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About the Book

The book shows the story of lambda expressions. You’ll learn how to use this
powerful feature in a step-by-step manner, slowly digesting the new
capabilities and enhancements that come with each revision.

We’ll start with C++98/03, and then we’ll move on to the latest C++
Standards.

C++98/03 - how to code without lambda support. What was the
motivation for the new modern C++ feature?
C++11 - early days. You’ll learn about all the elements of a lambda
expression and even some tricks. This is the longest chapter as we need
to cover a lot.
C++14 - updates. Once lambdas were adopted, we saw some options to
improve them.
C++17 - more improvements, especially by handling this pointer and
allowing constexpr .
C++20 - in this section we’ll have a glimpse of the future.

Additionally, you’ll find techniques and handy patterns throughout the
chapters for using lambda in your code.

Walking through the evolution of this powerful C++ feature allows us not
only to learn lambdas but also to see how C++ has changed over recent years.
In one section you’ll see a technique and then it will be “iterated” and
updated in further chapters when new C++ elements are available. When
possible, the book cross-links to other related sections of the book.

Roots Of The Book
The idea for the content started after a live coding presentation given by
Tomasz Kamiński at our local Cracow C++ User Group.

I took the ideas from the presentation (with Tomek’s permission, of course :)



and then created two articles that appeared at bfilipek.com:

Lambdas: From C++11 to C++20, Part 1
Lambdas: From C++11 to C++20, Part 2

Later, I decided that I want to offer my readers not only blog posts but a nice-
looking PDF. Leanpub provides an easy way to create such PDFs, so it was
the right choice to copy the articles’ content and create a Leanpub book.

Why not move further?

After some time, I decided to write more content, update the examples,
provide better use cases and patterns. And here you have the book! It’s now
almost four times the size of the initial material that is available on the blog!

Who This Book is For
This book is intended for all C++ developers who like to learn all about a
modern C++ feature: lambda expressions.

Reader Feedback
If you spot an error, a typo, a grammar mistake… or anything else (especially
logical issues!) that should be corrected, then please send your feedback to
bartlomiej.filipek AT bfilipek.com.

You can also use this place:

Leanpub Book’s Feedback Page

What’s more, the book has a dedicated page at GoodReads. Please share your
review there:

C++ Lambda Story @GoodReads

Code License
The code for the book is available under the Creative Commons License.

https://www.bfilipek.com/2019/02/lambdas-story-part1.html
https://www.bfilipek.com/2019/03/lambdas-story-part2.html
https://leanpub.com/cpplambda/feedback
https://www.goodreads.com/book/show/53609731-c-lambda-story


Formatting
The code is presented in a monospaced font, similar to the following
example:

For longer examples:
Title Of the Example

#include <iostream>

int main () {

    std:: string text = "Hello World" ;

    std:: cout << text << '\n' ;

}

Or shorter snippets:
int foo () {

    return std:: clamp(100 , 1000 , 1001 );

}

When available, you’ll also see a link to the online compiler where you can
play with the code. For example:

Example title. Live code @Wandbox
#include <iostream>

int main () {

    std:: cout << "Hello World!" ;

}

You can click on the link in the title and then it should open the website of a
given online compiler (in the above case it’s Wandbox). You can compile the
sample, see the output and experiment with the code.

Snippets of longer programs were usually shortened to present only the core
mechanics.

Usually, source code uses full type names with namespaces, like
std::string , or std::vector . However, to make code compact and present
it nicely on a book page the namespaces sometimes might be removed, so
they don’t use space. Also, to avoid line wrapping, longer lines might be
manually split into two. In some cases, the code in the book might skip
include statements.

https://wandbox.org/permlink/Yz44BM8w5Smjhkm4


Syntax Highlighting Limitations
The current version of the book might show some limitations regarding
syntax highlighting.

For example:

if constexpr - Link to Pygments issue: #1432 - C++ if constexpr not
recognized (C++17) .
The first method of a class is not highlighted - #1084 - First method of
class not highlighted in C++ .
Template method is not highlighted #1434 - C++ lexer doesn’t
recognize function if return type is templated .
Modern C++ attributes are sometimes not recognised properly.

Other issues for C++ and Pygments: issues C++ .

Online Compilers
Instead of creating local projects to play with the code samples, you can also
leverage online compilers. They offer a basic text editor and usually allow
you to compile only one source file (the code that you edit). They are
convenient if you want to play with code samples and check the results using
various compilers vendors and versions.

For example, many of the code samples for this book were created using
Coliru Online, Wandbox or Compiler Explorer and then adapted for the book.

Here’s a list of some of the useful services:

Coliru - uses GCC 9.2.0 (as of July 2020), offers link sharing and a basic
text editor, it’s simple but very effective.
Wandbox - offers a lot of compilers, including most Clang and GCC
versions, can use boost libraries; offers link sharing and multiple file
compilation.
Compiler Explorer - offers many compilers, shows generated assembly
code, can execute the code, or even make static code analysis.
CppBench - runs simple C++ performance tests (using google
benchmark library).

https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B
http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://quick-bench.com/


C++ Insights - a Clang-based tool for source to source transformation. It
shows how the compiler sees the code, for example by expanding
lambdas, auto, structured bindings, template deduction, variadic packs
or range-based for loops.

There’s also a helpful list of online compilers gathered on this website: List
of Online C++ Compilers .

https://cppinsights.io/
https://arnemertz.github.io/online-compilers/
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1. Lambdas in C++98/03

To start out, it’s good to create some background for our main topic. To do
this, we’ll move into the past and look at code that doesn’t use any modern
C++ techniques.

In this chapter, you’ll learn:

How to pass functors to algorithms from the Standard Library.
The limitations of functors and function pointers.
Why functional helpers weren’t good enough.
The motivation for the new feature for C++0x/C++11.



Callable Objects in C++98/03
One of the fundamental ideas of the Standard Library is that algorithms like
std::sort , std::for_each , std::transform and many others, can take any
callable object and call it on elements of the input container. However, in
C++98/03, this only included pointers to functions and functors.

As an example, let’s have a look at an application that prints all elements of a
vector.

In the first version we’ll use a regular function:
A basic print function. Live code @Wandbox

#include <algorithm>

#include <iostream>

#include <vector>

void PrintFunc (int x) {

    std:: cout << x << std:: endl;

}

int main () {

    std:: vector< int > v;

    v.push_back(1 );

    v.push_back(2 );

    std:: for_each(v.begin(), v.end(), PrintFunc);   

}

The code above uses std::for_each to iterate over a vector (we use
C++98/03 so range-based for loop is not available!) and then it passes
PrintFunc as a callable object.

We can convert this simple function into a functor:
A basic print functor. Live code @Wandbox

#include <algorithm>

#include <iostream>

#include <vector>

struct PrintFunctor {

    void operator ()(int x) const {

        std:: cout << x << std:: endl;

    }

};

int main () {

    std:: vector< int > v;

    v.push_back(1 );

    v.push_back(2 );

    std:: for_each(v.begin(), v.end(), PrintFunctor());   

https://wandbox.org/permlink/XiMBBTOG122vplUS
https://wandbox.org/permlink/7OGJzJlfg40SSQUG


}

The example defines a simple functor with operator() .

While function pointers are usually stateless 1 , functors can hold member
variables which allow storing state. One example is to count the number of
invocations of a callable object in an algorithm. This solution needs to store a
counter that functor is updated with each lambda call:

Functor with a state. Live code @Wandbox
#include <algorithm>

#include <iostream>

#include <vector>

struct PrintFunctor {

    PrintFunctor(): numCalls(0 ) { }

    

    void operator ()(int x) const {

        std:: cout << x << '\n' ;

        ++ numCalls;

    }

    

    mutable int numCalls;

};

int main () {

    std:: vector< int > v;

    v.push_back(1 );

    v.push_back(2 );

    const PrintFunctor visitor = std:: for_each(v.begin(), v.end(),

                                               PrintFunctor());

    std:: cout << "num calls: " << visitor.numCalls << '\n' ;

}

In the above example, we used a member variable numCalls to count the
number of invocations of the call operator. Since the call operator is a const
member function, I had to use a mutable variable.

As you can easily predict, we should get the following output:
1

2

num calls: 2

We can also “capture” variables from the calling scope. To do that we have to
create a member variable in our functor and initialise it in the constructor.

Functor with a ‘captured’ variable. Live code @Wandbox
#include <algorithm>

https://wandbox.org/permlink/ogenCfT7ZCTbRIkZ
https://wandbox.org/permlink/Ogi8rPQbVGeCtYER


#include <iostream>

#include <string>

#include <vector>

struct PrintFunctor {

    PrintFunctor(const std:: string& str): 

        strText(str), numCalls(0 ) { }

    

    void operator ()(int x) const {

        std:: cout << strText << x << '\n' ;

        ++ numCalls;

    }

    

    std:: string strText;

    mutable int numCalls;

};

int main () {

    std:: vector< int > v;

    v.push_back(1 );

    v.push_back(2 );

    const std:: string introText("Elem: " );

    const PrintFunctor visitor = std:: for_each(v.begin(), v.end(),

                                         PrintFunctor(introText));

    std:: cout << "num calls: " << visitor.numCalls << '\n' ;

}

In this version, PrintFunctor takes an extra parameter to initialise a member
variable. Then this variable is used in the call operator. So the expected
output is as follows:
Elem: 1 

Elem: 2 

num calls: 2 

Issues with Functors
As you can see, functors are powerful. They are represented by a separate
class, and you can design them any way you like.

However, in C++98/03, the problem was that you had to write a function or a
functor in a different place than the invocation of the algorithm. This could
mean that the code for a function could be dozens or hundreds of lines later
earlier or further in the source file.

As a potential solution, you might have tried writing a local functor class,
since C++ always has support for that syntax. But that didn’t work…

See this code:



A Local Functor
int main () {

    struct PrintFunctor {

        void operator ()(int x) const {

            std:: cout << x << std:: endl;

        }

    };

    

    std:: vector< int > v(10 , 1 );

    std:: for_each(v.begin(), v.end(), PrintFunctor());   

}

Try to compile it with -std=c++98 and you’ll see the following error on
GCC:
error: template argument for

'template<class _IIter, class _Funct> _Funct

std::for_each(_IIter, _IIter, _Funct)'

uses local type 'main()::PrintFunctor'

Basically, in C++98/03, you couldn’t instantiate a template with a local type.

Once the limitations are recognised and understood, C++ programmers found
ways to work around the issues with C++98/03. One solution is to prepare a
set of helpers.

Composing With Functional Helpers
How about having some helpers and predefined functors?

If you check the <functional> header from the Standard Library, you’ll find
a lot of types and functions that can be immediately used with the standard
algorithms.

For example:

std::plus<T>() - takes two arguments and returns their sum.
std::minus<T>() - takes two arguments and returns their difference.
std::less<T>() - takes two arguments and returns if the first one is
smaller than the second.
std::greater_equal<T>() - takes two arguments and returns if the first
is greater or equal to the second.
std::bind1st - creates a callable object with the first argument fixed to



the given value.
std::bind2nd - creates a callable object with the second argument fixed
to the given value.
and many more.

Let’s write some code that benefits from the helpers:
Using old C++98/03 functional helpers. Live code @Wandbox

#include <algorithm>

#include <functional>

#include <vector>

int main () {

    std:: vector< int > v;

    v.push_back(1 );

    v.push_back(2 );

    // .. push back until 9... 

    const size_t smaller5 = std:: count_if(v.begin(), v.end(),

                                        std:: bind2nd(std:: less< int > (), 5 ));

        

    return smaller5 ;                                        

}

The example uses std::less and fixes its second argument by using
std::bind2nd . This whole “composition” is passed into count_if 2 . As you
can probably guess, the code expands into a function that performs a simple
comparison:
return x < 5 ;

If you wanted more ready-to-use helpers, then you can also look at the boost
library, for example boost::bind .

Unfortunately, the main issue with this approach is the complexity and hard-
to-learn syntax. For instance, writing code that composes two or more
functions is not natural. Have a look below:

Composing functional helpers. Live Code @Wandbox
using std:: placeholders:: _1;

std:: vector< int > v;

v.push_back(1 );

v.push_back(2 );

// .. push back until 9... 

const size_t val = std:: count_if(v.begin(), v.end(),

                           std:: bind(std:: logical_and< bool > (),

                           std:: bind(std:: greater< int > (),_1, 2 ),

                           std:: bind(std:: less_equal< int > (),_1,6 )));

https://wandbox.org/permlink/9KgfRwwC3Dza2ZVh
https://wandbox.org/permlink/D7XjbyM0i2nslhRU


  

// _1 comes from the std::placeholder namespace 

The composition uses std::bind (from C++11, so we cheated a bit, it’s not
C++98/03) with std::greater and std::less_equal connected with
std::logical_and . Additionally, the code uses _1 which is a placeholder for
the first input argument.

While the above code works, and you can define it locally, you probably
agree that it’s complicated and not natural syntax. Not to mention that this
composition represents only a simple condition:
return x > 2 && x <= 6 ;

Is there anything better and more natural to use?

