt0t0 Lt0t1

Lt0t1 Lt1t1

 =

 e0 + f0t
2
1 −f0t0t1

−f0t0t1 e1 + f0t
2
0

 (26)

The determinant is
det(H) = e0e1 + f0t

2
0e0 + f0t

2
1e1 > 0 (27)

The following theorem from Matrix Algebra is an important classification of positive definite matrices.

Theorem. Let H be a real-valued symmetric matrix. Let Hi be the leading principal submatrix
of H determined by the first i rows and columns of H. H is positive definite if and only if
det(Hi) > 0 for all i.

In our example,
H1 =

[
e0 + f0t

2
1

]
, H2 = H (28)

It is clear that det(H1) = e0 + f0t
2
1 > 0, and we already showed that det(H2) = det(H) > 0. The theorem

guarantees that H is positive definite, in which case L(t0, t1) is a convex function.

3.3 Examples

Example 3.1 Let P0 = (1,−1, 0), P1 = (0, 1, 0), A = (0, 0, 0), B0 = (3, 1, 0), and B1 = (1, 2, 0). Figure 3.2
shows the configuration.

12

Figure 3.2 Finding the shortest path from P0 = (1,−1, 0) to P1 = (0, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. The red
segment is the shortest path.

The derived quantities are D0 = (3, 1, 0), D1 = (1, 2, 0), ∆0 = (1,−1, 0), ∆1 = (0, 1, 0), a0 = 10, a1 = 5,
b0 = 2, b1 = 2, c0 = 2, c1 = 1, and d0 = 5. The length function is

L(t0, t1) =
√

(3t0 − 1)2 + (t0 + 1)2 +
√

(t1 − 3t0)2 + (2t1 − t0)2 +
√

t21 + (2t1 − 1)2 (29)

The auxiliary constants in Equation (19) are σ = 25, s0 = 16, s1 = 1, w0 = −30, and w1 = 15. The
coefficients of Equation (22) are k0 = −437500, k1 = 3750000, k2 = 4875000, k3 = −91250000, and
k4 = 164062500. For an example whose points have components on the order of 1, the magnitudes of the
coefficients of p(t0) should already be of concern in a numerical program.

The polynomial actually factors as

p(t0) = −62500t40(1 + 5t0)(7− 25t0)(1− 7t0)(1− 3t0)

and has t0-roots (listed in increasing order): −1/5, 0, 1/7, 7/25, and 1/3. The only t0-roots of interest are
those for which t0 ≥ 0, which amounts to 0, 1/7, 7/25, and 1/3.

The value t0 = 1/7 leads to q0(t1) = 160(−1 + 7t1 − 12t21)/49 and q1(t1) = 15(1 − 2t1 − 8t21)/49. The
common root is t1 = 1/4 and the corresponding length is L =

√
5. The value t0 = 7/25 leads to q0(t1) =

32(−49 + 175t1 − 150t21)/125 and q1(t1) = 3(49 − 210t1 + 200t21)/125. The common root is t1 = 7/10 and
the corresponding length is L = 2

√
13/5. The value t0 = 1/3 leads to q0(t1) = 160(−1 + 3t1 − 2t21)/9 and

q1(t1) = 5(3− 14t1 + 16t21)/9. The common root is t1 = 1/2 and the corresponding length is L = 8/3. The
smallest of all the lengths is L =

√
5, and the minimum occurs at (t0, t1) = (1/7, 1/4). The interior edge

points are M0 = (3/7, 1/7, 0) and M1 = (1/4, 1/3, 0).

Figure 3.3 shows a 3D plot and a contour plot of L(t0, t1).

13

Figure 3.3 Top: A 3D plot of L(t0, t1) from Equation (29). The t0-axis is the slanted line from
the origin and goes diagonally down the page. The t1-axis is the slanted line from the origin and
goes diagonally up the page. The plot is for the domain (t0, t1) ∈ [0, 1]2. Bottom: A contour plot of
L(t0, t1) on the domain [0, 1]2.

The location of the minimum is shown as a red dot. ./

Example 3.2 This example shows that the quadric equation of Equation (21) can be degenerate. Let
P0 = (1, 0, 0), P1 = (0, 1, 0), A = (0, 0, 0), B0 = (3, 1, 0), and B1 = (1, 2, 0). Figure 3.4 shows the

14

configuration.

Figure 3.4 Finding the shortest path from P0 = (1, 0, 0) to P1 = (0, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. The red
segment is the shortest path.

The derived quantities are D0 = (3, 1, 0), D1 = (1, 2, 0), ∆0 = (1, 0, 0), ∆1 = (0, 1, 0), a0 = 10, a1 = 5,
b0 = 3, b1 = 2, c0 = 1, c1 = 1, and d0 = 5. The length function is

L(t0, t1) =
√

(3t0 − 1)2 + t20 +
√

(t1 − 3t0)2 + (2t1 − t0)2 +
√

t21 + (2t1 − 1)2 (30)

and the first-order partial derivatives are

Lt0(t0, t1) = 10t0−3√
(3t0−1)2+t20

+ 10t0−5t1√
(t1−3t0)2+(2t1−t0)2

Lt1(t0, t1) = 5t1−5t0√
(t1−3t0)2+(2t1−t0)2

+ 5t1−2√
t21+(2t1−1)2

(31)

The auxiliary constants in Equation (19) are σ = 25, s0 = 1, s1 = 1, w0 = 20, and w1 = 15. The coefficients
of Equation (22) are k0 = k1 = k2 = k3 = k4 = 0, so the equation is a tautology.

A closer analysis of the polynomials of Equation (20) shows that they factor as

p0 = 10(5t0t1 − t0 − t1)(5t0t1 + t0 − 2t1)

p1 = 5(5t0t1 − t0 − t1)(5t0t1 − 3t0 + t1)
(32)

The degeneracy of Equation (21) is due to the common factor 5t0t1 − t0 − t1 of the two polynomials. There
are infinitely many solutions to p0 = p1 = 0 due to this factor. In particular, make the change of variables
t1 = rt0 for r > 0; then the roots are (t0, t1) = ((r + 1)/(5r), (r + 1)/5). Substituting this into the partial
derivatives of Equation (31), Lt0 = 0 for r = 2 and Lt1 = 0 for r = 1, but both partial derivatives cannot
be made zero for a common value of r. That is, there is no value of r for which both partial derivatives are
zero.

The other roots of p0 = p1 = 0 are found by solving 5t0t1 + t0 − 2t1 = 0 and 5t0t1 − 3t0 + t1 = 0.
Subtracting the second equation from the first produces 4t0 − 3t1 = 0. Thus, t1 = 4t0/3. Substitute this
in the first equation to obtain t0 = 0, in which case t1 = 0, and t0 = 1/4, in which case t1 = 1/3. Indeed,
the global minimum of L occurs at (t0, t1) = (1/4, 1/3) and is Lmin =

√
2. The interior edge points are

M0 = (3/4, 1/4, 0) and M1 = (1/3, 2/3, 0). Figure 3.5 shows a 3D plot and a contour plot of L.

15

Figure 3.5 Top: A 3D plot of L(t0, t1) from Equation (30). The t0-axis is the slanted line from
the origin and goes diagonally down the page. The t1-axis is the slanted line from the origin and
goes diagonally up the page. The plot is for the domain (t0, t1) ∈ [0, 1]2. Bottom: A contour plot of
L(t0, t1) on the domain [0, 1]2.

The location of the global minimum is shown as a red dot. ./

Example 3.3 Let P0 = (4,−3, 0), P1 = (1, 1, 0), A = (0, 0, 0), B0 = (2,−1, 0), and B1 = (3, 0, 0). Figure
3.6 shows the configuration.

16

Figure 3.6 Finding the shortest path from P0 = (4,−3, 0) to P1 = (1, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. The red
segments are the shortest path.

The derived quantities are D0 = (2,−1, 0), D1 = (3, 0, 0), ∆0 = (4,−3, 0), ∆1 = (1, 1, 0), a0 = 5, a1 = 9,
b0 = 11, b1 = 3, c0 = 25, c1 = 2, and d0 = 6. The length function is

L(t0, t1) =
√

(2t0 − 4)2 + (t0 − 3)2 +
√

(3t1 − 2t0)2 + t20 +
√

(3t1 − 1)2 + 1 (33)

The auxiliary constants in Equation (19) are σ = 9, s0 = 4, s1 = 9, w0 = 189, and w1 = −27. The coefficients
of Equation (22) are k0 = 24203529, k1 = −18344556, k2 = −21060810, k3 = 19026900, and k4 = −2460375.
For an example whose points have components on the order of 1, the magnitudes of the coefficients of p(t0)
should already be of concern in a numerical program.

The polynomial actually factors as

p(t0) = −6561t40(t0 + 1)(5t0 − 31)(5t0 − 7)(15t0 − 17)

and has t0-roots (listed in increasing order): −1, 0, 17/15, 7/5, and 31/5. The only t0-roots of interest are
those for which t0 ≥ 0, which amounts to t0 = 0. The positive roots are actually related to choosing t0 > 0
for the ray t0(2,−1, 0) and choosing t1 > 0 for the ray t1(3, 0, 0) so that the corresponding points are on the
line segment connecting (4,−3, 0) and (1, 1, 0). Figure 3.7 illustrates this.

17

Figure 3.7 Ignoring the triangles, the shortest path from P0 = (4,−3, 0) to P1 = (1, 1, 0) is the
orange segment. The red segments are the shortest path through the triangles.

The value t0 = 7/5 leads to q0(t1) = (336t1−196)/5 and q1(t1) = (1944t21 +1134t1−1323)/25. The common
root is t1 = 7/12. A similar construction for t0 = 17/15 leads to t1 = −17/6, which may be discarded since
t1 is negative. Also, t0 = 31/5 has a companion t1 = 31/36, which is in [0, 1] but the path length is longer
than that for (t0, t1) = (7/5, 7/12).

Figure 3.8 shows a 3D plot and a contour plot of L(t0, t1), courtesy of Mathematica. I have hand-added
some additional information to the contour plot.

18

Figure 3.8 Top: A 3D plot of L(t0, t1) from Equation (33). The t0-axis is the slanted line from
the origin and goes diagonally down the page. The t1-axis is the slanted line from the origin and
goes diagonally up the page. The plot is for the domain (t0, t1) ∈ [0, 3]2. Bottom: A contour plot of
L(t0, t1) on the domain [0, 3]2. The required domain, (t0, t1) ∈ [0, 1]2, is bounded by the yellow line
segments.

