
Intersection of Objects with Linear and Angular
Velocities using Oriented Bounding Boxes

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: March 2, 2008

Contents

1 Introduction 2

2 Equations of Motion 2

3 Closed-Form Algorithm 4

4 Algorithm Based on a Numerical ODE Solver 4

5 What is Next 5

1

http://www.geometrictools.com/

1 Introduction

This document is based on the ideas in Dynamic Collision Detection using Oriented Bounding Boxes, another
document at this web site. The latter document describes the algorithm for determining if two oriented
bounding boxes are intersecting. The boxes can have constant linear velocities. The method for showing
non-intersection is based on computing a separating axis for the two boxes. Such an axis has the property
that the projections of the two boxes onto the axis do not intersect.

The current document shows how to extend the ideas of non-intersection to oriented bounding boxes that have
both linear and angular velocities. The algorithm is first presented in a closed-form fashion. Determination
of non-intersection is equivalent to showing that at least one function of time (from a set of fifteen non-
negative functions) is positive on the specified time interval. The functions contain sine and cosine terms of
two different frequencies. Evaluation of these is expensive unless lookup tables are used. Moreover, to show
that the function is positive requires a numerical method for constructing the minimum of the function.
The iterative schemes can be expensive, too. Alternatively one may select a fixed number of samples on the
specified time interval and evaluate the functions and those samples. Given that the trigonometric values
are handled by lookup tables, there is an additional problem in that the function values at the samples are
all positive, yet the minimum function value is zero.

A better alternative is to formulate the problem in terms of differential equations. In this form no trigono-
metric function evaluations are required. A numerical method must be used for solving the equations, but
it can be as simple as using Euler’s method. The same problem exists as in the last paragraph–the numer-
ical method effectively generates a sequence of function values that might all be positive, yet the function
minimum is zero. For better accuracy and stability, a Runge-Kutta method can be used. Regardless of
differential equation solver, the alternative algorithm creates a sequence of oriented bounding boxes for
each initial box and uses the linear velocity algorithm to determine intersection of two boxes between two
consecutive elements of the sequence.

2 Equations of Motion

The high level abstraction is to have an object that is tagged with a center point C, an origin for a frame of ref-
erence, and a coordinate frame U0, U1, and U2, three mutually orthonormal vectors forming a right-handed
system. The coordinate axes are represented as the three columns of a rotation matrix R = [U0 U1 U2].
The object is assigned a linear velocity V and an angular velocity W. The axis of rotation has origin C,
direction W, and the speed of rotation is |W|.

The object is associated with an oriented bounding box tree. Each box in the OBB tree is offset from the
object center and has a frame that is typically not oriented the same as the object frame. The motion of
each box is determined by the motion of the object.

Coordinates of a point X can be measured relative to the object coordinate system as X = C + RY. The
relative coordinates are represented by Y. For time varying center C(t) and frame R(t), the initial point Y
follows the path

X(t,Y) = C(t) + R(t)Y

where the dependency on Y is emphasized by the explicit mention of Y in the functional form of X. For

2

constant linear and angular velocities, the center and frame are

C(t) = C0 + tV

R(t) = exp(skew (W) t)R0

where C0 is the initial center and R0 is the initial frame. If W = (w0, w1, w2), then [Sij] = skew (W) is
the skew-symmetric matrix whose diagonal entries are S00 = S11 = S22 = 0 and whose other entries are
S01 = −S10 = w2, S02 = −S20 = −w1, and S12 = −S21 = w0. The matrix exp(skew (W) t) is the rotation
matrix that represents the rotation whose axis is in the direction of W and whose angle of rotation is |W|t.

The motion for constant linear and angular velocities is therefore

X(t,Y) = C0 + tV + exp(skew (W) t)R0Y

for t ≥ 0. The differential equation governing the motion of the object is

dX
dt = V + skew (W) exp(skew (W) t)R0Y

= V + skew (W) (X− (C0 + tV))

= V + W× (X− (C0 + tV)) .

Since the motion is rigid, the OBBs in the OBB tree are governed by the same differential equation. However,
the center and frame for an OBB can be derived from basic principles. If C1 is the OBB initial center and
R1 is the OBB initial frame, then in terms of the object coordinate system, C1 = C0 +R0ξ for some relative
coordinate vector ξ. The time-varying path of the OBB center is

K(t) = X(t, ξ)

= C(t) + R(t)ξ

= C0 + tV + [exp(skew (W) t)R0][RT
0 (C1 −C0)]

= C0 + tV + exp(skew (W) t)(C1 −C0)

The time-varying OBB frame is simply the application of the object’s relative rotation to the box’s frame,

P (t) = exp(skew (W) t)R1.

If X(t,Y) = K(t) + P (t)Y, then

dX
dt = dK(t)

dt + dP(t)
dt Y

= V + skew (W) exp(skew (W) t)(C1 −C0) + skew (W) exp(skew (W) t)R1Y

= V + skew (W) (X− (C0 + tV))

= V + W× (X− (C0 + tV)) .