Motivation for a New Feature
As you can see, in C++98/03, there were several ways to declare and pass a
callable object to algorithms and utilities from the Standard Library.
However, all of those options were a bit limited. For example, you couldn’t
declare a local functor object, or it was complicated to compose a function
with functional helper objects.

Fortunately with C++11 we finally saw a lot of improvements!

First of all, the C++ Committee lifted the limitation of the template
instantiation with a local type. Now you can write functors locally, in the
place where you need them.

What’s more, C++11 also brought another idea to life: what if the compiler
could “write” such small functors for developers? That would mean that with
some new syntax, we could create functors “in place” and open the door to
cleaner and more compact syntax.

And that was the birth of “lambda expressions”!

If we look at N3337 - the final draft of C++11, we can see a separate section
for lambdas: [expr.prim.lambda] .

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda


Let’s have a look at this new feature in the next chapter.



2. Lambdas in C++11

Hooray! The C++ Committee heard voices of developers, and since C++11
we got lambda expression!

Lambdas quickly become one of the most recognisable features of modern
C++.

You can read the spec located under N3337 - the final draft of C++11.

And the separate section for lambdas: [expr.prim.lambda] .

I think the committee added lambdas in a smart way to the language. They
incorporate new syntax, but then the compiler “expands” it into an unnamed
“hidden” functor object. This way we have all the advantages (and
disadvantages) of the real strongly typed language, and it’s relatively easy to
reason about the code.

In this chapter, you’ll learn:

The basic syntax of lambdas.
How to capture variables.
How to capture member variables.
The return type of a lambda.
What a closure object is.
How lambda can be converted to a function pointer and use it with C-
style API.
What’s IIFE.
How to inherit from a lambda expression and why it can be useful.

Let’s go!

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda


The Syntax of Lambda Expression
Below you can find a “diagram” that illustrates the syntax for lambdas:
[] () specifiers exception attr -> ret { /*code; */ }

^  ^  ^                            ^

|  |  |                            |

|  |  |                            optional: trailing return type

|  |  |

|  |  optional: mutable, exception specification or noexcept, attributes

|  |

|  parameter list (optional when no specifiers added)

|

lambda introducer with an optional capture list

Before we start it’s handy to bring some core definitions from the C++
Standard:

From [expr.prim.lambda#2] :

The evaluation of a lambda-expression results in a prvalue temporary. This temporary is
called the closure object .

And from [expr.prim.lambda#3] :

The type of the lambda-expression (which is also the type of the closure object) is a
unique, unnamed non-union class type — called the closure type .

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#3


A Few Examples of Lambda Expressions:
// 1. the simplest lambda: 

[]{};

In the first example, you can see a “minimal” lambda expression. It only
needs the [] and then the empty {} for the function body. The argument list -
() - is optional and not needed in this case.
// 2. with two params: 

[](float f, int a) { return a * f; };

[](int a, int b) { return a < b; };

In the second example, probably one of the most common, you can see that
the arguments are passed into the () section, just like for a regular function.
The return type is not needed, as the compiler will automatically deduce it.
// 3. trailing return type: 

[](MyClass t) -> int { auto a = t.compute(); print(a); return a; };

In the above example, we explicitly set a return type. The trailing return type
is also available for regular function declaration since C++11.
// 4. additional specifiers: 

[x](int a, int b) mutable { ++ x; return a < b; };

[](float param) noexcept { return param* param; };

[x](int a, int b) mutable noexcept { ++ x; return a < b; };

The last example shows that before the body of the lambda, you can use other
specifiers. In the code, we used mutable (so that we can change the captured
variable) and also noexcept . The third lambda uses mutable and noexcept
and they have to appear in that order (you cannot write noexcept mutable as
the compiler rejects it).

While the () part is optional, if you want to apply mutable or noexcept then
() needs to be in the expression:
// 5. optional () 

[x] { std:: cout << x; }; // no () needed 

[x] mutable { ++ x; };    // won't compile! 

[x]() mutable { ++ x; };  // fine - () required before mutable 

[] noexcept { };        // won't compile! 

[]() noexcept { };      // fine 

The same pattern applies for other specifiers that can be applied on lambdas



like constexpr or consteval in C++17 and C++20.

Attributes

The syntax for lambdas also allows using attributes introduced in the form of
[[attr_name]] . However, if you apply an attribute to a lambda, then it
applies to the type of the call operator and not to the operator itself. That’s
why currently (and even in C++20) there are no attributes that make sense to
put on a lambda. Most compilers even report an error. If we take a C++17
attribute and try to use it with the expression:
auto myLambda = [](int a) [[nodiscard]] { return a * a; };

Generates the following errors on Clang (see live code @Wandbox ):
error: 'nodiscard' attribute cannot be applied to types

Compiler Expansion
As a summary, here’s a basic code example that shows how to write a lambda
expression and pass it to std::for_each . For comparison, the code also
illustrates the corresponding functor type:

First Lambda and a Corresponding Functor. Live code @WandBox
#include <algorithm>

#include <iostream>

#include <vector>

int main () {

    struct {

        void operator ()(int x) const {

            std:: cout << x << '\n' ;

        }

    } someInstance;

    

    const vector< int > v { 1 , 2 , 3 };

    std:: for_each(v.cbegin(), v.cend(), someInstance);

    std:: for_each(v.cbegin(), v.cend(), [] (int x) {

            std:: cout << x << '\n' ;

        }

    );    

}

In the example, the compiler transforms…
[](int x) { std:: cout << x << '\n' ; }

…into an anonymous functor that in a simplified form can look as follows:

https://wandbox.org/permlink/3zfzL1NNpPXXgLOx
https://wandbox.org/permlink/XXR02LXYAngHF5dt


struct {

    void operator ()(int x) const {

        std:: cout << x << '\n' ;

    }

} someInstance;

The process of translation or “expansion” can be easily viewed on C++
Insights an online tool which takes valid C++ code and then produces a
source code version that the compiler generates: like anonymous functors for
lambdas, template instantiation and many other C++ features.

In the next sections we’ll dive more into the individual parts of the lambda
expression.

The Type of a Lambda Expression
Since the compiler generates a unique name for each lambda (the closure
type), there’s no way to “spell” it upfront.

That’s why you have to use auto (or decltype )) to deduce the type.
auto myLambda = [](int a) -> double { return 2.0 * a; };

What’s more, if you have two lambdas that look the same:
auto firstLam = [](int x) { return x * 2 ; };

auto secondLam = [](int x) { return x * 2 ; };

Their types are different even if the “code-behind” is the same! The compiler
is required to declare two unique unnamed types for each lambda.

We can prove this property with the following code:
Different Types, Same Code. Live code @Wandbox

#include <type_traits>

int main () {   

    const auto oneLam = [](int x) noexcept { return x * 2 ; };

    const auto twoLam = [](int x) noexcept { return x * 2 ; };

    static_assert (! std:: is_same< decltype (oneLam), decltype (twoLam)>:: value,

                  "must be different!" );

}

The example above verifies if the closure types for oneLam and twoLam are not
the same.

https://cppinsights.io/
https://wandbox.org/permlink/dimC66ghOFL3GF3q


In C++17 we can use static_assert with no message and also helper variable templates
for type traits is_same_v :

static_assert(std::is_same_v<double, decltype(baz(10))>);

However, while you don’t know the exact name, you can spell out the
signature of the lambda and then store it in std::function . In general, what
can’t be done with a lambda defined as auto can be done if the lambda is
defined using std::function<> type. For example, the previous lambda has
a signature of double(int) as it takes an int as an input parameter and
returns double . We can then create a std::function object in the following
way:
std:: function< double (int )> myFunc = [](int a) -> double { return 2.0 * a; };

std::function is a heavy object because it needs to handle all callable
objects. To do that, it requires advanced internal mechanics like type punning
or even dynamic memory allocation. We can check its size in a simple
experiment:

std::function and auto type Deduction. Live code @Wandbox
#include <functional>

#include <iostream>

int main () {

    const auto myLambda = [](int a) noexcept -> double {

        return 2.0 * a;

    };

    

    const std:: function< double (int )> myFunc = 

        [](int a) noexcept -> double {

            return 2.0 * a;

        };

    

    std:: cout << "sizeof(myLambda) is " << sizeof (myLambda) << '\n' ;

    std:: cout << "sizeof(myFunc) is " << sizeof (myFunc) << '\n' ;

    

    return myLambda(10 ) == myFunc(10 );

}

On GCC the code will print:
sizeof(myLambda) is 1

sizeof(myFunc) is 32

https://wandbox.org/permlink/bTJHEc4uWAMTteyN


Because myLambda is just a stateless lambda, it’s also an empty class, without
any data member fields, so it’s minimal size is only one byte. On the other
hand, the std::function version is much larger - 32 bytes. That’s why if you
can, rely on the auto type deduction to get the smallest possible closure
objects.

When we talk about std::function , it’s also important to mention that this
type doesn’t support moveable-only closures. You can read more about this
issue in the C++14 chapter on moveable types .

Constructors and Copying
In the specification of the feature at [expr.prim.lambda] we can also read the
following:

The closure type associated with a lambda-expression has a deleted ([dcl.fct.def.delete])
default constructor and a deleted copy assignment operator.

That’s why you cannot write:
auto foo = [& x, & y]() { ++ x; ++ y; };

decltype (foo) fooCopy;

This gives the following error on GCC:
error: use of deleted function 'main()::<lambda()>::<lambda>()' 

       decltype( foo) fooCopy; 

                   ^~~~~~~ 

note: a lambda closure type has a deleted default constructor

However, you can copy lambdas:
Copying lambdas. Live code @Wandbox

#include <type_traits>

int main () {   

    const auto firstLam = [](int x) noexcept { return x * 2 ; };

    const auto secondLam = firstLam;  

    static_assert (std:: is_same< decltype (firstLam), decltype (secondLam)>::

value,

                  "must be the same" );

}

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#19
https://wandbox.org/permlink/F50TYeCwooAWaruV


If you copy a lambda, then you also copy its state. This is important when we
talk about capture variables. In that context, a closure type stores captured
variables as member fields. Performing a lambda copy will copy those data
member fields.

A peek into the future
In C++20 a stateless lambda will be default constructible and assignable.

The Call Operator
The code that you put into the lambda body is “translated” to the code in the
operator() of the corresponding closure type.

By default, in C++11, it’s a const inline member function. For instance:
auto lam = [](double param) { /* do something*/ };

Expands into:
struct __anonymousLambda {

    inline void operator ()(double param) const { /* do something */ }

};

Overloading
One thing that is worth mentioning is that when you define a lambda there’s
no way to create “overloaded” lambdas taking different arguments. Like:
// doesn't compile! 

auto lam = [](double param) { /* do something*/ };

auto lam = [](int param) { /* do something*/ };

Above, the code won’t compile as the compiler cannot translate those two
lambdas in a single functor, and you cannot redefine the same variable. On
the other hand, it’s possible to create a functor which has two call operators:
struct MyFunctor {

    inline void operator ()(double param) const { /* do something */ }

    inline void operator ()(int param) const { /* do something */ }

};



MyFunctor can now work with double and int arguments. If you want a
similar behaviour for lambdas, then you can see the section about inheriting
from lambdas in this chapter and also about the overloaded pattern from the
C++17 chapter.

Other Modifiers
We briefly touched on this topic in the syntax section, but you’re not limited
to a default declaration of the call operator for a closure type. In C++11 you
can add mutable or exception specification.

If possible longer examples of this book try to mark the closure object with const and
also make the lambda noexcept .

You can use those keywords by specifying mutable and noexcept after the
parameter declaration clause:
auto myLambda = [](int a) mutable noexcept { /* do something */ }

The compiler will expand this code into:
struct __anonymousLambda {

    inline void operator ()(double param) noexcept { /* do something */ }

};

Please notice that the const keyword is gone now and the call operator can
now change the member variables of a lambda.

But what members? How can we declare a member variable of lambdas? See
the next section about “capturing” variables:

Captures
The [] does not only introduce the lambda but also holds a list of captured
variables. It’s called “capture clause”.

By capturing a variable from outside of the lambda, you create a member
variable (a non-static data member) in the closure type. Then, inside the
lambda body, you can access it.



We did a similar thing for PrintFunctor in the C++98/03 Chapter. In that
class, we added a member variable std::string strText which was
initialised in the constructor. Having a member variable allows us to store
state in the callable object.

The syntax for captures:

[&] - capture by reference all automatic storage duration variables
declared in the reaching scope.
[=] - capture by value (create a copy) all automatic storage duration
variables declared in the reaching scope.
[x, &y] - capture x by value and y by a reference explicitly.
[args...] - capture a template argument pack, all by value.
[&args...] - capture a template argument pack, all by reference.