The 3D plot is not sufficiently detailed to show the convexity of L, but the contour plot does illustrate this.
In the contour plot, the red dot is at (t0, t1) = (7/5, 7/12) and is the location of the global minimum of L,
which is L(7/5, 7/12) = 5. This location is outside the required domain (t0, t1) ∈ [0, 1]. We must clamp

19

t0 = 1. On that edge of the domain,

L(1, t1) =
√

8 +
√

(3t1 − 2)2 + 1 +
√

(3t1 − 1)2 + 1 (34)

The minimum of this restricted function occurs at t1 = 1/2, the location shown as a blue dot in Figure 3.8. A
quick glance at Figure 3.6 will convince you that the upper red segment intersects the edge 〈(0, 0, 0), (3, 0, 0)〉
at the point (3/2, 0, 0).

In fact, you should notice that once you clamp t0 = 1, the construction of t1 is based on the two-triangle
configuration of Section 2. This reduction in dimension occurs generally–once you clamp a ti value to 1, you
are at a vertex of the triangle mesh and you may decompose the n-triangle problem into an m1-triangle and
an m2-triangle problem, where m1 + m2 = n. In the current example, n = 3, m1 = 1 (triangle 〈A,P0,B0〉),
and m2 = 2 (triangles 〈A,B0,B1〉 and 〈A,B1,P1〉). The one-triangle case (m1 = 1) is simply a matter of
choosing the edge opposite A as the shortest path connecting the other two vertices of the triangle. ./

Example 3.4 This example shows that the minimum length occurs at (t0, t1) = (0, 0). Let P0 = (−1,−1, 0),
P1 = (−1, 1, 0), A = (0, 0, 0), B0 = (1, 0, 0), and B1 = (1, 1, 0). Figure 3.9 shows the configuration.

Figure 3.9 Finding the shortest path from P0 = (−1,−1, 0) to P1 = (−1, 1, 0). The blue segments
are the initial path, which is shortest among the edge-only paths connecting P0 and P1. This path
is also the shortest path through the triangles.

The derived quantities are D0 = (1, 0, 0), D1 = (1, 1, 0), ∆0 = (−1,−1, 0), ∆1 = (−1, 1, 0), a0 = 1, a1 = 2,
b0 = −1, b1 = 0, c0 = 2, c1 = 2, and d0 = 1. The length function is

L(t0, t1) =
√

(t0 + 1)2 + 1 +
√

(t1 − t0)2 + t21 +
√

(t1 + 1)2 + (t1 − 1)2 (35)

and its first-order derivatives are

Lt0(t0, t1) = t0+1√
(t0+1)2+1

+ t0−t1√
(t1−t0)2+t21

Lt1(t0, t1) = 2t1−t0√
(t1−t0)2+t21

+ 2t1√
(t1+1)2+(t1−1)2

(36)

The auxiliary constants in Equation (19) are σ = 1, s0 = 1, s1 = 4, w0 = 0, and w1 = −2. The coefficients
of Equation (22) are k0 = k1 = k2 = k3 = k4 = 0, so the equation is a tautology.

20

A closer analysis of the polynomials of Equation (20) shows that they factor as

p0 = t0(1 + t1)(t0t1 − t0 + 2t1)

p1 = 2(t0t1 + t0 − 2t1)(t0t1 − t0 + 2t1)
(37)

The degeneracy of Equation (21) is due to the common factor t0t1 − t0 + 2t1 of the two polynomials. We
are interested only in roots for which t0 ≥ 0 and t1 ≥ 0. Notice that p0 = 0 when t0 = 0. Substituting this
in the p1 = 0 equation leads to t1 = 0. We may ignore the p0-root t1 = −1. When the common factor is
zero, namely, t0t1 − t0 + 2t1 = 0, there are infinitely many solutions to p0 = p1 = 0. In particular, make the
change of variables t1 = rt0 for r > 0; then the roots are (t0, t1) = ((1 − 2r)/r, 1 − 2r). Substituting this
into the partial derivatives of Equation (36), Lt0 = 0 for r = 1 but Lt1 6= 0 for any r > 0. That is, there
is no value of r for which both partial derivatives are zero. Thus, L(0, 0) is already the minimum of L for
(t0, t1) ∈ [0, 1]2.

Figure 3.10 shows a 3D plot and a contour plot of L.

21

Figure 3.10 Top: A 3D plot of L(t0, t1) from Equation (30). The t0-axis is the slanted line from
the origin and goes diagonally down the page. The t1-axis is the slanted line from the origin and
goes diagonally up the page. The plot is for the domain (t0, t1) ∈ [0, 1]2. Bottom: A contour plot of
L(t0, t1) on the domain [0, 1]2.

The location of the global minimum is shown as a red dot, which is at the origin (t0, t1) = (0, 0). ./

22

3.4 Iterative Search for a Minimum

In the previous section, we reduced the minimization problem to computing the roots of a 4th-degree poly-
nomial. Root finding of such polynomials can be problematic when using fixed-precision floating-point
arithmetic. Moreover, imagine an n-triangle fan with origin at vertex A for which the first edge of the first
triangle is 〈P0,A〉, the last edge is 〈P1,A〉, and the intermediate edges are 〈Bj ,A〉 for 0 ≤ j ≤ n − 2.
The approach of the previous section may be generalized to produce a system of polynomial equations in
n − 1 edge parameters ti, 0 ≤ i ≤ n − 2. Elimination theory produces a single polynomial in t0 with very
large degree. Solving this is numerically ill-conditioned. It is better to avoid the conversion to polynomial
equations and use instead an iterative approach to minimization.

In the three-triangle case, the parameter domain is (t0, t1) ∈ [0, 1]2 (a unit square). The initial value for
the search may be chosen to be (0, 0). Based on a geometric argument, we already saw that L(t0, 0) is an
increasing function for t0 ∈ [0, 1] and L(0, t1) is an increasing function for t1 ∈ [0, 1]. It may be shown that

lim
t0→0

∂L(t0, 0)
∂t0

= lim
t0→0

(
|D0|2t0 −D0 ·∆0

|t0D0 −∆0|
+
|D0|2t0
|t0D0|

)
=
−D0 ·∆0

|∆0|
+ |D0| = |D0|(1− cos θ0) > 0 (38)

where θ0 is the angle between D0 and ∆0. Similarly,

lim
t1→0

∂L(0, t1)
∂t1

= |D1|(1− cos θ1) > 0 (39)

where θ1 is the angle between D1 and ∆1.

Let U = (u0, u1) be a unit-length vector for which u0 > 0 and u1 > 0. If the first-order derivatives of L were
continuous at (0, 0), the derivative of L at (0, 0) in the direction U would be defined by

U ·∇L(0, 0) = u0Lt0(0, 0) + u1Lt1(0, 0) (40)

where Lt0(0, 0) and Lt1(0, 0) are the first-order derivatives at (0, 0). If these derivatives are positive and the
components of U are positive, then U ·∇L(0, 0) is positive. The conclusion would be that L(t0, t1) increases
no matter how you increase t0 and t1 away from the origin and into the parameter domain. The problem,
though, is we already know that the first-order derivatives at (0, 0) are not continuous. We must approach
the problem in a slight different manner.

3.4.1 Determining Whether a Minimum Search is Necessary

Consider L(t0, t1) restricted to a line segment in the parameter space, say, (t0, t1) = s(u0, u1) for s ≥ 0.
Define

F (s) = L(su0, su1) = |su0D0 −∆0|+ s|u0D0 − u1D1|+ |su1D1 −∆1| (41)

The derivative is

F ′(s) =
u2

0|D0|2s− u0D0 ·∆0

|su0D0 −∆0|
+ |u0D0 − u1D1|+

u2
1|D1|2s− u1D1 ·∆1

|su1D1 −∆1|
(42)

The value F ′(0) represents the rate of change of L at (0, 0) as you move into the parameter domain in the
direction U. This value is

F ′(0) = −u0D0 ·∆0

|∆0|
+ |u0D0 − u1D1| −

u1D1 ·∆1

|∆1|
(43)

23

If we can find a U for which F ′(0) < 0, then L has a minimum located at some point (t0, t1) ∈ (0, 1]2. Notice
that this domain has removed the cases t0 = 0 or t1 = 0. We may search this restricted domain for the
minimum point.

Now define

G(u0, u1) = F ′(0) =
d

ds
L(su0, su1)

∣∣∣∣
s=0

(44)

a homogeneous function because G(ρu0, ρu1) = ρG(u0, u1) for ρ > 0. Although we started out with unit-
length (u0, u1) with positive components, it is sufficient to use the homogeneity and consider instead vectors
of the form

(u0, u1) =
(

1
|D0|

,
v

|D1|

)
(45)

where v > 0. Define Ei = Di/|Di| and ξi = ∆i/|∆i| so that Ei and ξi are unit-length vectors. Define

H(v) = G(1/|D0|, v/|D1|) = −(E0 · ξ0) + |E0 − vE1| − (E1 · ξ1)v (46)

It is easily shown that
H(0) = |E0| − (E0 · ξ0) = 1− cos θ0 > 0 (47)

where θ0 is the angle between E0 and ξ0. It is also easily shown that

lim
v→∞

H(v)
v

= |E1| − (E1 · ξ1) = 1− cos θ1 > 0 (48)

where θ1 is the angle between E1 and ξ1. The question is whether there exists a v̄ > 0 for which H(v̄) < 0.
Such a v̄ leads to a direction (u0, u1) for which F ′(0) < 0.

To locate the minimum of H(v) for v > 0, compute the first derivative and set it equal to zero,

H ′(v) =
v −E0 ·E1

|E0 − vE1|
−E1 · ξ1 = 0 (49)

Some algebra may be used to convert this to a quadratic equation in v whose roots are

v̄ = (E0 ·E1)± (E1 · ξ1)

√
1− (E0 ·E1)2

1− (E1 · ξ1)2
(50)

Notice that the solution is not defined when |E1 · ξ1| = 1. Geometrically, this condition implies that triangle
〈B1,A,P1〉 is degenerate; the edges 〈A,B〉 and 〈A,P1〉 are parallel, in the same direction or in opposite
directions depending on the sign of E1 · ξ1. We may assume that the input triangle mesh has no degenerate
triangles, but it is possible that the mesh has needle-like triangles that could cause |E1 ·ξ1| to be nearly 1, in
which case a numerical implementation is ill-conditioned and must handle this properly. For example, you
might avoid using the quadratic formula and instead use bisection to search for v̄.

