Fast Gaussian Blur
David Eberly

Geometric Tools, LLC
http://www.geometrictools.com/

Copyright (©) 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: March 2, 2008

Contents

1 Discussion

http://www.geometrictools.com/

1 Discussion

The most popular method we have used here for blurring is to do it as a convolution of a Gaussian kernel
with the image by using fast Fourier transforms. However, the implementations of FFTs usually have two
problems. The first problem is that a nonnegative image when blurred by an FF'T may have negative values as
a result of numerical round-off errors. A region of positive measure for which the initial image is identically
zero becomes a region for which there are many sign fluctuations on numbers of small magnitude. The
fluctuations create many problems in my other applications which require Gaussian blurring. The second
problem is that for large scale blurring, the FFTs produced artifacts (near the four corners of 2-dimensional
images) which look like bright four-point stars. This also causes problems in my applications.

An alternate approach to Gaussian blurring is to notice that it is equivalent to solving an initial value
problem for the partial differential equation u; = V2u over R" where the initial data is the image you want
blurred. Large t corresponds to large scale blurring. Unfortunately, you must iterate through time. To get
a blurred image at large scale using the standard finite difference methods requires a lot of iterations.

I have a different approach. The standard deviation of the Gaussian is related to time by t = 02/2. The
partial differential equation in this coordinate system is cu, = 0?V?u. You can set up a finite difference
scheme by observing that
. u(z,bo) —u(z,0)
Uy, = lim
ote =04 In(b)

and

. ulz+ho,0) —2u(z,0) + u(x — ho,o
P =ty)= e+ o)

Similar spatial derivative formulas occur for each spatial variable. If you have samples u(z;, o) for positions
z;, sample scale as o), = ob® for some oy > 0 and for some b > 1, and if you want to sample u(z;,0;), then
the finite difference scheme to do so is

u(wi,0541) = u(, 05) +) u(z; + 05,05) = 2u(zi, 05) + u(z; — 0j)].

The quantities x; +0; may not be grid points themselves, but I do a linear interpolation of the nearest image
values to estimate v at the nongrid points. If the x; = 0 are outside the grid, I just clip them to the image
boundary. The ideas extend naturally to higher dimensions.

You still need to worry about numerical stability of the algorithm. Using a method similar to the one you
apply to the regular finite difference problem, you need In(b) < 0.5 for dimension 1, so b < exp(0.5) = 1.649.
For dimension 2 with equal and y grid spacings, you need b < exp(0.25) = 1.284. For dimension 3 with
equal z, y, and z grid spacings, you need b < exp(1/6) = 1.181. However, note that the scale sampling is
geometric, not linear: b is a multiplier. Moreover, the method is asymptotically stable, so the total error
tends to decrease as scale increases. This means you can blur to a larger scale by much fewer steps if you
use the above approach.

A simple test on a fast workstation for a 256 x 256 x 128 data set showed that Gaussian blurring via a
general purpose FFT program took about 1 hour (which unfortunately included some swap time), but the
finite difference scheme as described took about 5 minutes for a single scale. For larger scales, the finite
difference scheme must be iterated. As long as the number of iterations keeps the total time less than that for
the FFT program, the algorithm is effective. Of course, the trade-off is that the FFT generally has smaller
errors than the finite difference. But the real measure needed for processing large data sets is the cost which
balances error and runtime.

For an implementation, see the files

GeometricTools/WildMagic4/LibImagics/Filters/Wm4FastBlur.{h,cpp}

	1 Discussion