And a summary with examples:
int x = 2 , y = 3 ;

const auto l1 = []() { return 1 ; };          // No capture 

const auto l2 = [= ]() { return x; };         // All by value (copy) 

const auto l3 = [& ]() { return y; };         // All by ref 

const auto l4 = [x]() { return x; };          // Only x by value (copy) 

// const auto lx = [=x]() { return x; };     // wrong syntax, no need for 

                                             // = to copy x explicitly 

const auto l5 = [& y]() { return y; };        // Only y by ref 

const auto l6 = [x, & y]() { return x * y; }; // x by value and y by ref 

const auto l7 = [= , & x]() { return x + y; }; // All by value except x 

                                             // which is by ref 

const auto l8 = [& , y]() { return x - y; };  // All by ref except y which 

                                             // is by value 

To understand what happens with a captured variable let’s consider the
following code sample:

Capturing a Variable
std:: string str {"Hello World" };

auto foo = [str]() { std:: cout << str << '\n' ; };

foo();

For the above lambda, str is captured by value (i.e. it is copied). The
compiler might generate the following local functor:

A Possible Compiler Generated Functor, Single Variable
struct _unnamedLambda {

    _unnamedLambda(std:: string s) : str(s) { } // copy 



    void operator () const {

        std:: cout << str << '\n' ;

    }

        

    std:: string str ;

};

A variable is passed into the constructor that is conceptually called “in-place”
of lambda declaration.

To be precise the standard mentions in [expr.prim.lambda#21] :

When the lambda-expression is evaluated, the entities that are captured by copy are used
to direct-initialise each corresponding non-static data member of the resulting closure
object.

A possible constructor that I showed above (_unnamedLambda ) is only for
demonstration purpose, as the compiler might implement it differently and
won’t expose it.

Capturing Two Variables by Reference
int x = 1 , y = 1 ;

std:: cout << x << " " << y << std:: endl;

const auto foo = [& x, & y]() noexcept { ++ x; ++ y; };

foo();

std:: cout << x << " " << y << std:: endl;

For the above lambda, the compiler might generate the following local
functor:

A Possible Compiler Generated Functor, Two References. Live code @Wandbox
struct _unnamedLambda {

    _unnamedLambda(int & a, int & b) : x(a), y(b) { }

    void operator () const noexcept {

        ++ x; ++ y;

    }

        

    int & x ;

    int & y;

};

Since we capture x and y by reference, the closure type will contain member

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#21
https://wandbox.org/permlink/da9ltcv53ECxnoEk


variables which are also references.

The value of the value-captured variable is at the time the lambda is defined - not when it
is used! The value of a ref-captured variable is the value when the lambda is used - not
when it is defined.

While specifying [=] or [&] might be convenient, as it captures all automatic
storage duration variables, it’s clearer to capture a variable explicitly. That
way the compiler can warn you about unwanted effects (see notes about
global and static variable for example).

You can also read more in item 31 in “Effective Modern C++” 3 by Scott
Meyers: “Avoid default capture modes.”

The C++ closures do not extend the lifetimes of the captured references. Be sure that the
capture variable still lives when lambda is invoked.

The mutable Keyword
By default the operator() of the closure type is marked as const , and you
cannot modify captured variables inside the body of the lambda.

If you want to change this behaviour, you need to add the mutable keyword
after the parameter list. This syntax effectively removes the const from the
call operator declaration in the closure type. If you have a simple lambda
expression with a mutable :
int x = 1 ;

auto foo = [x]() mutable { ++ x; };

It will be “expanded” into the following functor:
struct __lambda_x1 {

    void operator ()() { ++ x; }

    int x;

};

As you can see, the call operator can change the value of the member fields.



Capturing Two Variables by Copy and Mutable. Live code @Wandbox
#include <iostream>

int main () {

    const auto print = [](const char * str, int x, int y) {

        std:: cout << str << ": " << x << " " << y << '\n' ;

    };

    int x = 1 , y = 1 ;

    print("in main()" , x, y);

    auto foo = [x, y, & print]() mutable {

        ++ x;

        ++ y;

        print("in foo()" , x, y);

    };

    foo();

    print("in main()" , x, y);

}

Output:
in main(): 1 1

in foo(): 2 2

in main(): 1 1

In the above example, we can change the values of x and y . Since those are
only the copies of x and y from the enclosing scope, we don’t see their new
values after foo is invoked.

On the other hand, if you capture by reference, then you don’t need to apply
mutable to the lambda to modify the value. This is because the captured
member variables are references and cannot be bound inside a const member
function, but you can change the referenced values.

Capturing a Variable by Reference
int x = 1 ;

std:: cout << x << '\n' ;

const auto foo = [& x]() noexcept { ++ x; };

foo();

std:: cout << x << '\n' ;

In the above example, the lambda is not mutable , but it can change the
referenced value.

One important thing to notice is that when you apply mutable , then you
cannot mark your resulting closure object with const as it prevents you from
invoking the lambda!

https://wandbox.org/permlink/yQZUOIcK1ncKIyEI


int x = 10 ;

const auto lam = [x]() mutable { ++ x; }

lam(); // doesn't compile! 

The last line won’t compile as we cannot call a non-const member function
on a const object.

Invocation Counter - An Example of Captured Variables
Before we move on to some more complicated topics with capturing, we can
have a little break and focus on a more practical example.

Lambda expressions are handy when you want to use some existing
algorithm from the Standard Library and alter the default behaviour. For
example, for std::sort you can write your comparison function.

But we can go further and enhance the comparator with an invocation
counter. Have a look:

Invocation Counter. Live code @Compiler Explorer
#include <algorithm>

#include <iostream>

#include <vector>

int main () {

    std:: vector< int > vec { 0 , 5 , 2 , 9 , 7 , 6 , 1 , 3 , 4 , 8 };

    size_t compCounter = 0 ;

    std:: sort(vec.begin(), vec.end(),

        [& compCounter](int a, int b) noexcept {

            ++ compCounter;

            return a < b;

        }

    );

    std:: cout << "number of comparisons: " << compCounter << '\n' ;

    for (const auto & v : vec)

        std:: cout << v << ", " ;

}

The comparator provided in the example works in the same way as the
default one, it returns if a is smaller than b , so we use the natural order from
lowest to the largest numbers. However, the lambda passed to std::sort also
captures a local variable compCounter . The variable is then used to count all
of the invocations of this comparator from the sorting algorithm.

https://godbolt.org/z/jG5xK7


Capturing Global Variables
If you have a global variable and you use [=] in your lambda, you might
think that your global object is also captured by value… but it’s not. See the
code:

Capturing Globals. Live code @Wandbox
#include <iostream>

int global = 10 ;

int main () {

    std:: cout << global << std:: endl;

    auto foo = [= ]() mutable noexcept { ++ global; };

    foo();

    std:: cout << global << std:: endl;

    const auto increaseGlobal = []() noexcept { ++ global; };

    increaseGlobal();

    std:: cout << global << std:: endl;

    const auto moreIncreaseGlobal = [global]() noexcept { ++ global; };

    moreIncreaseGlobal();

    std:: cout << global << std:: endl;

}

The above example defines global and then uses it with several lambdas
defined in the main() function. If you run the code, then no matter the way
you capture, it will always point to the global object, and no local copies will
be created.

It’s because only variables with automatic storage duration can be captured.
GCC can even report the following warning:
warning: capture of variable 'global' with non- automatic

         storage duration

This warning will appear only if you explicitly capture a global variable, so if
you use [=] the compiler won’t help you.

The Clang compiler is even more helpful, as it generates an error :
error: 'global' cannot be captured because it does not have

       automatic storage duration

See Clang live example @Wandbox .

Capturing Statics

https://wandbox.org/permlink/n8wCuoeej8mGscql
https://wandbox.org/permlink/4V91bkuz8NvHrDDA


Similarly to capturing global variables, you’ll get the same issues with static
objects:

Capturing Static Variables. Live code @Wandbox
#include <iostream>

void bar () {

    static int static_int = 10 ;

    std:: cout << static_int << std:: endl;

    auto foo = [= ]() mutable noexcept { ++ static_int; };

    foo();

    std:: cout << static_int << std:: endl;

    const auto increase = []() noexcept { ++ static_int; };

    increase();

    std:: cout << static_int << std:: endl;

    const auto moreIncrease = [static_int]() noexcept { ++ static_int; };

    moreIncrease ();

    std:: cout << static_int << std:: endl;

}

int main () {

   bar();

}

This time we try to capture a static variable and then change its value, but
since it has no automatic storage duration, the compiler cannot do it.

The output:
10

11

12

13

GCC reports a warning when you capture the variable by name
[static_int] and Clang shows an error.

Capturing a Class Member And the this Pointer
Things get a bit more complicated where you’re in a class member function,
and you want to capture a member variable. Since all data members are
related to the this pointer, it also has to be stored somewhere.

Have a look:
Error when capturing a member variable. Live code @Wandbox

#include <iostream>

struct Baz {

https://wandbox.org/permlink/CpJt4PUSleIJNVf2
https://wandbox.org/permlink/mp5VgqIyu5LWLn0f


    void foo() {

        const auto lam = [s]() { std:: cout << s; };

        lam();

     }

    

    std:: string s;

};

int main () {

    Baz b;

    b.foo();

}

The code tries to capture s which is a member variable. But the compiler will
emit an error message:
In member function 'void Baz::foo()':

error: capture of non-variable 'Baz::s'

error: 'this' was not captured for this lambda function

...

To solve this issue, you have to capture the this pointer. Then you’ll have
access to member variables.

We can update the code to:
struct Baz {

    void foo() {

        const auto lam = [this ]() { std:: cout << s; };

        lam();

    }

    

    std:: string s;

};

There are no compiler errors now.

You can also use [=] or [&] to capture this (they both have the same effect
in C++11/14!).

Please notice that we captured this by value… to a pointer. That’s why you
have access to the member variable, not its copy.

In C++11 (and even in C++14) you cannot write:
auto lam = [* this ]() { std:: cout << s; };` 

The code won’t compile in C++11/14; it is, however, allowed in C++17.



If you use your lambdas in the context of a single method, then capturing
this will be fine. But how about more complicated cases?

Do you know what will happen with the following code?
Returning a Lambda From a Method

#include <functional>

#include <iostream>

struct Baz {

    std:: function< void ()> foo() {

        return [= ] { std:: cout << s << std:: endl; };

    }

    

    std:: string s;

};

int main () {

   auto f1 = Baz{"abc" }.foo();

   auto f2 = Baz{"xyz" }.foo();

   f1();

   f2();

}

The code declares a Baz object and then invokes foo() . Please note that
foo() returns a lambda (stored in std::function ) that captures a member of
the class. 4

Since we use temporary objects, we cannot be sure what will happen when
you call f1 and f2 . This is a dangling reference problem and generates
Undefined Behaviour.

Similarly to:
struct Bar {

    std:: string const & foo() const { return s; };

    std:: string s;

};

auto && f1 = Bar{"abc" }.foo(); // a dangling reference 

Play with code @Wandbox

Again, if you state the capture explicitly ([s] ) :
std:: function< void ()> foo() {

    return [s] { std:: cout << s << std:: endl; };

}

https://wandbox.org/permlink/FOgbNGoQHOmepBgY


All in all, capturing this might get tricky when a lambda can outlive the
object itself. This might happen when you use async calls or multithreading.

We’ll return to that topic in the C++17 chapter. See this section

Moveable-only Objects
If you have an object that is moveable only (for example unique_ptr ), then
you cannot move it to lambda as a captured variable. Capturing by value does
not work; you can only capture by reference.
std:: unique_ptr< int > p(new int {10 });

auto foo = [p]() {}; // does not compile.... 

auto foo_ref = [& p]() { }; // compiles, but the ownership 

                           // is not passed 

In the above example, you can see that the only way to capture unique_ptr is
by reference. This approach, however, might not be the best as it doesn’t
transfer the ownership of the pointer.

In the next chapter, about C++14], you’ll see that this issue is fixed thanks to
the capture with initialiser. Go to this section to follow up on this topic.

Preserving Const
If you capture a const variable, then the constness is preserved:

Preserving const . Live code @Wandbox
#include <iostream>

#include <type_traits>

int main () {

    const int x = 10 ;

    auto foo = [x] () mutable {

        std:: cout << std:: is_const< decltype (x)>:: value << std:: endl;

        x = 11 ;

    };

    foo();

}

The above code doesn’t compile as the captured variable is constant. The
example even tried to use mutable , but this doesn’t help.

Capturing a Parameter Pack

https://wandbox.org/permlink/h8lCuOXd9dHsopG1


To close off our discussion on the capture clause, we should mention that you
can also leverage captures with variadic templates. The compiler expands the
pack into a list of non-static data members which might be handy if you want
to use lambda in a templated code. For example, here’s a code sample that
experiments with the captures:

Capturing a Variadic Pack. Live code @Wandbox
#include <iostream>

#include <tuple>

template < class... Args> 

void captureTest(Args... args) {

    const auto lambda = [args...] {

        const auto tup = std:: make_tuple(args...);

        std:: cout << "tuple size: " << 

                      std:: tuple_size< decltype (tup)>:: value << '\n' ;

        std:: cout << "tuple 1st:  " << std:: get<0> (tup) << '\n' ;

    };

    lambda(); // call it 

}

int main() {

    captureTest(1 , 2 , 3 , 4 );

    captureTest("Hello world" , 10.0f );

}

After running the code, we’ll get the following output:
tuple size: 4

tuple 1st:  1

tuple size: 2

tuple 1st:  Hello world

This somewhat experimental code shows that you can capture a variadic
parameter pack by value (by reference is also possible) and then the pack is
“stored” into a tuple object. We then call some helper functions on the tuple
to access its data and properties.