3.4.2 Searching for a Minimum

If H(v̄) < 0 for a root v̄ > 0, then we have found that F ′(0) < 0; that is, L instantaneously decreases at
(0, 0) in the direction associated with (u0, u1). We now analyze the function F (s) itself, which is L(t0, t1)
restricted to the ray s(u0, u1). It is easy to show that

lim
s→∞

F ′(s) = u0|D0|+ |u0D0 − u1D1|+ u1|D1| > 0 (51)

24

so for s sufficiently large, F ′(s) > 0. The convexity of L guarantees that F ′′(s) > 0, but it is easy enough to
actually compute F ′′(s) and verify this:

F ′′(s) =
u0(a0c0 − b2

0)
|su0D0 −∆0|3

+
u1(a1c1 − b2

1)
|su1D1 −∆1|3

=
u0|D0 ×∆0|2

|su0D0 −∆0|3
+

u1|D1 ×∆1|2

|su1D1 −∆1|3
> 0 (52)

The positivity of F ′′(s) is guaranteed because, by assumption, we are looking for a direction (u0, u1) for
which u0 > 0 and u1 > 0. The convexity guarantees that there is a value s̄ for which F ′(s̄) = 0.

If s̄ is large enough such that (t̄0, t̄1) = s̄(u0, u1) is outside the domain (0, 1]2, compute the intersection of the
ray s(u0, u1) with the boundary of the domain, call the parameter value ŝ, and use this point for the start
of the search. If u0 ≥ u1, then the ray intersects the edge t0 = 1, in which case ŝ = 1/u0 and t1 = u1/u0. If
F ′(ŝ) > 0, then the convexity of F ensures that s̄ < ŝ and the starting point is interior to the t0t1-domain. If
F ′(ŝ) ≤ 0, then start the search at (t0, t1) = (1, u1/u0). Similarly, if u0 < u1, then the ray intersects the edge
t1 = 1, in which case ŝ = 1/u1 and t0 = u0/u1. If F ′(ŝ) > 0, then the convexity of F ensures that s̄ < ŝ and
the starting point is interior to the t0t1-domain. If F ′(ŝ) ≤ 0, then start the search at (t0, t1) = (u0/u1, 1).

Let the starting point be (t̄0, t̄1). The search for the minimum continues by choosing a new unit-length
direction V = (v0, v1) and computing the minimum of the restricted function

f(s) = L(t̄0 + sv0, t̄1 + sv1) (53)

along the portion of the line (t̄0 + sv0, t̄1 + sv1) that is inside the domain (0, 1]2. If the minimum occurs
on the boundary of the domain, then either t0 = 1 or t1 = 1. We already ruled out the cases t0 = 0 and
t1 = 0, because we know that L increases along those boundary edges. Update (t̄0, t̄1) to be the location of
the newly found line minimum, update V to a new direction, redefine f(s) by Equation (53), and repeat the
search. The search is repeated until some convergence criterion is satisfied and we have located the minimum
of L(t0, t1) within an acceptable error tolerance.

A few strategies may be used for selecting the directions V.

1. Coordinate-Direction Search. Alternate between V = (1, 0) and V = (0, 1).

2. Powell’s Direction Set Method. Start the search with two directions (1, 0) and (0, 1). The
next search uses an approximate conjugate direction, which is computed as the unit-length vector
from the initial location to the final location after the two iterations. The process is repeated, always
using the last two directions searched. No derivatives are computed, which might help to reduce the
computational time.

3. Conjugate Gradient Method. If V is the previous direction of the search, the next direction C
is the conjugate vector of V relative to the second-derivative matrix (Hessian) H(t0, t1) of L(t0, t1) at
the current location. This vector satisfies the condition CTHU = 0. That is, C is perpendicular to
U with respect to the metric H. Derivatives are computed here, so the computational time increases.
The hope is that the extra costs are offset by faster convergences using a smaller number of iterations.

The goal is to obtain a fast and robust algorithm. The strategies vary in difficulty of implementation, but
the more difficult ones tend to produce faster algorithms.

25

3.5 Numerical Implementation

Pseudocode for computing the shortest path through three triangles is shown next. The variables prefixed
with an m are assumed to be accessible by the other functions. The ampersands in the GetPath function
indicate that the corresponding variables are the outputs of the function.

void GetPath (Vector3 P0, Vector3 P1, Vector3 A, Vector3 B0, Vector3 B1,
Vector2& tmin, Real& lmin, Vector3& M0, Vector3& M1)

{
Vector3 mDelta0 = P0 - A;
Vector3 mDelta1 = P1 - A;
Vector3 mD0 = B0 - A;
Vector3 mD1 = B1 - A;
Real mDelta0SqrLength = Dot(mDelta0,mDelta0);
Real mDelta1SqrLength = Dot(mDelta1,mDelta1);
Real mD0SqrLength = Dot(mD0,mD0);
Real mD1SqrLength = Dot(mD1,mD1);
Real mD0DotD1 = Dot(mD0,mD1);
Real mD0DotDelta0 = Dot(mD0,mDelta0);
Real mD1DotDelta1 = Dot(mD1,mDelta1);

// Compute direction mU so that mHMin = F’(0) < 0.
Vector2 mU;
Real mHMin;
ComputeLargestInitialDecrease();
if (mHMin >= 0)
{

// The minimum is L(0,0), so nothing to do.
tmin = Vector2(0,0);
lmin = sqrt(mDelta0SqrLength) + sqrt(mDelta1SqrLength);
M0 = A; M1 = A;
return;

}

// Search the ray (t0,t1) = s*(u0,u1), s >= 0, for a minimum. The search
// must be clamped to t0 <= 1 and t1 <= 1.
ClampToDomain(tmin);

// Compute the initial length and derivatives.
lmin = L(rkTMin);
Vector2 lder(LDer(0,tmin), LDer(1,tmin));

// Coordinate-direction search.
int maxIterations = <user-defined parameter>;
Vector2 prevtmin(0,0);
int i, j;
for (i = 0; i < maxIterations; i++)
{

// Terminate when (nearly) at the global minimum.
Real gradientEpsilon = <user-defined parameter>;
if (Length(lder) < gradientEpsilon)
{

break;
}

// Terminate when (nearly) at the global minimum.
Real differenceEpsilon = <user-defined parameter>;
if (Length(tmin - prevtmin) < differenceEpsilon)
{

break;
}
prevtmin = tmin;

for (j = 0; j < 2; j++)
{

if (lder[j] != 0)
{

Search(j,tmin,lmin,lder);
}

26

}
}

M0 = A + tmin[0] * mD0;
M1 = A + tmin[1] * mD1;

}

void ComputeLargestInitialDecrease ()
{

Real invD0Length = 1/sqrt(mD0SqrLength);
Real invD1Length = 1/sqrt(mD1SqrLength);
Vector3 E0 = mD0 * invD0Length;
Vector3 E1 = mD1 * invD1Length;
Vector3 Xi0 = mDelta0/Length(mDelta0);
Vector3 Xi1 = mDelta1/Length(mDelta1);
Real E0E1 = Dot(E0,E1);
Real E0Xi0 = Dot(E0,Xi0);
Real E1Xi1 = Dot(E1,Xi1);

// Compute g1’(0).
Real g1der0 = -E0E1 - E1Xi1;
if (g1der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector2(0,0);
mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with g1’(r1) = 0.
Real arg = (1 - E0E1 * E0E1)/(1 - E1Xi1 * E1Xi1);
Real rootArg = sqrt(fArg);
Real rootM = E0E1 - E1Xi1 * rootArg;
Real rootP = E0E1 + E1Xi1 * rootArg;

Real r1 = 0;
Real absDerMin = INFINITY;
Vector3 diff;
Real der, absDer;
if (rootM > 0)
{

diff = E0 - rootM * E1;
der = (rootM - E0E1) - E1Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

diff = E0 - rootP * E1;
der = (rootP - E0E1) - E1Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootP;
absDerMin = absDer;

}
}

// Compute the minimum of H = g1(r1).
diff = E0 - r1 * E1;
mHMin = -E0Xi0 + Length(diff) - r1 * E1Xi1;
if (mHMin < 0)
{

mU[0] = invD0Length;
mU[1] = r1 * invD1Length;
Normalize(mU);

}

27

else
{

mU = Vector2(0,0);
}

}

void ClampToDomain (Vector2& tmin)
{

int maxIndex = 0;
Real maxComp = mU[0];
if (mU[1] > maxComp)
{

maxIndex = 1;
maxComp = mU[1];

}

Real smax = 1/maxComp;
Real der1 = FDer(smax);
if (der1 <= 0)
{

for (int i = 0; i < 2; i++)
{

if (i != maxIndex)
{

tmin[i] = smax * mU[i];
}
else
{

tmin[i] = 1;
}

}
}
else
{

// der0 < 0 and der1 > 0, so bisect to find the root.
Real root = GetFRoot(0,mHMin,smax,der1);
tmin = mU * root;

}
}

Real FDer (Real s)
{

Vector3 tmp0 = mU[0] * mD0 - mU[1] * mD1;
Real result = Length(tmp0);
tmp0 = s * mU[0] * mD0 - mDelta0;
Real tmp1 = mU[0] * (mU[0] * mD0SqrLength * s - mD0DotDelta0);
result += tmp1/Length(tmp0);
tmp0 = s * mU[1] * mD1 - mDelta1;
tmp1 = mU[1] * (mU[1] * mD1SqrLength * s - mD1DotDelta1);
result += tmp1/Length(tmp0);
return result;

}

Real L (Vector2 t)
{

Vector3 diff0 = mDelta0 - t[0] * mD0;
Vector3 diffM = t[0] * mD0 - t[1] * mD1;
Vector3 diff1 = t[1] * mD1 - mDelta1;
return Length(diff0) + Length(diffM) + Length(diff1);

}

Real LDer (int i, Vector2 t)
{

if (i == 0)
{

Vector3<Real> kDiff0 = mDelta0 - t[0] * mD0;
Vector3<Real> kDiffM = t[0] * mD0 - t[1] * mD1;
Real a0t0 = mD0SqrLength * t[0];

28

return (a0t0 - mD0DotDelta0)/Length(diff0) + (a0t0 - mD0DotD1 * t[1])/Length(diffM);
}
else
{

Vector3 diffM = t[0] * mD0 - t[1] * mD1;
Vector3 diff1 = t[1] * mD1 - mDelta1;
Real a1t1 = mD1SqrLength * t[1];
return (a1t1 - mD0DotD1 * t[0])/Length(diffM) + (a1t1 - mD1DotDelta1)/Length(diff1);

}
}

Real GetFRoot (Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
Real root = 0;
for (int i = 0; i < numIterations; i++)
{

root = (s0 + s1)/2;
Real derRoot = FDer(root);
Real product = derRoot * der0;
if (product < 0)
{

s1 = root;
der1 = derRoot;

}
else if (product > 0)
{

s0 = root;
der0 = derRoot;

}
else
{

break;
}

}
return root;

}

void GetLRoot (int j, Vector2& t, Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
for (int i = 0; i < numIterations; i++)
{

t[j] = (s0 + s1)/2;
Real derRoot = LDer(j,t);
Real product = derRoot * der0;
if (product < 0)
{

s1 = t[j];
der1 = derRoot;

}
else if (product > 0)
{

s0 = t[j];
der0 = derRoot;