This verifies that in fact the OBB is governed by the equations of motion of the object.

3

3 Closed-Form Algorithm

The closed-form approach is illustrated with one of the separating axis tests. The other axes are processed
in a similar fashion. The notation in this section is based on that of Dynamic Collision Detection using
Oriented Bounding Boxes.

For two stationary OBBs (one from each OBB tree for the two interacting objects), the non-intersection test
based on the axis with direction A0 is

|A0 ·D| > a0 + |b0c00|+ |b1c01|+ |b2c02|

where the cij are the entries of matrix C = ATB with columns of A being the axes of the first box and
columns of B being the axes of the second box. The values ai and bi are the extents of the boxes. Finally,
D is the difference between the second and first box centers.

Let Ki(t) and Pi(t), i = 0, 1 represent the time-varying centers and coordinate frames for the two boxes.
Let A0(t) be the first column of P0(t). The non-intersection test is now time-varying and is

|A0(t) · (K1(t)−K0(t))| > a0 + |b0c00(t)|+ |b1c01(t)|+ |b2c02(t)|

where C(t) = P0(t)TP1(t).

Each object has (possibly) different angular velocities. Generally the sinusoidal terms in P0(t) and P1(t) have
different frequencies. The non-intersection test therefore contains sinusoidals of two frequencies. The centers
Ki(t) themselves include sinusoidal terms whenever the box centers are not the same as the object centers.
Verifying the inequality in the test for all t in a specified interval is not a simple problem. The verification
of `(t) > r(t) for t ∈ [0, T] is equivalent to showing that δ(t) = `(t) − r(t) has a positive minimum for
t ∈ [0, T]. This can be done by applying a numerical minimizer to δ(t), probably using an inverse parabolic
interpolator such as Brent’s method. This is expensive in that each function evaluation requires computing
sinusoidal functions. The cost can be reduced by using table lookups, but the iteration itself might not always
converge to an acceptable value in the same number of steps per non-intersection test. Better control on the
process would be to select a fixed number of evaluations per test, say N > 0, and compute δi = δ(Ti/N) for
0 ≤ i ≤ N . The minimum of the δi is computed and, if sufficiently larger than zero (the application must
select a threshold), the boxes are determined not to intersect.

4 Algorithm Based on a Numerical ODE Solver

Rather than evaluating the δi per potential separating axis, a better approach is to numerically solve the
equations of motion for t ∈ [0, T]. For the first box, solve

dX
dt

= V + W× (X− (C0 + tV))

for t > 0 with initial condition X(0) = K0. The simplest approach is to use Euler’s method and iterate N
times on the given interval. The time steps are ti = Ti/N for 0 ≤ i ≤ N . Define Xi to be the numerical
approximation to X(ti); then X0 = K0 and

Xi+1 = Xi +
T

N
[V + W× (Xi −C0 + tiV)]

4

where the first object has center C0, linear velocity V, and angular velocity W. The iteration scheme is
evaluated for 0 ≤ i < N . This produces a sequence of centers for the first box, X0 through XN . The
coordinate frame is also integrated using

dP

dt
= skew (W) P

for t > 0 with initial condition P (0) = R1. Using Euler’s method, the values Pi are approximations to P (ti)
and the iterations are

Pi+1 = Pi +
T

N
skew (W)Pi =

(
I +

T

N
skew (W)

)
Pi.

The numerical scheme does not preserve the orthonormality of the matrix. That is, P0 = R1 is orthonormal,
but P1 is not necessarily orthonormal. For very small T/N , P1 is nearly orthonormal and can be used as
is. However, it might be desirable to renormalize Pi at each step. This can be done by using Gram-Schmidt
orthonormalization on the three columns of Pi.

After the center and frame iterates have been generated, the sequence of centers and frames for the first
moving OBB are Xi and Pi. The second moving OBB has similar sequences Yi and Qi. For each i, the
linear velocity of the first OBB over the corresponding time subinterval is set to V0 = Xi+1 −Xi and that
of the second OBB is set to V1 = Yi+1 = Yi. On the time subinterval, the two boxes are compared as if
they have only linear velocities. The first OBB has center Xi, coordinate frame Pi, and velocity V0. The
second OBB has center Yi, coordinate frame Qi, and velocity V1. The algorithm (and code) mentioned in
Dynamic Collision Detection using Oriented Bounding Boxes is applied each of the N pairs of OBBs. For a
given potential separating axis, if the N tests all show non-intersection, then the axis is separating and the
two OBBS do not intersect on the given time interval.

A more accurate but more expensive method such as Runge-Kutta could be used to generate the iterates
for the centers and frames.

5 What is Next

Just a note to others (and myself). When I get enough time and motivation, I will modify the OBB tree
collision system at my web site to include angular velocity and an executable that illustrates how it works.
This is a major project.

5

	1 Introduction
	2 Equations of Motion
	3 Closed-Form Algorithm
	4 Algorithm Based on a Numerical ODE Solver
	5 What is Next