You can also use C++Insights to see how the compiler generates the code and
expands templates, parameter packs and lambdas into code. See the example
here @C++Insight .

See the C++14 chapter where it’s possible to capture moveable only type and also in the
C++20 chapter for improvements on variadic parameter pack.

https://wandbox.org/permlink/29qxFbLefKf3wnNU
https://cppinsights.io/s/19d3a45d


Return Type
In many cases, you can skip the return type of the lambda and then the
compiler will deduce the typename for you.

Initially, return type deduction was restricted to lambdas with bodies
containing a single return statement. However, this restriction was quickly
lifted as there were no issues with implementing a more convenient version.

See C++ Standard Core Language Defect Reports and Accepted Issues 5

To sum up, since C++11, the compiler has been able to deduce the return
type as long as all of your return statements are of the same type.

If all return statements return an expression and the types of the returned expressions
after lvalue-to-rvalue conversion (7.1 [conv.lval]), array-to-pointer conversion (7.2
[conv.array]), and function-to-pointer conversion (7.3 [conv.func]) are the same, that
common type;

Return Type Deduction. Live code @Wandbox
#include <type_traits>

int main () {

    const auto baz = [](int x) noexcept {

        if (x < 20 )

            return x * 1.1 ;

         else 

            return x * 2.1 ;

    };

    static_assert (std:: is_same< double , decltype (baz(10 ))>:: value,

                  "has to be the same!" );

}

In the above lambda, we have two return statements, but they all point to
double so the compiler can deduce the type.

In C++14 return type of lambda will be updated to adapt to the rules of auto type
deduction for regular functions. See this section .

Trailing Return Type Syntax

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
https://wandbox.org/permlink/sxtT30yKx9mwrYT3


If you want to be explicit about the return type, you can use trailing return
type specification. For example, when you return a string literal:

Returning a string literal from a lambda
#include <iostream>

#include <string>

int main () {

    const auto testSpeedString = [](int speed) noexcept {

        if (speed > 100 )

            return "you're a super fast" ;

        return "you're a regular" ;

    };

    auto str = testSpeedString(100 );

    str += " driver" ;                     // uups! no += on const char*! 

    std:: cout << str;

    return 0 ;

}

The above code doesn’t compile because the compiler deduces const char*
as the return type for the lambda. It’s because there’s no += operator available
on string literals, so the code breaks.

We can fix the problem by explicitly setting the return type to std::string :
auto testSpeedString = [](int speed) -> std:: string {

    if (speed > 100 )

        return "you're a super fast" ;

    return "you're a regular" ;

};

auto str = testSpeedString(100 );

str += " driver" ; // works fine 

You can play with the code @Coliru

Please notice that we had to remove noexcept now, as the std::string
creation might throw.

As a side note, you can also use namespace std::string_literals; and
then you return "you're a regular"s to indicate the std::string type.

Conversion to a Function Pointer

http://coliru.stacked-crooked.com/a/45cebc8b35d5b2a9


If your lambda doesn’t capture any variables then the compiler can convert it
to a regular function pointer. See the following description from the Standard
expr.prim.lambda#6 :

The closure type for a lambda-expression with no lambda-capture has a public non-
virtual non-explicit const conversion function to pointer to function having the same
parameter and return types as the closure type’s function call operator. The value
returned by this conversion function shall be the address of a function that, when
invoked, has the same effect as invoking the closure type’s function call operator.

To illustrate how a lambda can support such conversion let’s consider the
following example. It defines a functor baz that explicitly defines the
conversion operator:

Conversion to a Function Pointer. Live code @Wandbox line-numbers=on
#include <iostream>

void callWith10 (void (* bar)(int )) {

    bar(10 );

}

int main () {

    struct {

        using f_ptr = void (* )(int );

        

        void operator ()(int s) const { return call(s); }

        operator f_ptr() const { return & call; }

        

    private : 

        static void call(int s) { std:: cout << s << '\n' ; };

    } baz;

    

    callWith10(baz );

    callWith10([](int x) { std:: cout << x << '\n' ; });

}

In the preceding program, there’s a function callWith10 that takes a function
pointer. Then we call it with two arguments (lines 18 and 19): the first one
uses baz which is a functor that contains necessary conversion operators - it
converts to f_ptr which is the same as the input parameter for callWith10 .
Later, we have a call with a lambda. In this case, the compiler performs the
required conversions underneath.

Such conversion might be handy when you need to call a C-style function
that requires some callback. For example, below you can find code that calls

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#6
https://wandbox.org/permlink/XAmjjJiojnFKyd44


qsort from the C Library and uses a lambda to sort elements in the reverse
order:

Calling a C-style function. Live code @Wandbox
#include <cstdlib>

#include <iostream>

int main () {

    int values[] = { 8 , 9 , 2 , 5 , 1 , 4 , 7 , 3 , 6 };

    constexpr size_t numElements = sizeof (values)/ sizeof (values[0 ]);

    

    std:: qsort(values, numElements, sizeof (int ),

         [](const void * a, const void * b) noexcept {

             return ( * (int * )b - * (int * )a );

         }

    );

  

    for (const auto & val : values)

        std:: cout << val << ", " ;

}

As you can see in the code sample uses std::qsort which takes only
function pointers as the comparator. The compiler can do an implicit
conversion of the stateless lambda that we pass.

A Tricky Case
Before we move on to another topic there’s also one case that might be
interesting to analyse:

Plus and a Lambda. Live code @Wandbox
#include <type_traits>

int main () {

   auto funcPtr = + []{};

   static_assert (std:: is_same< decltype (funcPtr), void (* )()>:: value);

}

Please notice the strange syntax with + . If you remove the plus sign then the
static_assert fails. Why is that?

To understand how it works we can look at the output generated by the C++
Insights project. See the working example :
using FuncPtr_4 = void (* )();

FuncPtr_4 funcPtr = 

     + static_cast < void (* )()> (__la.operator __la:: retType_4_18());

/* PASSED: static_assert(std::integral_constant<bool, 1>::value); */ 

  

https://wandbox.org/permlink/fEMhtqAXerDdCXG8
https://wandbox.org/permlink/0r0jDiJxlLuEzYwm
https://cppinsights.io/s/0ee4cd81


// __la is __lambda_4_18 in cppinights 

The code uses + which is a unary operator. This operator can work on
pointers, so the compiler converts our stateless lambda into a function pointer
and then assigns it to funcPtr . On the other hand, if you remove the plus,
then funcPtr is just a regular closure object, and that’s why the
static_assert fails.

While it’s probably not the best idea to write such a syntax with “+”, it has
the same effect if you write static_cast . You can apply this technique in a
situation when you don’t want the compiler to create too many function
instantiations. For example:

Casting to a Function Pointer. Live code @Cpp Insights
template < typename F> 

void call_function(F f) {

  f(10 );

}

int main() {

    call_function(static_cast < int (* )(int )> ([](int x){

        return x + 2 ; }));

    call_function(static_cast < int (* )(int )> ([](int x){

        return x * 2 ; }));

}

In the above example the compiler has to create only a single instantiation of
call_function - as it only takes a function pointer int (*)(int) . But if
you remove static_cast s then you’ll get two versions of call_function as
the compiler has to create two separate types for lambdas.

IIFE - Immediately Invoked Functional Expression
In most of the examples, you could notice that I defined a lambda and then
call it later.

However, you can also invoke lambda immediately:
Calling Lambda Now. Live code @Wandbox

#include <iostream>

int main () {

   int x = 1 , y = 1 ;

   [& ]() noexcept { ++ x; ++ y; }(); // <-- call () 

   std:: cout << x << ", " << y;

}

https://cppinsights.io/s/e4764e54
https://wandbox.org/permlink/fsFOxzBZuFS7bMVn


As you can see above, the lambda is created and isn’t assigned to any closure
object. But then it’s called with () . If you run the program, you can expect to
see 2, 2 as the output.

This kind of expression might be useful when you have a complex
initialisation of a const object.
const auto val = []() {

    /* several lines of code... */ 

}(); // call it! 

Above, val is a constant value of a type returned by lambda expression, i.e.:
// val1 is int 

const auto val1 = []() { return 10 ; }();

// val2 is std::string 

const auto val2 = []() -> std:: string { return "ABC" ; }();

Below you can find a longer example where we use IIFE as a helper lambda
to create a constant value inside a function:

IIFE and HTML Generation. Live code @Wandbox
#include <iostream>

#include <string>

void ValidateHTML (const std:: string& ) { }

std:: string BuildAHref(const std:: string& link, const std:: string& text) {

    const std:: string html = [& link, & text] {

        const auto & inText = text.empty() ? link : text;

        return "<a href= \" " + link + " \" >" + inText + "</a>" ;

    }(); // call! 

    ValidateHTML(html);

    

    return html;

}

int main() {

    try {

        const auto ahref = BuildAHref("www.leanpub.com" , "Leanpub Store" );

        std:: cout << ahref;

    }

    catch (...) {

        std:: cout << "bad format..." ;

    }        

}

https://wandbox.org/permlink/TtlM1t3sm9EZOUrw


The above example contains a function BuildAHref which takes two
parameters and then builds a <a> </a> HTML tag. Based on the input
parameters, we build the html variable. If the text is not empty, then we use
it as the internal HTML value. Otherwise, we use the link . We want the
html variable to be const , yet it’s hard to write compact code with the
required conditions on the input arguments. Thanks to IIFE we can write a
separate lambda and then mark our variable with const . Later the variable
can be passed to ValidateHTML .

One Note About the Readability
Sometimes having a lambda which is immediately invoked might cause some
readability issues.

For example:
const auto EnableErrorReporting = [& ]() {

    if (HighLevelWarningEnabled())

        return true ;

    

    if (HighLevelWarningEnabled())

        return UsersWantReporting();

    

    return false ;

}();

if (EnableErrorReporting) {

    // ... 

}

In the above example, the lambda code is quite complicated, and developers
who read the code have to decipher not only that the lambda is invoked
immediately, but also they will have to reason about the
EnableErrorReporting type. They might assume that
EnableErrorReporting is the closure object and not just a const variable.
For such cases, you might consider not using auto so that we can easily see
the type. And maybe even add a comment next to the }() , like // call it
now .

More on IIFE: You may want to read the chapter about C++17 changes and see an
upgraded version of IIFE.



Inheriting from a Lambda
It might be surprising to see, but you can also derive from a lambda!

Since the compiler expands a lambda expression into a functor object with
operator() , then we can inherit from this type.

Have a look at the basic code:
Inheriting from a single Lambda. Live code @Wandbox

#include <iostream>

template < typename Callable> 

class ComplexFunctor : public Callable {

public : 

    explicit ComplexFunctor(Callable f) : Callable(f) {}

};

template < typename Callable> 

ComplexFunctor< Callable> MakeComplexFunctor(Callable&& cal) {

    return ComplexFunctor< Callable> (cal);

}

int main() {

    const auto func = MakeComplexFunctor([]() {

        std:: cout << "Hello Functor!" ;

    });

    func();

}

In the example, there’s the ComplexFunctor class which derives from
Callable which is a template parameter. If we want to derive from a lambda,
we need to do a little trick, as we cannot spell out the exact type of the
closure type (unless we wrap it into a std::function ). That’s why we need
the MakeComplexFunctor function that can perform the template argument
deduction and get the type of the lambda closure.

The ComplexFunctor , apart from its name, is just a simple wrapper without
much of a use. Are there any use cases for such code patterns?

For example, We can extend the code above and inherit from two lambdas
and create an overloaded set:

Inheriting from two Lambdas. Live code @Wandbox
#include <iostream>

template < typename TCall, typename UCall> 

class SimpleOverloaded : public TCall, UCall {

https://wandbox.org/permlink/uA4q7Zy1kojUZmqb
https://wandbox.org/permlink/2AY4nRaHffrDWt6A


public : 

    SimpleOverloaded(TCall tf, UCall uf) : TCall(tf), UCall(uf) {}

    using TCall:: operator ();

    using UCall:: operator ();

};

template < typename TCall, typename UCall> 

SimpleOverloaded< TCall, UCall> MakeOverloaded(TCall&& tf, UCall&& uf) {

    return SimpleOverloaded< TCall, UCall> (tf, uf);

}

int main() {

    const auto func = MakeOverloaded(

        [](int ) { std:: cout << "Int! \n " ; },

        [](float ) { std:: cout << "Float! \n " ; }

    );

    func(10 );

    func(10.0f );

}

This time we have a bit more code: we derive from two template parameters,
but we also need to expose their call operators explicitly.