}
else
{

break;
}

}
}

void Search (int j, Vector2& tmin, Real& lmin, Vector2& lder)
{

Real save, der;

if (lder[j] > 0)
{

29

save = tmin[j];
tmin[j] = 0;
der = LDer(j,tmin);
tmin[j] = save;

if (der < (Real)0)
{

// Bisect [0,t[j]] to find the root.
GetLRoot(j,tmin,0,der,tmin[j],lder[j]);

}
else
{

tmin[j] = 0;
}

}
else // lder[j] < 0
{

save = tmin[j];
tmin[j] = 1;
der = LDer(j,tmin);
tmin[j] = save;

if (der > (Real)0)
{

// Bisect [t[j],1] to find the root.
GetLRoot(j,tmin,tmin[j],lder[j],1,der);

}
else
{

tmin[j] = 1;
}

}

lmin = L(tmin);
for (int i = 0; i < 2; i++)
{

lder[i] = LDer(i,tmin);
}

}

4 More Than Three Triangles

The vertex A has 2 edges connecting it to P0 and P1. Let there be n triangles living in the region between
these two edges, counterclockwise from 〈A,P0〉 to 〈A,P1〉. There are n − 1 additional edges occurring in
this region. Let the endpoints of these edges be named Bi for 0 ≤ i ≤ n−2. The interior points of the edges
that are used in the shortest path are

Mi = A + ti (Bi −A) , ti ∈ [0, 1] (54)

The path length is

L(t0, . . . , tn−2) = |M0(t0)−P0|+
∑n−3

i=0 |Mi+1(ti+1)−Mi(ti)|+ |P1 −Mn−2(tn−2)|

= |t0D0 −∆0|+
∑n−3

i=0 |ti+1Di+1 − tiDi|+ |tn−2Dn−2 −∆1|
(55)

where Di = Bi − A and ∆j = Pj − A. Define ai = |Di|2, b0 = D0 · ∆0, b1 = Dn−2 · ∆1, cj = |∆j |2,
`0 = |t0D0 −∆1|, `1 = |tn−2Dn−2 −∆1|, di = Di ·Di+1, and λi = |ti+1Di+1 − tiDi|.

30

The first-order partial derivatives are

Lt0 = (a0t0 − b0)/`0 + (a0t0 − d0t1)/λ0

Ltk
= (aktk − dk−1tk−1)/λk−1 + (aktk − dktk+1)/λk, 1 ≤ k ≤ n− 3

Ltn−2 = (an−2tn−2 − dn−3tn−3)/λn−3 + (an−2tn−2 − bn−2)/`1
(56)

The second-order partial derivatives are

Lt0t0 = (a0c0 − b2
0)/`30 + (a0a1 − d2

0)t
2
1/λ3

0

Ltk−1tk
= −(ak−1ak − d2

k−1)tk−1tk/λ3
k−1, 1 ≤ k ≤ n− 2

Ltktk
= (ak−1ak − d2

k−1)t
2
k−1/λ3

k−1 + (akak+1 − d2
k)t2k+1/λ3

k, 1 ≤ k ≤ n− 3

Ltn−2tn−2 = (an−2c1 − b2
1)/`31 + (an−3an−2 − d2

n−3)t
2
n−3/λ2

n−3

(57)

Define e0 = (a0c0 − b2
0)/`30, e1 = (an−2c1 − b2

1)/`31, and fk = (akak+1 − d2
k)/λ3

k for 0 ≤ k ≤ n− 3; then

Lt0t0 = e0 + f0t
2
1

Ltk−1tk
= −fk−1tk−1tk, 1 ≤ k ≤ n− 2

Ltktk
= fk−1t

2
k−1 + fkt2k+1, 1 ≤ k ≤ n− 3

Ltn−2tn−2 = e1 + fn−3t
2
n−3

(58)

4.1 Iterative Search for a Minimum

The arguments here parallel those of Section 3.4. Let U = (u0, u1, . . . , un−2) be a unit-length vector for
which ui > 0 for all i. Define

F (s) = L(su0, . . . , sun−2) = |su0D0 −∆0|+ s

n−3∑
i=0

|uiDi − ui+1Di+1|+ |sun−2Dn−2 −∆1| (59)

The derivative is

F ′(s) =
a0u

2
0s− b0u0

|su0D0 −∆0|
+

n−3∑
i=0

|uiDi − ui+1Di+1|+
an−2u

2
n−2s− b1un−2

|sun−2Dn−2 −∆1|
(60)

At s = 0, the derivative represents the directional derivative of L in the direction U:

F ′(0) = − b0u0

|∆0|
+

n−3∑
i=0

|uiDi − ui+1Di+1| −
b1un−2

|∆1|
(61)

We wish to find a vector U for which F ′(0) < 0, in which case we may start a search for a path of smaller
length than L(0). If there is no such vector, then a search is not necessary due to the convexity of L; see
Section 4.2.

31

Define G(U) = F ′(0). This function is homogeneous because G(ρU) = ρG(U). It is therefore sufficient to
define vi = |Di|ui for 1 ≤ i ≤ n− 2 and analyze

H(v1, . . . , vn−2) = G

(
1

|D0|
,

v1

|D1|
, . . . ,

vn−2

|Dn−2|

)
(62)

for negativity. Specifically, we will compute the minimum for H and determine its sign.

4.1.1 The Case of Four Triangles

To illustrate the analysis, consider the case of four triangles, where

H(v1, v2) = −E0 · ξ0 + |E0 − v1E1|+ |v1E1 − v2E2| − (E2 · ξ1)v2 (63)

with Ei = Di/|Di| and ξi = ∆i/|∆i|. Define r1 = v1, r2 = v2/v1, and

h2(r1, r2) = H(r1, r1r2)

= (−E0 · ξ0 + |E0 − r1E1|) + r1(|E1 − r2E2| − (E2 · ξ1)r2)

= g1(r1) + r1g2(r2)

(64)

where

g1(r1) = −E0 · ξ0 + |E0 − r1E1|, g′1(r1) =
r1 −E0 ·E1

|E0 − r1E1|
, g′′1 (r1) =

1− (E0 ·E1)2

|E0 − r1E1|3
> 0 (65)

and

g2(r2) = |E1 − r2E2| − (E2 · ξ1)r2, g′2 =
r2 −E1 ·E2

|E1 − r2E2|
−E2 · ξ1, g′′2 =

1− (E1 ·E2)2

|E1 − r2E2|3
> 0 (66)

We wish to find numbers r1 > 0 and r2 > 0 for which h2(r1, r2) < 0. The positivity of the second derivatives
implies that g1 and g2 are convex. Zero-valued second derivatives are ruled out by the assumption that the
triangles are nondegenerate.

The sequence of steps is long, so I have broken this down into small pieces to make it more understandable.
The algorithm is recursive in dimension, which means that the n-parameter problem is reduced to one of
similar structure for n− 1 parameters.

Guarantee that h2(r1, 0) > 0. Consider the restricted function h2(r1, 0) = g1(r1)+r1. The r1-derivatives
are h2,r1(r1, 0) = g′1(r1) + 1 and h2,r1r1(r1, 0) = g′′1 (r1) > 0, in which case h2(·, 0) is a convex function. Also,
h2(0, 0) = 1 − E0 · ξ0 > 0 and h2,r1(0, 0) = 1 − E0 · E1 > 0. The convexity of h2(·, 0) guarantees that
h2(r1, 0) > 0 for r1 ≥ 0.

Necessity of g′
2(0) < 0. The function g2(r2) is convex with g2(0) = 1 and g′2(0) = −E1 · E2 − E2 · ξ1. If

g′2(0) ≥ 0, then the convexity of g2 forces g′2(r2) ≥ 0 for r2 ≥ 0. This implies h2,r2(r1, r2) = r1g
′
2(r2) ≥ 0

and h2 increases in the r2-direction no matter the choice of r1; that is, h2(r1, r2) > 0 for r1 ≥ 0 and r2 ≥ 0.
The only chance for h2(r1, r2) to be negative is if g′2(r2) attains negative values. The convexity of g2 makes
it sufficient that g′2(0) < 0.

Restricting the search to a specific r̄2. We now know that g′2(0) < 0. In the limit,

g′2(∞) = lim
r2→∞

g′2(r2) = 1−E2 · ξ1 > 0 (67)

32

The convexity of g2 guarantees that there is a unique finite number r̄2 > 0 for which g′2(r̄2) = 0. This
equation may be converted to a quadratic equation whose roots are

r2 = (E1 ·E2)± (E2 · ξ1)

√
1− (E1 ·E2)2

1− (E2 · ξ1)2
(68)

Let r̄2 be the one of these two numbers for which r̄2 > 0 and g′2(r̄2) = 0. The minimum of h2(r1, r2)
in the r2-direction must be h2(r1, r̄2) since h2,r2(r1, r̄2) = r1g

′
2(r̄2) = 0. Define h1(r1) = h2(r1, r̄2) and

ĝ1(r1) = h1(r1). The last definition is trivial, but sets up the notation for the case of more triangles.

Guarantee that g2(r̄2) > −1. We know that r2 > 0 and E2 · ξ1 < 1, so

g2(r2) > |E1 − r2E2| − r2 = `2(r2) (69)

where the last equality defines the lower-bound function `2(r2). This function is convex with `2(0) = 1 and
`′2(0) < 0. Observe that

limr2→∞ `2(r2) = limr2→∞ (|E1 − r2E2| − r2)

= limr2→∞

(
(|E1−r2E2|−r2)(|E1−r2E2|+r2)

|E1−r2E2|+r2

)
= limr2→∞

(
(|E1−r2E2|2−r2

2
|E1−r2E2|+r2

)
= limr2→∞

(
(|E1−r2E2|2−r2

2
|E1−r2E2|+r2

)
= limr2→∞

(
1−2(E1·E2)r2
|E1−r2E2|+r2

)
= −E1 ·E2

> −1

(70)

Therefore, g(r̄2) > −1 is guaranteed.

Guarantee that h1(0) > 0. This is trivial to verify, h1(0) = h2(0, r̄2) = g1(0) = 1−E0 · ξ0 > 0.

Necessity of ĝ′
1(0) < 0. The function ĝ1(r1) is convex with ĝ1(0) = 1 − E0 · ξ0 > 0 and ĝ′1(0) =

−E0 · E1 + g2(r̄2). If ĝ′1(0) ≥ 0, then the convexity of ĝ1 forces ĝ1(r1) > 0 for r1 ≥ 0. This implies
h′1(r1) = ĝ′1(r1) ≥ 0 and h1 increases in the r1-direction; that is, h1(r1) > 0 for r1 ≥ 0. The only chance
for h1(r1) to be negative is if ĝ′1(r1) attains negative values. The convexity of ĝ1 makes it sufficient that
ĝ′1(0) < 0.