Why is that? It’s because when looking for the correct function overload the
compiler requires the candidates to be in the same scope.

To understand that, let’s write a simple type that derives from two base
classes. The example also comments out two using statements:
#include <iostream>

struct BaseInt {

    void Func(int ) { std:: cout << "BaseInt... \n " ; }

};

struct BaseDouble {

    void Func(double ) { std:: cout << "BaseDouble... \n " ; }

};

struct Derived : public BaseInt, BaseDouble {

    //using BaseInt::Func; 

    //using BaseDouble::Func; 

};

int main () {

    Derived d;

    d.Func(10.0 );

}

We have two bases classes that implement Func . We want to call that
method from the derived object.



GCC reports the following error:
error: request for member 'Func' is ambiguous

See a demo @Wandbox

Because we commented out the using statements ::Func() can be from a
scope of BaseInt or BaseDouble . The compiler has two scopes to search the
best candidate, and according to the Standard, it’s not allowed.

Ok, let’s go back to our primary use case:

SimpleOverloaded is an elementary class, and it’s not production- ready.
Have a look at the C++17 chapter where we’ll discuss an advanced version of
this pattern. Thanks to several C++17 features, we’ll be able to inherit from
multiple lambdas (thanks to variadic templates) and leverage more compact
syntax!

Storing Lambdas in a Container
As the final technique in this chapter, let’s have a look at the problem of
storing closures in a container.

But didn’t I wrote that lambdas could not be default created and assigned?

Yes… however we can do some tricks here.

One of the techniques is to leverage the property of stateless lambdas which
convert to function pointers. While you cannot store closure objects directly,
you can save function pointers converted from lambda expressions.

For example:
Storing Lambdas As Function Pointers. Live code @Wandbox

#include <iostream>

#include <vector>

int main () {

    using TFunc = void (* )(int & );

    std:: vector< TFunc> ptrFuncVec;

    

    ptrFuncVec.push_back([](int & x) { std:: cout << x << '\n' ; });

    ptrFuncVec.push_back([](int & x) { x *= 2 ; });

    ptrFuncVec.push_back(ptrFuncVec[0 ]); // print it again; 

https://wandbox.org/permlink/fFRqVGUisdQh1qGV
https://wandbox.org/permlink/CuoCtCHEEk6ZA6xF


    

    int x = 10 ;

    for (const auto & entry : ptrFuncVec)

        entry(x);

}

In the above example, we create a vector of functions that will be applied to
the variable. There are three entries in the container:

The first one prints the value of the input argument.
The second one modifies the value.
The third is a copy of the first, so it also prints the value.

The solution works, but it’s limited to stateless lambdas only. What if we
wanted to lift this restriction?

To solve this issue we can reach for the heavy helper: std::function . To
make the example interesting, it also switched from simple integers to
lambdas that processes std::string objects:

Storing Lambdas As std::function . Live code @Wandbox
#include <algorithm>

#include <functional>

#include <iostream>

#include <vector>

int main () {

    std:: vector< std:: function< std:: string(const std:: string& )>> vecFilters;

    

    size_t removedSpaceCounter = 0 ;

    const auto removeSpaces = [& removedSpaceCounter](const std:: string& str) {

        std:: string tmp;

        std:: copy_if(str.begin(), str.end(), std:: back_inserter(tmp),

                     [](char ch) {return ! isspace(ch); });

        removedSpaceCounter += str.length() - tmp.length();

        return tmp;

     };

    

    const auto makeUpperCase = [](const std:: string& str) {

        std:: string tmp = str;

        std:: transform(tmp.begin(), tmp.end(), tmp.begin(),

               [](unsigned char c){ return std:: toupper(c); });

        return tmp;

    };

    

    vecFilters.emplace_back(removeSpaces);

    vecFilters.emplace_back([](const std:: string& x) {

                            return x + " Amazing" ; });

    vecFilters.emplace_back([](const std:: string& x) {

                            return x + " Modern" ; });

    vecFilters.emplace_back([](const std:: string& x) {

                            return x + " C++" ; });

https://wandbox.org/permlink/XSK4ATo5HriOB6Gk


    vecFilters.emplace_back([](const std:: string& x) {

                            return x + " World!" ; });

    vecFilters.emplace_back(makeUpperCase);

    

    const std:: string str = "   H e l l o     " ;

    auto temp = str;

    for (const auto & entryFunc : vecFilters)  

        temp = entryFunc(temp);

    std:: cout << temp;

    

    std:: cout << " \n removed spaces: " << removedSpaceCounter << '\n' ;

}

The output:
HELLO AMAZING MODERN C++ WORLD!

removed spaces: 12

This time we store std::function<std::string(const std::string&)> in
the container. This allows us to use any kind of functional objects, including
lambda expressions with captured variables. One of the lambdas
removeSpacesCnt captures a variable which is used to store the information
about the removed spaces from an input string.

Summary
In this chapter, you learned how to create and use lambda expressions. I
described the syntax, capture clause, type of the lambda, and we covered lots
of examples and use cases. We even went a bit further, and I showed you a
pattern of deriving from a lambda or storing it in a container.

But that’s not all!

Lambda Expressions become one a significant part of Modern C++. With
more use cases developers also saw possibilities to improve this feature. And
that’s why you can now move to the next chapter and see essential updates
that the ISO Committee added in C++14.



3. Lambdas in C++14

C++14 added two significant enhancements to lambda expressions:

Captures with an initialiser
Generic lambdas

Plus, the Standard also updated some rules, for example:

Default parameters for lambdas
Return type as auto

These features can solve several issues that were visible in C++11.

You can see the specification in N4140 and lambdas: [expr.prim.lambda] .

What’s more, in this chapter, you’ll learn about:

Capturing member variables
Replacing old functional stuff like std::bind1st with modern
techniques
LIFTING
Recursive Lambdas

https://timsong-cpp.github.io/cppwp/n4140/
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda


Default Parameters for Lambdas
Let’s start with some smaller updates:

In C++14 you can use default parameters in a function call. This is a small
feature but makes lambda more like a regular function.

Lambda with Default Parameter. Live code @Wandbox
#include <iostream>

int main () {

    const auto lam = [](int x = 10 ) { std:: cout << x << '\n' ; };

    lam();

    lam(100 );

}

In the above example, we call the lambda twice. The first time without any
arguments, and then it uses a default value x = 10 . The second time we pass
100.

What’s interesting is that GCC and Clang have supported this feature since
C++11.

Return Type
If you remember from the previous chapter, the return type for a simple
lambda could be deduced by the compiler. This functionality was “extended”
on regular functions and in C++14 you can use auto as a return type:
auto myFunction () {

    int x = computeX(...);

    int y = computeY(...);

    return x + y;

}

Above, the compiler will deduce int as a return type.

The concept of deducing return type was improved and extended in C++14.
For lambda expressions, it means that they share the same rules as functions
with auto return type:

[expr.prim.lambda#4] :

https://wandbox.org/permlink/T2u5iuGqi3fHaN9q
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda#4


The lambda return type is auto, which is replaced by the trailing-return-type if provided
and/or deduced from return statements as described in [dcl.spec.auto]

If you have multiple return statements they all have to deduce the same type:
auto foo = [] (int x) {

    if (x < 0 )

        return x * 1.1f ; // float! 

    else 

        return x * 2.1 ;  // double! 

};

The above code won’t compile as the first return statement returns float
while the second double . The compiler cannot decide, so you have to select
the single type.

While deducing integers or doubles might be helpful, there are far more
significant reasons why return type deduction is valuable. This functionality
plays a considerable aspect with template code and things that are
“unknown”.

For example, lambda closure type is anonymous, and we cannot specify it
explicitly in our code. If you want to return a lambda from a function, then
how do you specify the type?

Before C++14 you could use std::function :
Returning std::function . Live code @Wandbox

#include <functional>

#include <iostream>

std:: function< int (int )> CreateMulLambda(int x) {

    return [x](int param) noexcept { return x * param; };

}

int main() {

    const auto lam = CreateMulLambda(10 );

    

    std:: cout << sizeof (lam);

    

    return lam (2 );

}

However, the above solution is not straightforward. It requires you to specify

https://timsong-cpp.github.io/cppwp/n4140/dcl.spec.auto
https://wandbox.org/permlink/oCij1KoIB8RVOvSI


the function signature and even include some extra header file <functional>
. If you recall from the C++11 chapter, std::function is a heavy object (in
GCC 9 the sizeof shows 32 bytes) and it needs some advanced internal
mechanics so that it can handle any callable objects.

Thanks to the improvements in C++14, we can now heavily simplify the
code:

Auto return type deduction for lambdas. Live code @Wandbox
#include <iostream>

auto CreateMulLambda (int x) noexcept {

    return [x](int param) noexcept { return x * param; };

}

int main () {

    const auto lam = CreateMulLambda(10 );

    

    std:: cout << sizeof (lam);

    

    return lam(2 );

}

This time we can entirely rely on the compile-time type deduction, and no
helper types are required. On GCC the size of lambda sizeof(lam) is just 4
bytes and it’s far cheaper than the solution with std::function . Please
notice that we could also mark CreateMulLambda with noexcept as there no
way it can throw any exception. This was not the case when returning
std::function .

Captures With an Initialiser
Now some more significant updates!

As you recall, in a lambda expression you can capture variables from the
outside scope. The compiler expands that capture syntax and creates member
variables (non-static data members) in the closure type.

Now, in C++14, you can create new member variables and initialise them in
the capture clause. Then you can access those variables inside the lambda.
It’s called capture with an initialiser or another name for this feature is
generalised lambda capture .

https://wandbox.org/permlink/RLEHfrCk29aqRn8X


For example:
Capture With an Initialiser. Live code @Wandbox

#include <iostream>

int main () {

    int x = 30 ;

    int y = 12 ;

    const auto foo = [z = x + y]() { std:: cout << z << '\n' ; };

    x = 0 ;

    y = 0 ;

    foo();

}

The output:
42

In the example above, the compiler generates a new member variable and
initialises it with x+y . The type of the new variable is deduced in the same
way as if you put auto in front of this variable. In our case:
auto z = x + y;

In summary, the lambda from the preceding example resolves into a
following (simplified) functor:
struct _unnamedLambda {

    void operator ()() const {

        std:: cout << z << '\n' ;

    }

        

    int z;

} someInstance;

z will be directly initialised (with x+y ) when the lambda expression is
defined.

Keep in mind the previous sentence. The new variable is initialised at the
place where you define a lambda and not where you invoke it.

That’s why if you modify x or y variables after you created the lambda, the
variable z won’t change. In the example, you can see that immediately after
the lambda was defined I changed the values of x and y . Yet the output will
be still 42 as z was initialised earlier.

https://wandbox.org/permlink/461XKCYNsQSKQeKO


Creating variables through initialiser is also flexible as you can, for example,
create a reference to variables from the outside scope.

Reference as Capture With an Initialiser. Live code @Wandbox
#include <iostream>

int main () {

    int x = 30 ;

    const auto foo = [& z = x]() { std:: cout << z << '\n' ; };

    foo();

    x = 0 ;

    foo();

}

This time the z variable is a reference to x . It’s created in the same way as
you’d write:
auto & z = x;

If you run the example, you should see that the first line prints 30 , but the
second line shows 0 . This is because we captured a reference so when you
modify the referenced variable, the z object will also change.

Limitations
Please note that while you can capture with initialiser as a reference, it’s not
possible to write r-value reference && . That’s why the below code is invalid:
[&& z = x] // invalid syntax! 

Another limitation for the feature is that it doesn’t allow parameter packs.
Let’s have a look at the section 24 of [expr.prim.lambda] :

A simple-capture followed by an ellipsis is a pack expansion ([temp.variadic]). An init-
capture followed by an ellipsis is ill-formed.

In other words, in C++14, you cannot write:
template < class... Args > 

auto captureTest(Args... args) {

    return lambda = [...capturedArgs = std:: move(args)](){};  

    // ... 

https://wandbox.org/permlink/TVb2allLLdRQ1aPe
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda#24


This syntax, however, will be possible with C++20, see in this section .

Improvements for Existing Issues
All in all, this new C++14 feature can solve a few problems, for example
with movable only types or allow some extra optimisation.

Let’s review them now.

Move

Previously, in C++11, you couldn’t capture a unique pointer by value. Only
capturing by reference was possible. Now, since C++14, we can move an
object into a member of the closure type:

Capturing a movable only type. Live code @Wandbox
#include <iostream>

#include <memory>

int main (){

    std:: unique_ptr< int > p(new int {10 });

    const auto bar = [ptr= std:: move(p)] {

        std:: cout << "pointer in lambda: " << ptr.get() << '\n' ;

    };

    std:: cout << "pointer in main(): " << p.get() << '\n' ;

    bar();

}

The output:
pointer in main(): 0

pointer in lambda: 0x1413c20

Thanks to the capture initialiser you can move the pointer ownership into
lambda. As you can see in the example the unique pointer is set to nullptr
just after the closure object is created. But when you call a lambda, then
you’ll see a valid memory address.