Restricting the search to a specific r̄1. We now know that ĝ′1(0) < 0. In the limit,

ĝ′1(∞) = lim
r1→∞

ĝ′1(r1) = 1 + g2(r̄2) > 0 (71)

The convexity of ĝ1 guarantees that there is a unique finite number r̄1 > 0 for which ĝ′1(r̄1) = 0. This
equation may be converted to a quadratic equation whose roots are

r1 = (E0 ·E1)± g2(r̄2)

√
1− (E0 ·E1)2

1− g2(r̄2)2
(72)

Let r̄1 be the one of these two numbers for which r̄1 > 0 and ĝ′1(r̄1) = 0. The minimum of h1(r1) must be
h1(r̄1) since h′1(r̄1) = ĝ′1(r̄1) = 0. Thus, the minimum of h2(r1, r2) is the value h2(r̄1, r̄2).

33

4.1.2 The Case of Five Triangles

To show that the ideas extend to more triangles, consider the case of five triangles, where

H(v1, v2, v3) = −E0 · ξ0 + |E0 − v1E1|+ |v1E1 − v2E2|+ |v2E2 − v3E3| − (E3 · ξ1)v3 (73)

Define r1 = v1, r2 = v2/v1, r3 = v3/v2, and

h3(r1, r2, r3) = H(r1, r1r2, r1r2r3)

= (−E0 · ξ0 + |E0 − r1E1|) + r1 (|E1 − r2E2|+ r2 (|E2 − r3E3| − (E3 · ξ1)r3)))

= g1(r1) + r1(g2(r2) + r2g3(r3))

(74)

where

g1(r1) = −E0 · ξ0 + |E0 − r1E1|, g′1(r1) =
r1 −E0 ·E1

|E0 − r1E1|
, g′′1 (r1) =

1− (E0 ·E1)2

|E0 − r1E1|3
> 0 (75)

and

g2(r2) = |E1 − r2E2|, g′2(r2) =
r2 −E1 ·E2

|E1 − r2E2|
, g′′2 (r2) =

1− (E1 ·E2)2

|E1 − r2E2|3
> 0 (76)

and

g3(r3) = |E2 − r3E3| − (E3 · ξ1)r3, g′3(r3) =
r3 −E2 ·E3

|E2 − r3E3|
−E3 · ξ1, g′′3 (r3) =

1− (E2 ·E3)2

|E2 − r3E3|3
> 0 (77)

We wish to find numbers r1 > 0, r2 > 0, and r3 > 0 for which h3(r1, r2, r3) < 0. The positivity of the second
derivatives implies that all g1, g2, and g3 are convex. Zero-valued second derivatives are ruled out by the
assumption that the triangles are nondegenerate.

As in the case of four triangles, the algorithm is recursive in dimension.

Guarantee that h3(r1, r2, 0) > 0. The restricted function h3(r1, 0, 0) is the same as the function h2(r1, 0)
in the four-triangle case, and we found that it was positive. Thus, h3(r1, 0, 0) > 0 for r1 ≥ 0.

Consider the restricted function h3(r1, r2, 0) = g1(r1) + r1(g2(r2) + r2). The r2 derivatives are

h3,r2(r1, r2, 0) = r1(g′2(r2) + 1) = r1

(
r2 −E1 ·E2

|E1 − r2E2|
+ 1

)
(78)

and

h3,r2r2 = r1g
′′
2 (r2) = r1

(
1− (E1 ·E2)2

|E1 − r2E2|3

)
> 0 (79)

in which case h3(r1, ·, 0) is a convex function (in its r2 variable). Also, h3(r1, 0, 0) > 0 and h3,r2(r1, 0, 0) =
r1(1−E1 ·E2) > 0. The convexity of h3(r1, ·, 0) guarantees that h3(r1, r2, 0) > 0 for r1 ≥ 0 and r2 ≥ 0.

Necessity of g′
3(0) < 0. The function g3(r3) is convex with g3(0) = 1 and g′3(0) = −E2 · E3 − E3 · ξ1. If

g′3(0) ≥ 0, then the convexity of g3 forces g′3(r3) ≥ 0 for r3 ≥ 0. This implies h3,r3(r1, r2, r3) = r1r2g
′
3(r3) ≥ 0

and h3 increases in the r3-direction no matter the choices of r1 and r2; that is, h3(r1, r2, r3) > 0 for r1 ≥ 0 and
r2 ≥ 0. The only chance for h3(r1, r2, r3) to be negative is if g′3(r3) attains negative values. The convexity
of g3 makes it sufficient that g′3(0) < 0.

34

Restricting the search to a specific r̄3. We now know that g′3(0) < 0. In the limit, notice that

g′3(∞) = lim
r3→∞

g′3(r3) = 1−E3 · ξ1 > 0 (80)

The convexity of g3, guarantees that there is a unique finite number r̄3 > 0 for which g′3(r̄3) = 0. This
equation may be converted to a quadratic equation whose roots are

r3 = (E2 ·E3)± (E3 · ξ1)

√
1− (E2 ·E3)2

1− (E3 · ξ1)2
(81)

Let r̄3 be the one of these two numbers for which r̄3 > 0 and g′3(r̄3) = 0. The minimum of h(r1, r2, r3) in
the r3-direction must be h(r1, r2, r̄3) since hr3(r1, r2, r̄3) = r1r2g

′
3(r̄3) = 0. Define ĝ2(r2) = g2(r2) + r2g3(r̄3)

and h2(r1, r2) = h3(r1, r2, r̄3) = g1(r1) + r1ĝ2(r2).

Guarantee that g3(r̄3) > −1. We know that r3 > 0 and E3 · ξ1 < 1, so

g3(r3) > |E2 − r3E3| − r3 = `3(r3) (82)

where the last equality defines the lower-bound function `3(r3). This function is convex with `3(0) = 1
and `′3(0) < 0. A construction similar to that of Equation (70) shows that `3(r3) > −1, in which case
g3(r̄3) > `3(r̄3) > −1.

Guarantee that h2(r1, 0) > 0. Consider the restricted function h2(r1, 0) = g1(r1)+r1ĝ2(0) = g1(r1)+r1.
As in the four-triangle case, g1(r1) + r1 is positive, so h2(r1, 0) > 0 for r1 ≥ 0.

Necessity of ĝ′
2(0) < 0. The function ĝ2(r2) is convex with ĝ2(0) = 1 and ĝ′2(0) = −E1 · E2 + g3(r̄3). If

ĝ′2(0) ≥ 0, then the convexity of ĝ2 forces ĝ′2(r2) ≥ 0 for r2 ≥ 0. This implies h2,r2(r1, r2) = r1ĝ2(r2) ≥ 0
and h2 increases in the r2-direction no matter the choice of r1; that is, h2(r1, r2) > 0 for r1 ≥ 0 and r2 ≥ 0.
The only chance for h2(r1, r2) to be negative is if ĝ′2(r2) attains negative values. The convexity of ĝ2 makes
it sufficient that ĝ′2(0) < 0.

Restricting the search to a specific r̄2. We now know that ĝ′2(0) < 0. In the limit,

ĝ′2(∞) = lim
r2→∞

ĝ′2(r2) = 1 + g3(r̄3) > 0 (83)

The convexity of ĝ2 guarantees that there is a unique finite number r̄2 > 0 for which ĝ′2(r̄2) = 0. This
equation may be converted to a quadratic equation whose roots are

r2 = (E1 ·E2)± g3(r̄3)

√
1− (E1 ·E2)2

1− g3(r̄3)2
(84)

The facts that g3(0) = 1, g′3(0) < 0, and g3 is convex imply g3(r̄3) < 1. We already saw that g3(r̄3) > −1.
Thus, the denominator inside the square root of the equations for r2 is not zero. Let r̄2 be the one of these
two numbers for which r̄2 > 0 and ĝ′2(r̄2) = 0. The minimum of h2(r1, r2) in the r2-direction must be
h2(r1, r̄2) since h2,r2(r1, r̄2) = r1ĝ

′
2(r̄2) = 0. Define h1(r1) = h2(r1, r̄2) and ĝ1(r1) = h1(r1).

Guarantee that ĝ2(r̄2) > −1. We know that r2 > 0 and g3(r̄3) > −1, so

ĝ2(r2) = |E1 − r2E2|+ g3(r̄3)r2 > |E1 − r2E2| − r2 = `2(r2) > −1 (85)

The function `2(r2) is the same one we analyzed in the four-triangle case. Thus, ĝ2(r̄2) > −1.

35

Guarantee that h1(0) > 0. This is trivial to verify, h1(0) = 1−E0 · ξ0 > 0.

Necessity of ĝ′
1(0) < 0. The function ĝ1(r1) is convex with ĝ1(0) = 1 − E0 · ξ0 > 0 and ĝ′1(0) =

−E0 · E1 + ĝ2(r̄2). If ĝ′1(0) ≥ 0, then the convexity of ĝ1 forces ĝ1(r1) > 0 for r1 ≥ 0. This implies
h′1(r1) = ĝ′1(r1) ≥ 0 and h1 increases in the r1-direction; that is, h1(r1) > 0 for r1 ≥ 0. The only chance
for h1(r1) to be negative is if ĝ′1(r1) attains negative values. The convexity of ĝ1 makes it sufficient that
ĝ′1(0) < 0.

Restricting the search to a specific r̄1. We now know that ĝ′1(0) < 0. In the limit,

ĝ′1(∞) = lim
r1→∞

ĝ′1(r1) = 1 + ĝ2(r̄2) > 0 (86)

The convexity of ĝ1 guarantees that there is a unique finite number r̄1 > 0 for which ĝ′1(r̄1) = 0. This
equation may be converted to a quadratic equation whose roots are

r1 = (E0 ·E1)± ĝ2(r̄2)

√
1− (E0 ·E1)2

1− ĝ2(r̄2)2
(87)

The facts that ĝ2(0) = 1, ĝ′2(0) < 0, and ĝ2 is convex imply ĝ2(r̄2) < 1. We already saw that ĝ2(r̄2) > −1.
Thus, the denominator inside the square root of the equations for r1 is not zero. Let r̄1 be the one of these two
numbers for which r̄1 > 0 and ĝ′1(r̄1) = 0. The minimum of h1(r1) must be h1(1̄2) since h′1(r̄1) = ĝ′1(r̄1) = 0.
Thus, the minimum of h2(r1, r2) is the value h2(r̄1, r̄2) and the minimum of h3(r1, r2, r3) is h3(r̄1, r̄2, r̄3).

4.2 Analysis of Convexity

The Hessian matrix of L(t0, . . . , tn−2) is symmetric and tridiagonal. This section contains a proof that it is
positive definite.

For unified notation, define f−1 = e0, t−1 = 1, fn−2 = e1, and tn−1 = 1. Every principal submatrix of the
Hessian matrix is of the form

Si,j =


gi −fi+1ti+1ti+2 0 0 · · · 0 0 0

−fi+1ti+1ti+2 gi+1 −fi+2ti+2ti+3 0 · · · 0 0 0

0 −fi+2ti+2ti+3 gi+2 −fi+3ti+3ti+4 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · −fj−1tj−1tj gj−1 −fjtjtj+1
0 0 0 0 · · · 0 −fjtjtj+1 gj

 (88)

where gk = fkt2k + fk+1t
2
k+2 for i ≤ k ≤ j and where −1 ≤ i ≤ j ≤ n− 3.

To compute detSi,j , use a cofactor expansion by the first row of the matrix to obtain

detSi,j =
(
fit

2
i + fi+1t

2
i+2

)
detSi+1,j + detAi+1,j (89)

where Ai+1,j is the submatrix of Si,j obtained by deleting the first row and second column. Furthermore,

det Si,j = fit
2
i detSi+1,j + fi+1t

2
i+2 det Si+1,j + detAi+1,j = fit

2
i detSi+1,j + detBi,j (90)

where

Bi,j =


fi+1t2

i+2 −fi+1ti+1ti+2 0 0 · · · 0 0 0

−fi+1ti+1ti+2 gi+1 −fi+2ti+2ti+3 0 · · · 0 0 0

0 −fi+2ti+2ti+3 gi+2 −fi+3ti+3ti+4 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · −fj−1tj−1tj gj−1 −fjtjtj+1
0 0 0 0 · · · 0 −fjtjtj+1 gj

 (91)

36

The matrix is row reduced, each reduction preserving the determinant of the original matrix. Assuming the
rows are named Ri through Rj , the first reduction is

ti+1

ti+2
Ri + Ri+1 → Ri+1 (92)

which leads to
fi+1t2

i+2 −fi+1ti+1ti+2 0 0 · · · 0 0 0

0 fi+2t2
i+3 −fi+2ti+2ti+3 0 · · · 0 0 0

0 −fi+2ti+2ti+3 gi+2 −fi+3ti+3ti+4 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · −fj−1tj−1tj gj−1 −fjtjtj+1
0 0 0 0 · · · 0 −fjtjtj+1 gj

 (93)

The lower right block is a matrix of the same structure as what we started with. Continuing with similar
row reductions, we eventually arrive at

det Bi,j =


fi+1t2

i+2 −fi+1ti+1ti+2 0 0 · · · 0 0 0

0 fi+2t2
i+3 −fi+2ti+2ti+3 0 · · · 0 0 0

0 0 fi+3t2
i+4 −fi+3ti+3ti+4 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 0 fjt2
j+1 −fjtjtj+1

0 0 0 0 · · · 0 0 fj+1t2
j+2

 =

j+1∏
k=i+1

fkt
2
k+1 (94)

The determinants of the principal submatrices are related by the linear recurrence equation,

detSi,j = fit
2
i detSi+1,j +

j+1∏
k=i+1

fkt2k+1 (95)

an equation that is valid for i + 1 ≤ j. For a fixed j, the initial value for the recurrence is

detSj,j = fjt
2
j + fj+1t

2
j+2 > 0 (96)

The next term is
det Sj−1,j = fj−1t

2
j−1 detSj,j + fjt

2
j+1fj+1t

2
j+2 > 0 (97)

Recursively, det Si,j > 0 for all −1 ≤ i ≤ j ≤ n−3, so the principal submatrices all have positive determinants
and the Hessian matrix is positive definite.

4.3 The Four-Triangle Numerical Implementation

Pseudocode for computing the shortest path through four triangles is shown next. The variables prefixed
with an m are assumed to be accessible by the other functions. The ampersands in the function definitions
indicate that the corresponding variables are the outputs of the function.

void GetPath (Vector3 P0, Vector3 P1, Vector3 A, Vector3 B0, Vector3 B1, Vector3 B2,
Vector3& tmin, Real& lmin, Vector3& M0, Vector3& M1, Vector3& M2)

{
Vector3 mDelta0 = P0 - A;
Vector3 mDelta1 = P1 - A;

37

Vector3 mD0 = B0 - A;
Vector3 mD1 = B1 - A;
Vector3 mD2 = B2 - A;
Real mDelta0SqrLength = Dot(mDelta0,mDelta0);
Real mDelta1SqrLength = Dot(mDelta1,mDelta1);
Real mD0SqrLength = Dot(mD0,mD0);
Real mD1SqrLength = Dot(mD1,mD1);
Real mD2SqrLength = Dot(mD2,mD2);
Real mD0DotD1 = Dot(mD0,mD1);
Real mD1DotD2 = Dot(mD1,mD2);
Real mD0DotDelta0 = Dot(mD0,mDelta0);
Real mD2DotDelta1 = Dot(mD2,mDelta1);

// Compute direction mU so that mHMin = F’(0) < 0.
Vector3 mU;
Real mHMin;
ComputeLargestInitialDecrease();
if (mHMin >= 0)
{

// The minimum is L(0,0,0), so nothing to do.
tmin = Vector3(0,0,0);
lmin = sqrt(mDelta0SqrLength) + sqrt(mDelta1SqrLength);
M0 = A;
M1 = A;
M2 = A;
return;

}

// Search the ray (t0,t1,t2) = s*(u0,u1,u2), s >= 0, for a minimum. The search
// must be clamped to t0 <= 1, t1 <= 1, and t2 <= 1.
ClampToDomain(tmin);

// Compute the initial length and derivatives.
lmin = L(rkTMin);
Vector3 lder(LDer(0,tmin), LDer(1,tmin), LDer(2,tmin));

// Coordinate-direction search.
int maxIterations = <user-defined parameter>;
Vector3 prevtmin(0,0,0);
int i, j;
for (i = 0; i < maxIterations; i++)
{

// Terminate when (nearly) at the global minimum.
Real gradientEpsilon = <user-defined parameter>;
if (Length(lder) < gradientEpsilon)
{

break;
}

// Terminate when (nearly) at the global minimum.
Real differenceEpsilon = <user-defined parameter>;
if (Length(tmin - prevtmin) < differenceEpsilon)
{

break;
}
prevtmin = tmin;

for (j = 0; j < 3; j++)
{

if (lder[j] != 0)
{

Search(j,tmin,lmin,lder);
}

}
}

M0 = A + tmin[0] * mD0;
M1 = A + tmin[1] * mD1;
M2 = A + tmin[2] * mD2;

}

38

void ComputeLargestInitialDecrease ()
{

Real invD0Length = 1/sqrt(mD0SqrLength);
Real invD1Length = 1/sqrt(mD1SqrLength);
Real invD2Length = 1/sqrt(mD2SqrLength);
Vector3 E0 = mD0 * invD0Length;
Vector3 E1 = mD1 * invD1Length;
Vector3 E2 = mD2 * invD2Length;
Vector3 Xi0 = mDelta0/Length(mDelta0);
Vector3 Xi1 = mDelta1/Length(mDelta1);
Real E0E1 = Dot(E0,E1);
Real E1E2 = Dot(E1,E2);
Real E0Xi0 = Dot(E0,Xi0);
Real E2Xi1 = Dot(E2,Xi1);

// Compute g2’(0).
Real g2der0 = -E1E2 - E2Xi1;
if (g2der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector3(0,0,0);
mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with g2’(r2) = 0.
Real arg = (1 - E1E2 * E1E2)/(1 - E2Xi1 * E2Xi1);
Real rootArg = sqrt(arg);
Real rootM = E1E2 - E2Xi1 * rootArg;
Real rootP = E1E2 + E2Xi1 * rootArg;

Real r2 = 0;
Real absDerMin = INFINITY;
Vector3 kDiff;
Real der, absDer;
if (rootM > 0)
{

diff = E1 - rootM * E2;
der = (rootM - E1E2) - E2Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r2 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

diff = E1 - rootP * E2;
der = (rootP - E1E2) - E2Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r2 = rootP;
absDerMin = absDer;

}
}

// Compute g2(r2).
diff = E1 - r2 * E2;
Real g2r2 = Length(diff) - E2Xi1 * r2;

// Compute hat[g1]’(0).
Real g1der0 = -E0E1 + g2r2;
if (g1der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector3(0,0,0);
mHMin = 0;
return;

}

39

// Compute the roots for the quadratic associated with hat[g1]’(r1) = 0.
arg = (1 - E0E1 * E0E1)/(1 - g2r2 * g2r2);
rootArg = sqrt(arg);
rootM = E0E1 - g2r2 * rootArg;
rootP = E0E1 + g2r2 * rootArg;

Real r1 = 0;
absDerMin = INFINITY;
if (rootM > 0)
{

diff = E0 - rootM * E1;
der = (rootM - E0E1) + g2r2 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

diff = E0 - rootP * E1;
der = (rootP - E0E1) + g2r2 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootP;
absDerMin = absDer;

}
}

// Compute hat[g1](r1).
diff = E0 - r1 * E1;
Real g1r1 = -E0Xi0 + Length(diff);

// Compute the minimum of H.
mHMin = g1r1 + r1 * g2r2;
if (mHMin < 0)
{

mU[0] = invD0Length;
mU[1] = r1 * invD1Length;
mU[2] = r1 * r2 * invD2Length;
Normalize(mU);

}
else
{

mU = Vector3(0,0,0);
}

}

void ClampToDomain (Vector3& tmin)
{

int maxIndex = 0;
Real maxComp = mU[0];
if (mU[1] > maxComp)
{

maxIndex = 1;
maxComp = mU[1];

}
if (mU[2] > maxComp)
{

maxIndex = 2;
maxComp = mU[2];

}

Real smax = 1/maxComp;
Real der1 = FDer(smax);
if (der1 <= 0)
{

for (int i = 0; i < 3; i++)
{

40

if (i != maxIndex)
{

tmin[i] = smax * mU[i];
}
else
{

tmin[i] = 1;
}

}
}
else
{

// der0 < 0 and der1 > 0, so bisect to find the root.
Real root = GetFRoot(0,mHMin,smax,der1);
tmin = mU * root;

}
}

Real FDer (Real s)
{

Vector3 tmp0 = mU[0] * mD0 - mU[1] * mD1;
Vector3 tmp1 = mU[1] * mD1 - mU[2] * mD2;
Real result = Length(tmp0) + Length(tmp1);
tmp0 = s * mU[0] * mD0 - mDelta0;
Real tmp2 = mU[0] * (mU[0] * mD0SqrLength * s - mD0DotDelta0);
result += tmp2/Length(tmp0);
tmp0 = s * mU[2] * mD2 - mDelta1;
tmp2 = mU[2] * (mU[2] * mD2SqrLength * s - mD2DotDelta1);
result += tmp2/Length(tmp0);
return result;