One Gotcha with std::function

Having a moveable-only captured variable in a lambda makes the closure
object not copyable. This might be an issue if you want to store such a
lambda in std::function which accepts only copyable callable objects.

We can observe this in detail if we run C++Insights on the previous example

https://wandbox.org/permlink/n65fzPHrNnyDqbIK


(see this link for a live code ) you will see that std::unique_ptr is a member
variable of the closure type. And having a moveable-only member prevents
the compiler from creating a default copy constructor.

In short, this code won’t compile:
std::function and std::move . Live code @Wandbox

std:: unique_ptr< int > p(new int {10 });

std:: function< void ()> fn = [ptr = std:: move(p)]() { }; // won't compile! 

If you want the full details you can also have a look at the proposal of any_invokable
(P0288 ) which is a possible future improvement for std::function and also handles
moveable only types.

Optimisation

Another idea is to use capture initialisers as a potential optimisation
technique. Rather than computing some value every time we invoke a
lambda, we can compute it once in the initialiser:

Creating a string for lambda. Live code @Wandbox
#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

int main () {

    using namespace std:: string_literals;

    const std:: vector< std:: string> vs = { "apple" , "orange" ,

                                          "foobar" , "lemon" };

    

    const auto prefix = "foo" s;

    

    auto result = std:: find_if(vs.begin(), vs.end(),

        [& prefix](const std:: string& s) {

            return s == prefix + "bar" s;

        }

    );

    if (result != vs.end())

        std:: cout << prefix << "-something found! \n " ;

    

    result = std:: find_if(vs.begin(), vs.end(),

        [savedString = prefix + "bar" s](const std:: string& s) {

            return s == savedString;

        }

    );

    if (result != vs.end())

        std:: cout << prefix << "-something found! \n " ;

}

https://cppinsights.io/s/5d11eb8f
https://wandbox.org/permlink/a9t50Zl0BPlx4V58
https://wg21.link/P0288
https://wandbox.org/permlink/GWcJNoUsBFnscOp3


The code above shows two calls to std::find_if . In the first scenario, we
capture prefix and compare the input value against prefix + "bar"s . Every
time the lambda is invoked a temporary value that stores the sum of those
strings has to be created and computed.

The second call to find_if shows an optimisation: we create a captured
variable savedString that computes the sum of strings. Then, we can safely
refer to it in the lambda body. The sum of strings will run only once and not
with every invocation of the lambda.

The example also uses std::string_literals , and that’s why we can write
"foo"s which represents a std::string object.

Capturing a Member Variable

Initialiser can also be used to capture a member variable. We can then capture
a copy of a member variable and don’t bother with dangling references.

For example:
Capturing a member variable. Live code @Wandbox

#include <algorithm>

#include <iostream>

struct Baz {

    auto foo() const {

        return [s= s] { std:: cout << s << std:: endl; };

    }

    

    std:: string s;

};

int main () {

   const auto f1 = Baz{"abc" }.foo();

   const auto f2 = Baz{"xyz" }.foo();

   f1();

   f2();

}

In foo() we capture a member variable by copying it into the closure type.
Additionally, we use auto for the deduction of the return type of the member
function foo() . As a remark, in C++11, we would have to use
std::function , see in the C++11 chapter .

It might be surprising that we used a “strange” syntax like [s = s] when

https://wandbox.org/permlink/E65tipdkDj2nrdF5


declaring the lambda. This code works because a captured variable is in the
scope of the closure type and not in the outside scope. That’s why there’s no
conflict here.

Generic Lambdas
That’s a big one!

The early specification of Lambdas allowed us to create anonymous
functional objects and pass them to various generic algorithms from the
Standard Library. However, closures were not “generic” on their own. For
example, you couldn’t specify a template parameter as a lambda parameter.

Fortunately, since C++14, the Standard introduced Generic Lambdas and
now we can write:
const auto foo = [](auto x, int y) { std:: cout << x << ", " y << ' '\n' ; };

foo(10 , 1 );

foo(10.1234 , 2 );

foo("hello world" , 3 );

Please notice auto x as a parameter to the lambda. This is equivalent to using
a template declaration in the call operator of the closure type:
struct {

    template < typename T> 

    void operator ()(T x, int y) const {

        std:: cout << x << ", " y << ' '\n' ;

    }

} someInstance ;

If there are more auto arguments, then the code expands to separate template
parameters:
const auto fooDouble = [](auto x, auto y) { /*...*/ };

Expands into:
struct {

    template < typename T, typename U> 

    void operator ()(T x, U y) const { /*...*/ }

} someOtherInstance;

Variadic Generic Arguments



But that’s not all. If you need more function parameters, then you can also go
“variadic”:

For example:
Generic Variadic Lambda, Sum. Live code @Wandbox

#include <iostream>

template < typename T> 

auto sum(T x) { return x; }

template < typename T1, typename ... T> 

auto sum(T1 s, T... ts) { return s + sum(ts...); }

int main() {

    const auto sumLambda = [] (auto ... args) {

        std:: cout << "sum of: " << sizeof ...(args) << " numbers \n " ;

        return sum (args...);

    };

    std:: cout << sumLambda(1.1 , 2.2 , 3.3 , 4.4 , 5.5 , 6.6 , 7.7 , 8.8 , 9.9 );

}

In the above sample the generic lambda uses auto... to represent a variadic
argument pack. Conceptually it’s expanded into the following call operator:
struct __anonymousLambda{

    template < typename ... T> 

    void operator ()(T... args) const { /*...*/ }

};

In C++17 we got fold expression which can improve generic variadic lambdas and in
C++20 we’ll get more control over the template arguments. For more information see
C++17’s updates to variadic generic lambdas and also in C++20 about template lambdas
.

Perfect Forwarding with Generic Lambdas
With generic lambdas you’re not restricted to using auto x , you can add any
qualifiers as with other auto variables like auto& , const auto& or auto&& .
One of the handy use cases is that you can specify auto&& x which becomes
a forwarding (universal) reference. This allows you to perfectly forward the
input arguments:

Perfect Forwarding with Generic Lambda. Live code @Wandbox
#include <iostream>

https://wandbox.org/permlink/EVw677hLJwKpSpPg
https://wandbox.org/permlink/kA2GNHFiLOGDu9d9


#include <string>

void foo (const std:: string& ) { std:: cout << "foo(const string&) \n " ; }

void foo (std:: string&& ) { std:: cout << "foo(string&&) \n " ; }

int main () {

    const auto callFoo = [](auto && str) {

        std:: cout << "Calling foo() on: " << str << '\n' ;

        foo(std:: forward< decltype (str)> (str));

    };

            

    const std:: string str = "Hello World" ;

    callFoo(str);

    callFoo("Hello World Ref Ref" );

}

The output:
Calling foo() on: Hello World

foo(const string&)

Calling foo() on: Hello World Ref Ref

foo(string&&)

The sample code defines two function overloads foo for const references to
std::string and one for r-value references to std::string . The callFoo
lambda uses a generic argument that is a universal reference 6 . If you wanted
to rewrite this lambda into a regular function template it could look like:
template < typename T> 

void callFooFunc(T&& str) {

    std:: cout << "Calling foo() on: " << str << '\n' ;

    foo(std:: forward< T> (str));

}

As you can see with generic lambdas, you have more options to write local
anonymous functions.

But there’s more.

Deducing the Correct Type
Additionally, generic lambdas might be very helpful when type deduction is
tricky.

For example:
Correct type for map iteration. Live code @Wandbox

#include <algorithm>

https://wandbox.org/permlink/pSbtIA2lgYa6r1bW


#include <iostream>

#include <map>

#include <string>

int main () {

    const std:: map< std:: string, int > numbers {

        { "one" , 1 }, {"two" , 2 }, { "three" , 3 }

    };

    

    // each time entry is copied from pair<const string, int>! 

    std:: for_each(std:: begin(numbers), std:: end(numbers),

         [](const std:: pair< std:: string, int >& entry) {

             std:: cout << entry.first << " = " << entry.second << '\n' ;

         }

    );

}

Did I make any mistake here? Does entry have the correct type?

It’s a mistake, as the value type for std::map is std::pair<const Key, T>
and not const std::pair<Key, T> . For our case, the code performed extra
copies due to the conversion between std::pair<const std::string, int>
and const std::pair<std::string, int>& (ie. const std::string to
std::string ):

This can be fixed by using auto :
std:: for_each(std:: begin(numbers), std:: end(numbers),

    [](const auto & entry) {

        std:: cout << entry.first << " = " << entry.second << '\n' ;

    }

);

Now the template argument deduction will adequately get the correct type of
the entry object, and there will be no additional copy created. Not to mention
the code is much easier to read and shorter.

See the full example which also contains code that prints the addresses of the
entries:

Correct type for map iteration, full version. Live code @Wandbox
#include <algorithm>

#include <iostream>

#include <map>

#include <string>

int main () {

    const std:: map< std:: string, int > numbers {

        { "one" , 1 }, {"two" , 2 }, { "three" , 3 }

    };

https://wandbox.org/permlink/yvow5G122f7A2SxN


    

    // print addresses: 

    for (auto mit = numbers.cbegin(); mit != numbers.cend(); ++ mit)

        std:: cout << & mit-> first << ", " << & mit-> second << '\n' ;

    

    // each time entry is copied from pair<const string, int>! 

    std:: for_each(std:: begin(numbers), std:: end(numbers),

         [](const std:: pair< std:: string, int >& entry ) {

             std:: cout << & entry.first << ", " << & entry.second << ": " 

                       << entry.first << " = " << entry.second << '\n' ;

         }

    );

    

    // this time entries are not copied, they have the same addresses 

    std:: for_each(std:: begin(numbers), std:: end(numbers),

         [](const auto & entry) {

             std:: cout << & entry.first << ", " << & entry.second << ": " 

                       << entry.first << " = " << entry.second << '\n' ;

         }

    );

}

And here’s a possible output:
1 0x165dc40, 0x165dc60

2 0x165dce0, 0x165dd00

3 0x165dc90, 0x165dcb0

4 0x7ffe5ed29a20, 0x7ffe5ed29a40: one = 1

5 0x7ffe5ed29a20, 0x7ffe5ed29a40: three = 3

6 0x7ffe5ed29a20, 0x7ffe5ed29a40: two = 2

7 0x165dc40, 0x165dc60: one = 1

8 0x165dce0, 0x165dd00: three = 3

9 0x165dc90, 0x165dcb0: two = 2

The first three lines show the addresses of keys and values from the map.
Later in lines 4, 5 and 6, you can see three new addresses which are the same,
but they are probably temporary copies for the loop iteration. The last three
lines illustrate the version with const auto& , and as you can notice, the
addresses are the same as in the first three lines.

In our example, we focused on extra copies of keys, but it’s vital to
understand that also the value entry is copied. This might not be an issue
when you use a cheap-to-copy type like int , but it might cost much more if
the objects are larger like strings.



In C++20 you’ll get even more control over the template argument for lambdas as this
new revision of C++ introduces template lambdas, concepts and constrained auto
parameters.

Replacing std::bind1st and std::bind2nd with Lambdas
In the chapter about C++98/03, I mentioned and showed a few code samples
with functional helpers like std::bind1st and std::bind2nd . However,
since C++11 the functionality becomes deprecated, and in C++17, the
functions were removed.

Functions like bind1st() /bind2nd() /mem_fun() , … were introduced in the
C++98-era and are not needed now as you can apply a lambda or use modern
alternatives. What’s more, the routines were not updated to handle perfect
forwarding, variadic templates, decltype and other techniques from C++11.
Thus it’s best not to use them in modern code.

Here’s the list of deprecated functionality:

unary_function() /pointer_to_unary_function()
binary_function() /pointer_to_binary_function()
bind1st() /binder1st
bind2nd() /binder2nd
ptr_fun()

mem_fun()

mem_fun_ref()

To replace bind1st /bind2nd you can use lambdas or std::bind (available
since C++11) or std::bind_front (since C++20).

Let’s consider the following code which uses the old functionality:
const auto onePlus = std:: bind1st(std:: plus< int > (), 1 );

const auto minusOne = std:: bind2nd(std:: minus< int > (), 1 );

std:: cout << onePlus(10 ) << ", " << minusOne(10 ) << '\n' ;

In the preceding example, onePlus is a callable object composed of
std::plus with the first argument fixed. In other words when you write



onePlus(n) it’s then “expanded” into std::plus(1, n) .

Similarly, minusOne is a composed of std::minus with the second argument
fixed to one. Thus minusOne(n) “expands” into std::minus(n, 1) .

The above syntax is quite complicated, so let’s see how it can be improved
with Modern C++ patterns.

Using Modern C++ Techniques
Let’s try with std::bind - which offers more flexibility than bind1st or
bind2nd .