}

Real L (Vector3 t)
{

Vector3 diff0 = mDelta0 - t[0] * mD0;
Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Vector3 diff1 = t[2] * mD2 - mDelta1;
return Length(diff0) + Length(diffM1) + Length(diffM2) + Length(diff1);

}

Real LDer (int i, Vector3 t)
{

if (i == 0)
{

Vector3 diff0 = mDelta0 - t[0] * mD0;
Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Real a0t0 = mD0SqrLength * t[0];
return (a0t0 - mD0DotDelta0)/Length(diff0) + (a0t0 - mD0DotD1 * t[1])/Length(diffM1);

}
else if (i == 1)
{

Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Real a1t1 = mD1SqrLength * t[1];
return (a1t1 - mD0DotD1 * t[0])/Length(diffM1) + (a1t1 - mD1DotD2 * t[2])/Length(diffM2);

}
else
{

Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Vector3 diff1 = t[2] * mD2 - mDelta1;
Real a2t2 = mD2SqrLength * t[2];
return (a2t2 - mD1DotD2 * t[1])/Length(diffM2) + (a2t2 - mD2DotDelta1)/Length(diff1);

}
}

Real GetFRoot (Real s0, Real der0, Real s1, Real der1)
{

41

int numIterations = <user-defined parameter>;
Real root = 0;
for (int i = 0; i < numIterations; i++)
{

root = (s0 + s1)/2;
Real derRoot = FDer(root);
Real product = derRoot * der0;
if (product < 0)
{

s1 = root;
der1 = derRoot;

}
else if (product > 0)
{

s0 = root;
der0 = derRoot;

}
else
{

break;
}

}
return root;

}

void GetLRoot (int j, Vector3& t, Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
for (int i = 0; i < numIterations; i++)
{

t[j] = (s0 + s1)/2;
Real derRoot = LDer(j,t);
Real product = derRoot * der0;
if (product < 0)
{

s1 = t[j];
der1 = derRoot;

}
else if (product > 0)
{

s0 = t[j];
der0 = derRoot;

}
else
{

break;
}

}
}

void Search (int j, Vector3& tmin, Real& lmin, Vector3& lder)
{

Real save, der;

if (lder[j] > 0)
{

save = tmin[j];
tmin[j] = 0;
der = LDer(j,tmin);
tmin[j] = save;

if (der < (Real)0)
{

// Bisect [0,t[j]] to find the root.
GetLRoot(j,tmin,0,der,tmin[j],lder[j]);

}
else
{

tmin[j] = 0;
}

42

}
else // lder[j] < 0
{

save = tmin[j];
tmin[j] = 1;
der = LDer(j,tmin);
tmin[j] = save;

if (der > (Real)0)
{

// Bisect [t[j],1] to find the root.
GetLRoot(j,tmin,tmin[j],lder[j],1,der);

}
else
{

tmin[j] = 1;
}

}

lmin = L(tmin);
for (int i = 0; i < 3; i++)
{

lder[i] = LDer(i,tmin);
}

}

4.4 The Five-Triangle Numerical Implementation

Pseudocode for computing the shortest path through five triangles is shown next. The variables prefixed
with an m are assumed to be accessible by the other functions. The ampersands in the function definitions
indicate that the corresponding variables are the outputs of the function.

void GetPath (Vector3 P0, Vector3 P1, Vector3 A, Vector3 B0, Vector3 B1, Vector3 B2, Vector3 B3,
Vector4& tmin, Real& lmin, Vector3& M0, Vector3& M1, Vector3& M2, Vector3& M3)

{
Vector3 mDelta0 = P0 - A;
Vector3 mDelta1 = P1 - A;
Vector3 mD0 = B0 - A;
Vector3 mD1 = B1 - A;
Vector3 mD2 = B2 - A;
Vector3 mD3 = B3 - A;
Real mDelta0SqrLength = Dot(mDelta0,mDelta0);
Real mDelta1SqrLength = Dot(mDelta1,mDelta1);
Real mD0SqrLength = Dot(mD0,mD0);
Real mD1SqrLength = Dot(mD1,mD1);
Real mD2SqrLength = Dot(mD2,mD2);
Real mD3SqrLength = Dot(mD3,mD3);
Real mD0DotD1 = Dot(mD0,mD1);
Real mD1DotD2 = Dot(mD1,mD2);
Real mD2DotD3 = Dot(mD2,mD3);
Real mD0DotDelta0 = Dot(mD0,mDelta0);
Real mD3DotDelta1 = Dot(mD3,mDelta1);

// Compute direction mU so that mHMin = F’(0) < 0.
Vector4 mU;
Real mHMin;
ComputeLargestInitialDecrease();
if (mHMin >= 0)
{

// The minimum is L(0,0,0,0), so nothing to do.
tmin = Vector4(0,0,0,0);
lmin = sqrt(mDelta0SqrLength) + sqrt(mDelta1SqrLength);
M0 = A;
M1 = A;
M2 = A;
M3 = A;

43

return;
}

// Search the ray (t0,t1,t2,t3) = s*(u0,u1,u2,u3), s >= 0, for a minimum. The search
// must be clamped to t0 <= 1, t1 <= 1, t2 <= 1, and t3 <= 1.
ClampToDomain(tmin);

// Compute the initial length and derivatives.
lmin = L(rkTMin);
Vector4 lder(LDer(0,tmin), LDer(1,tmin), LDer(2,tmin), LDer(3,tmin));

// Coordinate-direction search.
int maxIterations = <user-defined parameter>;
Vector3 prevtmin(0,0,0,0);
int i, j;
for (i = 0; i < maxIterations; i++)
{

// Terminate when (nearly) at the global minimum.
Real gradientEpsilon = <user-defined parameter>;
if (Length(lder) < gradientEpsilon)
{

break;
}

// Terminate when (nearly) at the global minimum.
Real differenceEpsilon = <user-defined parameter>;
if (Length(tmin - prevtmin) < differenceEpsilon)
{

break;
}
prevtmin = tmin;

for (j = 0; j < 4; j++)
{

if (lder[j] != 0)
{

Search(j,tmin,lmin,lder);
}

}
}

M0 = A + tmin[0] * mD0;
M1 = A + tmin[1] * mD1;
M2 = A + tmin[2] * mD2;
M3 = A + tmin[3] * mD3;

}

void ComputeLargestInitialDecrease ()
{

Real invD0Length = 1/sqrt(mD0SqrLength);
Real invD1Length = 1/sqrt(mD1SqrLength);
Real invD2Length = 1/sqrt(mD2SqrLength);
Real invD3Length = 1/sqrt(mD3SqrLength);
Vector3 E0 = mD0 * invD0Length;
Vector3 E1 = mD1 * invD1Length;
Vector3 E2 = mD2 * invD2Length;
Vector3 E3 = mD3 * invD3Length;
Vector3 Xi0 = mDelta0/Length(mDelta0);
Vector3 Xi1 = mDelta1/Length(mDelta1);
Real E0E1 = Dot(E0,E1);
Real E1E2 = Dot(E1,E2);
Real E2E3 = Dot(E2,E3);
Real E0Xi0 = Dot(E0,Xi0);
Real E3Xi1 = Dot(E3,Xi1);

// Compute g3’(0).
Real g3der0 = -E2E3 - E3Xi1;
if (g3der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector4(0,0,0,0);

44

mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with g3’(r3) = 0.
Real arg = (1 - E2E3 * E2E3)/(1 - E3Xi1 * E3Xi1);
Real rootArg = sqrt(arg);
Real rootM = E2E3 - E3Xi1 * rootArg;
Real rootP = E2E3 + E3Xi1 * rootArg;

Real r3 = 0;
Real absDerMin = INFINITY;
Vector3 diff;
Real der, absDer;
if (rootM > 0)
{

diff = E2 - rootM * E3;
der = (rootM - E2E3) - E3Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r3 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

diff = E2 - rootP * E3;
der = (rootP - E2E3) - E3Xi1 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r3 = rootP;
absDerMin = absDer;

}
}

// Compute g3(r3).
diff = E2 - r3 * E3;
Real g3r3 = Length(diff) - E3Xi1 * r3;

// Compute hat[g2]’(0).
Real g2der0 = -E1E2 + g3r3;
if (g2der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector4(0,0,0,0);
mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with hat[g2]’(r2) = 0.
arg = (1 - E1E2 * E1E2)/(1 - g3r3 * g3r3);
rootArg = sqrt(arg);
rootM = E1E2 - g3r3 * rootArg;
rootP = E1E2 + g3r3 * rootArg;

Real r2 = 0;
absDerMin = INFINITY;
if (rootM > 0)
{

diff = E1 - rootM * E2;
der = (rootM - E1E2) + g3r3 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r2 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

45

diff = E1 - rootP * E2;
der = (rootP - E1E2) + g3r3 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r2 = rootP;
absDerMin = absDer;

}
}

// Compute hat[g2](r2).
diff = E1 - r2 * E2;
Real g2r2 = Length(diff) + g3r3 * r2;

// Compute hat[g1]’(0).
Real g1der0 = -E0E1 + g2r2;
if (g1der0 >= 0)
{

// H cannot be negative on its domain.
mU = Vector4(0,0,0,0);
mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with hat[g1]’(r1) = 0.
arg = (1 - E0E1 * E0E1)/(1 - g2r2 * g2r2);
rootArg = sqrt(arg);
rootM = E0E1 - g2r2 * rootArg;
rootP = E0E1 + g2r2 * rootArg;

Real r1 = 0;
absDerMin = INFINITY;
if (rootM > 0)
{

diff = E0 - rootM * E1;
der = (rootM - E0E1) + g2r2 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)
{

diff = E0 - rootP * E1;
der = (rootP - E0E1) + g2r2 * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r1 = rootP;
absDerMin = absDer;

}
}

// Compute hat[g1](r1).
diff = E0 - r1 * E1;
Real g1r1 = -E0Xi0 + Length(diff);

// Compute the minimum of H.
mHMin = g1r1 + r1 * g2r2;
if (mHMin < (Real)0)
{

mU[0] = invD0Length;
mU[1] = r1 * invD1Length;
mU[2] = r1 * r2 * invD2Length;
mU[3] = r1 * r2 * r3 * invD3Length;
Normalize(mU);

}
else
{

mU = Vector4(0,0,0,0);

46

}
}

void ClampToDomain (Vector4& tmin)
{

int maxIndex = 0;
Real maxComp = mU[0];
if (mU[1] > maxComp)
{

maxIndex = 1;
maxComp = mU[1];

}
if (mU[2] > maxComp)
{

maxIndex = 2;
maxComp = mU[2];

}
if (mU[3] > maxComp)
{

maxIndex = 3;
maxComp = mU[3];

}

Real smax = 1/maxComp;
Real der1 = FDer(smax);
if (der1 <= 0)
{

for (int i = 0; i < 4; i++)
{

if (i != maxIndex)
{

tmin[i] = smax * mU[i];
}
else
{

tmin[i] = 1;
}

}
}
else
{

// der0 < 0 and der1 > 0, so bisect to find the root.
Real root = GetFRoot(0,mHMin,smax,der1);
tmin = mU * root;

}
}

Real FDer (Real s)
{

Vector3 tmp0 = mU[0] * mD0 - mU[1] * mD1;
Vector3 tmp1 = mU[1] * mD1 - mU[2] * mD2;
Vector3 tmp2 = mU[2] * mD2 - mU[3] * mD3;
Real result = Length(tmp0) + Length(tmp1) + Length(tmp2);
tmp0 = s * mU[0] * mD0 - mDelta0;
Real tmp3 = mU[0] * (mU[0] * mD0SqrLength * s - mD0DotDelta0);
result += tmp3/Length(tmp0);
tmp0 = s * mU[3] * mD3 - mDelta1;
tmp3 = mU[3] * (mU[3] * mD3SqrLength * s - mD3DotDelta1);
result += tmp3/Length(tmp0);
return result;

}

Real L (Vector4 t)
{

Vector3 diff0 = mDelta0 - t[0] * mD0;
Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Vector3 diffM3 = t[2] * mD2 - t[3] * mD3;
Vector3 diff1 = t[3] * mD3 - mDelta1;

47

return Length(diff0) + Length(diffM1) + Length(diffM2) + Length(diffM3) + Length(diff1);
}

Real LDer (int i, Vector4 t)
{

if (i == 0)
{

Vector3 diff0 = mDelta0 - t[0] * mD0;
Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Real a0t0 = mD0SqrLength * t[0];
return (a0t0 - mD0DotDelta0)/Length(diff0) + (a0t0 - mD0DotD1 * t[1])/Length(diffM1);

}
else if (i == 1)
{

Vector3 diffM1 = t[0] * mD0 - t[1] * mD1;
Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Real a1t1 = mD1SqrLength * t[1];
return (a1t1 - mD0DotD1 * t[0])/Length(diffM1) + (a1t1 - mD1DotD2 * t[2])/Length(diffM2);

}
else if (i == 2)
{

Vector3 diffM2 = t[1] * mD1 - t[2] * mD2;
Vector3 diffM3 = t[2] * mD2 - t[3] * mD3;
Real a2t2 = mD2SqrLength * t[2];
return (a2t2 - mD1DotD2 * t[1])/Length(diffM2) + (a2t2 - mD2DotD3 * t[3])/Length(diffM3);

}
else
{

Vector3 diffM3 = t[2] * mD2 - t[3] * mD3;
Vector3 diff1 = t[3] * mD3 - mDelta1;
Real a3t3 = mD3SqrLength * t[3];
return (a3t3 - mD2DotD3 * t[2])/Length(diffM3) + (a3t3 - mD3DotDelta1)/Length(diff1);

}
}

Real GetFRoot (Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
Real root = 0;
for (int i = 0; i < numIterations; i++)
{

root = (s0 + s1)/2;
Real derRoot = FDer(root);
Real product = derRoot * der0;
if (product < 0)
{

s1 = root;
der1 = derRoot;

}
else if (product > 0)
{

s0 = root;
der0 = derRoot;

}
else
{

break;
}

}
return root;

}

void GetLRoot (int j, Vector4& t, Real s0, Real der0, Real s1, Real der1)
{

int numIterations = <user-defined parameter>;
for (int i = 0; i < numIterations; i++)
{

t[j] = (s0 + s1)/2;
Real derRoot = LDer(j,t);

48

Real product = derRoot * der0;
if (product < 0)
{

s1 = t[j];
der1 = derRoot;

}
else if (product > 0)
{

s0 = t[j];
der0 = derRoot;

}
else
{

break;
}

}
}

void Search (int j, Vector4& tmin, Real& lmin, Vector4& lder)
{

Real save, der;

if (lder[j] > 0)
{

save = tmin[j];
tmin[j] = 0;
der = LDer(j,tmin);
tmin[j] = save;

if (der < (Real)0)
{

// Bisect [0,t[j]] to find the root.
GetLRoot(j,tmin,0,der,tmin[j],lder[j]);

}
else
{

tmin[j] = 0;
}

}
else // lder[j] < 0
{

save = tmin[j];
tmin[j] = 1;
der = LDer(j,tmin);
tmin[j] = save;

if (der > (Real)0)
{

// Bisect [t[j],1] to find the root.
GetLRoot(j,tmin,tmin[j],lder[j],1,der);

}
else
{

tmin[j] = 1;
}

}

lmin = L(tmin);
for (int i = 0; i < 4; i++)
{

lder[i] = LDer(i,tmin);
}

}

49

4.5 The N-Triangle Numerical Implementation

The pattern is clear in the 3-, 4-, and 5-triangle cases. The function ComputeLargestInitialDecrease is
the most complicated one, illustrated by the following pseudocode. To avoid having to remember the values
r̄1, r̄2, and so on, for use in computing the final U components, the U components are initialized to the
inverse lengths of the Di vectors. These components are updated each time a new r̄i value is computed.
The code also assumes the proper storage for Ei, ξ0, and ξ1, and the last two of these vectors are assumed
to have already been computed by the caller of the function.

void ComputeLargestInitialDecrease ()
{

int N = <number of t-parameters, the number of triangles minus one>;
int Nm1 = N - 1;
int i0, i1;

for (i0 = 0; i0 < N; i0++)
{

mU[i0] = 1/sqrt(mDSqrLength[i0]);
mE[i0] = mD[i0] * mU[i0];

}

for (i0 = 0, i1 = 1; i0 < Nm1; i0++, i1++)
{

mEDotENext[i0] = Dot(mE[i0],mE[i1]);
}

Real E0Xi0 = Dot(mE[0],mXi0);
Real ENm1Xi1 = Dot(mE[iNm1],mXi1);

Real gr = -ENm1Xi1;
Vector3 kDiff;
Real r;
int i, j;
for (i = iNm1; i >= 1; i--)
{

// Compute gi’(0).
Real Eim1Ei = mEDotENext[i-1];
Real gder0 = -Eim1Ei + gr;
if (gder0 >= 0)
{

// H cannot be negative on its domain.
mU = VectorN::ZERO;
mHMin = 0;
return;

}

// Compute the roots for the quadratic associated with gi’(ri) = 0.
Real arg = (1 - Eim1Ei * Eim1Ei)/(1 - gr * gr);
Real rootArg = sqrt(fArg);
Real rootM = Eim1Ei - gr * rootArg;
Real rootP = Eim1Ei + gr * rootArg;

r = 0;
Real absDerMin = INFINITY;
Real der, absDer;
if (rootM > 0)
{

diff = mE[i-1] - rootM * mE[i];
der = (rootM - Eim1Ei) + gr * Length(diff);
absDer = fabs(der);
if (absDer < absDerMin)
{

r = rootM;
absDerMin = absDer;

}
}
if (rootP > 0)

50

{
diff = mE[i-1] - rootM * mE[i];
der = (rootP - Eim1Ei) + gr * Length(diff);
absDer = abs(der);
if (absDer < absDerMin)
{

r = rootP;
absDerMin = absDer;

}
}

// Compute gi(ri).
diff = mE[i-1] - r * mE[i];
gr = Length(diff) + gr * r;

// Partial construction of U.
for (j = Nm1; j >= i; j--)
{

mU[j] *= r;
}

}

// Compute the minimum of H.
mHMin = gr - E0Xi0;
if (mHMin < 0)
{

Normalize(mU);
}
else
{

mU = VectorN::ZERO;
}

}

The actual code is in the files

GeometricTools/WildMagic4/SampleFoundation/TriangleMeshGeodesics/GeodesicSpecial.{h,cpp}

and handles internally the 1- and 2-triangle cases separately from the case of 3 or more triangles.

5 The General Case

The endpoints of the geodesic are Q0 and Q1. Insert these into the triangle mesh as vertices. If inserted
into the interior of a triangle, subdivide to three new triangles and edges. If inserted into the interior of an
edge of a triangle, subdivide two triangles to four triangles and split the edge. If already a vertex, nothing
to do.

Use Dijkstra’s algorithm to compute a minimum-length path of mesh edges that connect Q0 to Q1. Let this
path be

〈P0,P1, . . . ,Pn〉 (98)

where P0 = Q0 and Pn = Q1.

Relaxation now begins. Start with 〈P0,P1,P2〉. Figure 5.1 shows the neighborhood of edges and triangles
for P1.

51

Figure 5.1 The shortest edge path between P0 and P2 is through P1. The neighborhood of P1 is
shown. One relaxation is made in the collection of purple triangles, another in the collection of blue
triangles.

If the subpath can be made shorter, P1 is removed from the current path and new vertices are added. For
example, if the relaxation takes the curve into the collection of purple triangles, then two new vertices are
added and the updated current path is 〈P0,M0,M1,P2, . . . ,Pn〉. The process is repeated for 〈P2,P3,P4〉,
and so on, until the last triple of vertices is processed.

The third pass starts a sequence of iterations over the vertices of the current candidate for the geodesic. If
the current path is

〈P′
0,P

′
1, . . . ,P

′
n−1,P

′
n〉 (99)

then each triple 〈P′
i−1,P

′
i,P

′
i+1〉 is processed for 1 ≤ i ≤ n − 1. The middle vertex P′

i is either a mesh
vertex or a point living in the interior of a mesh edge. If it is a mesh vertex, then the update is based on
the ideas mentioned previously about removing the vertex from the path and replacing it by some edge-
interior vertices. If it is an edge-interior point, then it is moved based on the minimization discussed for two
consecutive triangles. This algorithm requires tagging the points in the current path about whether they are
mesh vertices or edge-interior points.

The sequence of iterations continue until some convergence criterion is met.

52

	1 Introduction
	2 Two Triangles
	2.1 Setting Up the Minimization Problem
	2.2 Analysis of Convexity
	2.3 Examples
	2.4 Numerical Implementation

	3 Three Triangles
	3.1 Setting Up the Minimization Problem
	3.2 Analysis of Convexity
	3.3 Examples
	3.4 Iterative Search for a Minimum
	3.4.1 Determining Whether a Minimum Search is Necessary
	3.4.2 Searching for a Minimum

	3.5 Numerical Implementation

	4 More Than Three Triangles
	4.1 Iterative Search for a Minimum
	4.1.1 The Case of Four Triangles
	4.1.2 The Case of Five Triangles

	4.2 Analysis of Convexity
	4.3 The Four-Triangle Numerical Implementation
	4.4 The Five-Triangle Numerical Implementation
	4.5 The N-Triangle Numerical Implementation

	5 The General Case