Replacing with std::bind. Live code @Compiler Explorer
#include <algorithm>

#include <functional>

#include <iostream>

int main () {

    using std:: placeholders:: _1 ;

    const auto onePlus = std:: bind(std:: plus< int > (), _1, 1 );

    const auto minusOne = std:: bind(std:: minus< int > (), 1 , _1);

    std:: cout << onePlus(10 ) << ", " << minusOne(10 ) << '\n' ;          

}

std::bind is more flexible as it can support multiple arguments or can even
reorder them. For argument management, you need to use “placeholders”. In
our example, we used _1 to represent the first argument that will be passed to
the final function object.

While std::bind is much better than the C++98/03 legacy helpers, it’s still
not as natural as lambda expressions.

We can write at least two versions with lambdas. The first one with the
hardcoded values for the operations:
auto lamOnePlus1 = [](int b) { return 1 + b; };

auto lamMinusOne1 = [](int b) { return b - 1 ; };

std:: cout << lamOnePlus1(10 ) << ", " << lamMinusOne1(10 ) << '\n' ;

Still, since C++14 we can also take advantage of capture with initialiser and
be more flexible:
auto lamOnePlus = [a=1 ](int b) { return a + b; };

auto lamMinusOne = [a=1 ](int b) { return b - a; };

https://godbolt.org/z/bj9Txh


std:: cout << lamOnePlus(10 ) << ", " << lamMinusOne(10 ) << '\n' ;

The lambda version is much cleaner and more readable. This will be more
visible in a more complicated example below.

Function Composition
As a final example let’s have a look at the following code with function
composition:

Funcion composition with std::bind. Live code @Compiler Explorer
#include <algorithm>

#include <functional>

#include <vector>

int main () {

    using std:: placeholders:: _1;

    const std:: vector< int > v { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

    const auto val = std:: count_if(v.begin(), v.end(),

                                   std:: bind(std:: logical_and< bool > (),

                                   std:: bind(std:: greater< int > (), _1, 2 ),

                                   std:: bind(std:: less< int > (), _1, 6 )));

        

    return val;                                        

}

Can you immediately decipher what’s going on there? 7

And now let’s rewrite this complicated composition with a simple lambda
expression:
std:: vector< int > v { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

const auto more2less6 = std:: count_if(v.begin(), v.end(),

                                      [](int x) { return x > 2 && x < 6 ;});

Isn’t that better?

You can read more about the guidelines for the use of std::bind and lambdas in the
following resources: in “Effective Modern C++”, Item 34: Prefer lambdas to std::bind ,
and on the Google Abseil Blog: Tip of the Week #108: Avoid std::bind .

LIFTing with lambdas

https://godbolt.org/z/8N7ZBX
https://abseil.io/tips/108


While the algorithms from the Standard Library are convenient, some issues
are hard to solve. One of them is passing function overloads into function
templates that takes a callable object.

For example:
Calling function overloads

#include <algorithm>

#include <vector>

// two overloads: 

void foo (int ) {}

void foo (float ) {}

int main () {

    const std:: vector< int > vi { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

    std:: for_each(vi.begin(), vi.end(), foo);

}

In the above example, we try to use foo which has two overloads for int and
float and pass it into for_each . Unfortunately, we get the following error
from GCC 9 (trunk):
error: no matching function for call to

for_each(std::vector<int>::iterator, std::vector<int>::iterator,

 <unresolved overloaded function type>)

   std::for_each(vi.begin(), vi.end(), foo);

                                       ^^^^^

The main issue here is that the compiler sees foo as a template parameter, so
it needs to resolve the type of it. But to do this it would have to check what
types foo accepts, which is not possible.

However, there’s a trick where we can use lambda and then call the desired
function overload.

In a basic form, for simple value types, for our two functions, we can write
the following code:
std:: for_each(vi.begin(), vi.end(), [](auto x) { return foo(x); });

Now, we have a wrapper (a generic lambda) which handles the overload
resolution and calls the proper overload for foo() .

We can improve this by using perfect forwarding:



std:: for_each(vi.begin(), vi.end(), [](auto && x) {

    return foo(std:: forward< decltype (x)> (x); }

);

And here’s the working example:
Generic Lambda and Function Overload. Live code @Wandbox

#include <algorithm>

#include <iostream>

#include <vector>

void foo (int i) { std:: cout << "int: " << i << " \n " ; }

void foo (float f) { std:: cout << "float: " << f << " \n " ; }

int main () {

    const std:: vector< int > vi { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

    std:: for_each(vi.begin(), vi.end(), [](auto && x) {

        return foo(std:: forward< decltype (x)> (x));

     });

}

However, for more advanced scenarios, this might not be a preferred
solution. It’s because we don’t honour variadic arguments and exception
specification.

If you need a more generic, and better solution, then you need to write a bit
more code:
#define LIFT(foo) \ 

  [](auto&&... x) \ 

    noexcept(noexcept(foo(std::forward<decltype(x)>(x)...))) \ 

   -> decltype(foo(std::forward<decltype(x)>(x)...)) \ 

  { return foo(std::forward<decltype(x)>(x)...); } 

Quite complicated code… right? :)

Let’s try to decipher it. There are three duplicated parts:

return foo(std::forward<decltype(x)>(x)...); - this is perfect
forwarding so that we can properly pass input arguments into the foo
function preserving their types.
noexcept(noexcept(foo(std::forward<decltype(x)>(x)...))) -
uses the noexcept operator (the nested one) to check the exception
specification of the foo callable object. Depending on the result it will
yield noexcept(true) or noexcept(false) .
decltype(foo(std::forward<decltype(x)>(x)...) it’s used to

https://wandbox.org/permlink/2t1M9lUnTT16LjnU


deduce the return type for the wrapper lambda

LIFT is defined as a macro as otherwise you’d have to write this code every
time you’d like to create such lambda and pass it into an algorithm. In this
case, macros are the easiest syntax we can use 8 .

Play with the final code @Wandbox

Recursive Lambdas
If you have a regular function then it’s easy to call it recursively. A common
example is the calculation of a factorial:

Recursion with a Regular Function. Live code @Wandbox
int factorial (int n) {

    return n > 1 ? n * factorial(n - 1 ) : 1 ;

}

int main () {

    return factorial(5 );

}

However it’s not directly possible with lambdas:
Errors with Recursive Lambda. Live code @Wandbox

int main () {

    auto factorial = [](int n) {

        return n > 1 ? n * factorial(n - 1 ) : 1 ;

    };

    return factorial(5 );

}

This code doesn’t compile! Here’s an error from GCC:
error: use of 'factorial' before deduction of 'auto' 

This happens because we cannot access factorial inside a body of the
lambda, as it’s still not fully evaluated. To illustrate this issue we can
“expand” the code into a simplified functor:
struct fact {

    int operator ()(int n) const {

          return n > 1 ? n * factorial(n - 1 ) : 1 ;

    };

};

auto factorial = fact{};

https://wandbox.org/permlink/r81jASiPPmYXTOmx
https://wandbox.org/permlink/BKwwFt2eW7Nd3gIV
https://wandbox.org/permlink/etbPCZDuFUUYfit0


As you can see, inside operator() there’s no way we can access a variable of
the functor type.

If you need to call lambda recursively, there are at least two tricks that you
can leverage:

With std::function and capturing it.
With internal lambda and passing it as a generic parameter.

Let’s see the first option:

With std::function
The main idea is that we can assign a lambda to std::function 9 and then we
can capture this object into the lambda body.

Recursive Lambda with std::function . Live code @Wandbox
#include <functional>

int main () {

    const std:: function< int (int )> factorial = [& factorial](int n) {

        return n > 1 ? n * factorial(n - 1 ) : 1 ;

    };

    return factorial(5 );

}

In the previous code sample, inside the lambda body, we call factorial
which is a captured std::function object. This object is fully defined, and
that’s why the compiler has no issues when accessing and calling it.

If you want to use only stateless lambdas, then you might even try with a
function pointer rather than std::function as it should cost much less
memory.

But there’s one more trick:

Internal Lambda and a Generic Parameter
With C++14 we can use the following alternative:

Recursive Lambda with internal implementation. Live code @Wandbox
int main () {

    const auto factorial = [](int n) noexcept {

https://wandbox.org/permlink/ogZxy9CvAvRBUfJL
https://wandbox.org/permlink/B0ueQ9nbZmr8PQE3


        const auto f_impl = [](int n, const auto & impl) noexcept -> int {

            return n > 1 ? n * impl(n - 1 , impl) : 1 ;

        };

        return fact_impl(n, f_impl);

    };

    return factorial(5 );

}

This time we create an internal lambda that performs the primary processing
(f_impl ). Later, we pass a generic argument to it (const auto& impl ). This
parameter is a callable object that we can call recursively. Thanks to generic
lambdas in C++14 we can avoid the cost of std::function and rely on auto
type deduction.

More Tricks
If you’d like to see more tricks, then you can also have a look at the
following resources:

c++ - Recursive lambda functions in C++11 - Stack Overflow
Recursive lambdas in C++(14) - Pedro Melendez

Is recursive lambda the best alternative?
In this section, you could see some of the tricks with the lambda expression.
Nevertheless, the complexity of those techniques is way ahead of a simple
solution with just a recursive function call. That’s why there might be cases
where recursive lambda is not the best and the most straightforward option.
On the other hand, the strong points for complicated recursive lambdas are its
locality and the ability to take auto arguments.

Summary
As you saw in this chapter, C++14 brought several key improvements to
lambda expressions. Since C++14 you can now declare new variables to use
inside a lambda scope, and you can also use them efficiently in template
code. In the next chapter, we’ll dive into C++17, which brings more updates!

https://stackoverflow.com/questions/2067988/recursive-lambda-functions-in-c11
http://pedromelendez.com/blog/2015/07/16/recursive-lambdas-in-c14/


4. Lambdas in C++17

C++17 added two significant enhancements to lambda expressions:

constexpr lambdas
Capture of *this

The new C++ revision also updated the type system - it now contains
exception specification, which also relates to lambda expressions.

You can see the specification related to lambdas in N659 (C++17 draft just
before publication) and the lambda section: [expr.prim.lambda] .

Additionally, you’ll learn about the following techniques:

How to improve the IIFE pattern in C++17.
How to improve variadic generic lambdas with fold expressions from
C++17.
How to derive from multiple lambdas.
Lambdas and Asynchronous Execution.

Let’s start!

https://timsong-cpp.github.io/cppwp/n4659/
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda


Lambda Syntax Update
With C++17, we have a few changes to the syntax of lambda expressions:

You can now add constexpr after the parameter list.
The dynamic exception specification was deprecated in C++11 and
removed in C++17, so in practice, you should only use noexcept .

[] () specifiers exception attr -> ret { /*code; */ }

^  ^  ^                            ^

|  |  |                            |

|  |  |                            optional: trailing return type

|  |  |

|  |  optional: mutable, constexpr, noexcept, attributes

|  |

|  parameter list (optional when no specifiers added)

|

lambda introducer with an optional capture list

You can read about this new modification in the next section.

Exception Specification in Type System
Before we move to syntax improvements for lambdas, we need to cover one
“general” language feature that was introduced into C++17.

Exception Specification for a function didn’t use to belong to the type of the
function, but now, in C++17, it’s part of it. This means you can have two
function overloads: one with noexcept and the second without it. See below:

Exception Specification in Type System. Live code @Wandbox
using TNoexceptVoidFunc = void (* )() noexcept ;

void SimpleNoexceptCall (TNoexceptVoidFunc f) { f(); }

using TVoidFunc = void (* )();

void SimpleCall (TVoidFunc f) { f(); }

void fNoexcept () noexcept { }

void fRegular () { }

int main () {

    SimpleNoexceptCall(fNoexcept);

    SimpleNoexceptCall([]() noexcept { });

    // SimpleNoexceptCall(fRegular);   // cannot convert 

    // SimpleNoexceptCall([]() { });  // cannot convert 

    

    SimpleCall(fNoexcept); // converts to regular function 

    SimpleCall(fRegular);

    SimpleCall([]() noexcept { });  // converts 

    SimpleCall([]() { });   

https://wandbox.org/permlink/4mMgkPKP7YaSXr2g


}

A pointer to a noexcept function can be converted to a pointer to a regular
function (this also works for a pointer to a member function and also for
lambdas). But it’s not possible the other way around (from a regular function
pointer into a function pointer that is marked with noexcept ).

One of the reasons for adding the feature is a chance to optimise the code
better. If the compiler has a guarantee that a function won’t throw, then it can
potentially generate faster code 10 . Inside the Standard Library, there are
many places where noexcept is checked and based on that the code can be
more efficient. This is how it works for std::vector which can differentiate
between stored types that can move without throwing or not.

Here’s an example which uses type traits and if constexpr to check if a
given callable object is marked with noexcept :
#include <iostream>

#include <type_traits>

template < typename Callable> 

void CallWith10(Callable&& fn) {

    if constexpr (std:: is_nothrow_invocable_v< Callable, int > ) {

        std:: cout << "Calling fn(10) with optimisation \n " ;

        fn(10 );

    }

    else {

        std:: cout << "Calling fn(10) normally \n " ;

        fn(10 );

    }

}

int main() {

    int x {10 };

    const auto lam = [& x](int y) noexcept { x += y; };

    CallWith10(lam);

    

    const auto lamEx = [& x](int y) {

        std:: cout << "lamEx with x = " << x << '\n' ;

        x += y;

    };

    CallWith10(lamEx);

}

The output:
Calling fn(10) with optimisation

Calling fn(10) normally

lamEx with x = 20



The code uses std::is_nothrow_invocable_v to check if the given callable
object is marked with noexcept .

In C++17, the Exception Specification is cleaned up. Effectively, you can only use
noexcept for declaring that a function won’t throw. The dynamic exception
specification, i.e. throw(X, Y, Z) is now removed.

Quick Question: What happens if you mark a function with noexcept and yet it throws
an exception? In that case, the compiler will call std::terminate .

constexpr Lambda Expressions
Since C++11, constexpr has allowed more and more code to be evaluated at
compile time. This not only affects the performance but more importantly
makes compile-time coding much more pleasant and potent. In C++17, this
powerful keyword can also be applied on lambdas Let’s see the specification
expr.prim.lambda #4 :

The function call operator is a constexpr function if either the corresponding lambda-
expression’s parameter-declaration-clause is followed by constexpr , or it satisfies the
requirements for a constexpr function.

In other words, if the lambda body follows the rules of a constexpr function
then, operator() for the closure type is implicitly defined as constexpr . To
recall, in C++17, a constexpr function has the following rules
n4659/dcl.constexpr#3 :

it shall not be virtual;
its return type shall be a literal type;
each of its parameter types shall be a literal type;
its function-body shall be = delete , = default , or a compound-statement that
does not contain

an asm -definition,
a goto statement,

https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda#closure-4
https://timsong-cpp.github.io/cppwp/n4659/dcl.constexpr#3


an identifier label,
a try-block, or
a definition of a variable of non-literal type or of static or thread storage
duration or for which no initialisation is performed.

For example:
constexpr auto Square = [](int n) { return n * n; }; // implicit constexpr 

static_assert (Square(2 ) == 4 );

Since the body of Square is simple and it doesn’t violate constexpr rules,
then it’s implicitly marked as constexpr and we can call it at compile-time
with static_assert .

Examples
How about more practical code samples? At start, let’s consider an
implementation of a popular numerical algorithm:

constexpr lambda - Simple Accumulate. Live code @Wandbox
#include <array>

template < typename Range, typename Func, typename T> 

constexpr T SimpleAccumulate(Range&& range, Func func, T init) {

    for (auto && elem : range) {

        init += func(elem);

    }

    return init;

}

int main() {

    constexpr std:: array arr{ 1 , 2 , 3 };

    

    constexpr auto sum = SimpleAccumulate(arr, [](auto i) {

            return i * i;

        }, 0 );

    

    static_assert (sum == 14 );

}

The code uses a constexpr lambda which is passed to SimpleAccumulate .
The lambda is not explicitly marked with constexpr , but the compiler will
declare its call operator with constexpr as the body contains just a simple
computation. The algorithm also uses a few C++17 elements: constexpr
additions to std::array , std::begin and std::end (used in range-based
for-loop) are now also constexpr so it means that the whole code might be

https://wandbox.org/permlink/Vzh81HbW2EVecKzn


executed at compile time.

As another example we can use and enhance a recursive lambda from the
C++14 chapter :

Recursive constexpr Lambda. Live code @Compiler Explorer
int main () {

    constexpr auto factorial = [](int n) {

        constexpr auto fact_impl = [](int n, const auto & impl) -> int {

            return n > 1 ? n * impl(n - 1 , impl) : 1 ;

        };

        return fact_impl(n, fact_impl);

    };

    static_assert (factorial(5 ) == 120 );

}

In the example, we marked the factorial with constexpr , and this allows
checking the computation through static_assert . Have a look at the live
code at Compiler Explorer to see the generated assembler - it’s almost “no-
op” even with disabled optimisation level.

Capturing Variables
You can also capture variables (assuming they are also constant expressions):

Capturing a constexpr variable. Live code @Wandbox
constexpr int add (int const & t, int const & u) { return t + u; }

int main () {

    constexpr int x = 0 ;

    constexpr auto lam = [x](int n) { return add(x, n); };

    

    static_assert (lam(10 ) == 10 );

}

However, there’s an interesting case where you don’t “pass” a captured
variable any further, like:
constexpr int x = 0 ;

constexpr auto lam = [x](int n) { return n + x; };

In that case, in Clang, we might get the following warning:
warning: lambda capture 'x' is not required to be captured for this use

The same happens when we change the implementation of add() so it takes

https://godbolt.org/z/Mpt_UX
https://wandbox.org/permlink/VSwx8lCJOLWpB3wR


arguments by value:
constexpr int add (int t, int u) { return t + u; }

It’s because if we rely on constant expressions the compiler can optimise
away the variables, especially for built-in types for which we know the values
at compile-time.

Here’s some extra description from cppreference :

A lambda expression can read the value of a variable without capturing it if the variable

has const non-volatile integral or enumeration type and has been initialised with a
constant expression, or
is constexpr and has no mutable members.

For more information you can also read this part of the Standard: C++ draft -
basic.def.odr#4 .

In the first add() example, that took a variable by reference, we enforce the
compiler to create a closure member that can be then bound to the reference.
Imagine that the add() function returns the address of the argument and then
it will be compared against x, like so:
int const * address (int const & x) {

   return & x;

}

auto f = [x] {

  auto * p = address(x);

  return p == & x; // these need to be true 

};

Thus the compiler needs to store a copy of x inside the closure - i.e. capture
it. And it this case the capture cannot be optimised away.

constexpr Summary:
In a nutshell:

constexpr lambdas allow you to blend with template programming and

https://en.cppreference.com/w/cpp/language/lambda
https://eel.is/c++draft/basic.def.odr#4


possibly have shorter code.

Be prepared for the future:
In C++20 we’ll have lots of constexpr standard algorithms and containers like
std::vector and std::string , so constexpr lambdas will be very handy in that
context. Your code will look the same for the runtime version as well as for constexpr
(compile-time) version!

Let’s now move to the second important feature available since C++17:

Capture of *this
Do you remember the issue when we wanted to capture a class member? 11 ;

By default, we capture this (as a pointer!), and that’s why we might get into
trouble when temporary objects go out of scope.

In C++17 we have another way. We can capture a copy of *this 12 :
Capturing *this . Live code @Wandbox

#include <iostream>

struct Baz {

    auto foo() {

        return [* this ] { std:: cout << s << std:: endl; };

    }

    

    std:: string s ;

};

int main () {

   const auto f1 = Baz{"xyz" }.foo();

   const auto f2 = Baz{"abc" }.foo();

   f1();

   f2();

}

In the example we can now write [*this] which means that the lambda
captures a copy of the temporary object, a copy of *this . The copy is then
saved in the closure object and then there won’t be any undefined behaviour
when invoking the lambda later.

https://wandbox.org/permlink/0BlQnUa6fUjCFs7G


Please note that in C++17 if you write [=] in a member function, then this is implicitly
captured! Have a look at the C++20 Chapter when this is enhanced and deprecated! See
P0806 .

Some Guides
OK, so should we capture [this] or [*this ], and why is this important?

In most cases, when you work inside the scope of a class, then [this] (or [&]
) is perfectly fine. There’s no extra copy which is essential when your objects
are large.

You might consider [*this] when you really want a copy, and when there’s
a chance a lambda will outlive the object.

This might be crucial for avoiding data races in async or parallel execution.
Also, in the async/multithreading execution mode, the lambda might outlive
the object, and then this pointer might no longer be alive.

Updates To IIFE
In the chapter about C++11 changes, you learned about IIFE - Immediately
Invoked Functional Expression . In C++17 there’s a little update to that
technique.

One of the issues with IIFE is that it’s sometimes hard to read, as the call
operator might be easily skipped when reading the code:
const auto var = [& ] {

    if (TheFirstCondition())

        return one_value;

    

    if (TheSecondCindition())

        return second_val;

    

    return default_value;

}(); // call it! 

In the C++11 chapter, we even discussed a situation where using const auto
var might also be a bit misleading. It’s because developers might be
accustomed to the fact that var might be a closure object and not the result of

https://wg21.link/P0806


the invocation.

In C++17 there’s a handy template function std::invoke() that can make
IIFE more visible:
const auto var = std:: invoke([& ] {

    if (TheFirstCondition())

        return one_value;

    

    if (TheSecondCindition())

        return second_val;

    

    return default_value;

});

As you can see, there’s no need to write () at the end of the expression, and
it’s now clear that the code invokes something.

std::invoke() is located in the <functional> header file.

Updates to Variadic Generic Lambdas
In the C++14 chapter, we talked about the variadic argument list that we can
use with generic lambdas. Thanks to fold expressions in C++17 we can write
even more compact code. Here’s the converted example for the sum
calculation:

Sum with Fold Expressions. Live code @Wandbox
#include <iostream>

int main () {

    const auto sumLambda = [] (auto ... args) {

        std:: cout << "sum of: " << sizeof ...(args) << " numbers \n " ;

        return (args + ... + 0 );

    };

    std:: cout << sumLambda(1.1 , 2.2 , 3.3 , 4.4 , 5.5 , 6.6 , 7.7 , 8.8 , 9.9 );

}

If you compare it to the previous example from C++14, you can quickly
notice that there’s no need for recursion! The fold expression gives us a
simple and relatively intuitive syntax for writing expressions that combines
variadic arguments.

Here’s another example for the variadic print utility:
Simple Printer with Fold Expression. Live code @Wandbox

https://wandbox.org/permlink/mR0isnf1lvT9XOAW
https://wandbox.org/permlink/q0zka0k8rnez993a


#include <iostream>

int main () {

    const auto printer = [] (auto ... args) {

         (std:: cout << ... << args) << '\n' ;

    };

    printer(1 , 2 , 3 , "hello" , 10.5f );

}

However, if you run the code it will print all arguments without any
separator:
123hello10.5

And to solve this issue, we can introduce a little helper and also fold over
comma operator rather than over << :

Printer With a Helper Internal Lambda. Live code @Wandbox
#include <iostream>

int main () {

    const auto printer = [] (auto ... args) {

        const auto printElem = [](auto elem) {

            std:: cout << elem << ", " ;

        };

        (printElem(args), ...);

        std:: cout << '\n' ;

    };

    printer(1 , 2 , 3 , "hello" , 10.5f );

}

And now we have the following output:
1, 2, 3, hello, 10.5,

This can be even shortened into:
const auto printer = [] (auto ... args) {

    ((std:: cout << args << ", " ), ...);

    std:: cout << '\n' ;

};

And if we do not want to show the last comma at the end of the print
sequence we can do the following:

Printing Elements Without the Last Separator. Live code @Wandbox
#include <iostream>

https://wandbox.org/permlink/2snoAYVJyovjj21D
https://wandbox.org/permlink/2qmauHbwFQlmwvIe


int main () {

    const auto printer = [] (auto first, auto ... args) {

        std:: cout << first;

        ((std:: cout << ", " << args), ...);

        std:: cout << '\n' ;

    };

    printer(1 , 2 , 3 , "hello" , 10.5f );

}

This time we need to use a generic template argument for the first entry and
then a variadic parameter list for the rest. We can then print the first element
and then add a comma before other entries. The code will now print:
1, 2, 3, hello, 10.5

Deriving from Multiple Lambdas
In the C++11 chapter, you learned about deriving from a lambda expression.
While it was interesting to see such a technique, the use cases were limited.

The main issue with that approach was that it supported only a specific
number of lambdas. The examples used one or two base classes. But how
about using a variable number of base classes, which means a variable
number of lambdas?

In C++17 we have a relatively easy pattern for that!

Have a look:
template < class... Ts> struct overloaded : Ts... { using Ts:: operator ()...; };

template < class... Ts> overloaded(Ts...) -> overloaded< Ts...> ;

As you can see, we need to use variadic templates since they allow us to
specify the variable number of base classes.

Here’s one simple example that uses the code:
The Overloaded Pattern. Live code @Compiler Explorer

#include <iostream>

template < class... Ts> struct overloaded : Ts... { using Ts:: operator ()...; };

template < class... Ts> overloaded(Ts...) -> overloaded< Ts...> ;

int main () {

https://godbolt.org/z/6K88Gj


    const auto test = overloaded{

        [](const int & i) { std:: cout << "int: " << i << '\n' ; },

        [](const float & f) { std:: cout << "float: " << f << '\n' ; },

        [](const std:: string& s) { std:: cout << "string: " << s << '\n' ; }

    };

    test("10.0f" );

}

In the above example, we create a test object which is composed of three
lambdas. Then we can call the object with a parameter, and the correct
lambda will be selected, depending on the type of the input parameter.

Let’s now have a closer look at the core parts of this pattern.

Those two lines of code benefits from three features available since C++17:

Pack expansions in using declarations - short and compact syntax with
variadic templates.
Custom template argument deduction rules - that allows converting a list
of lambda objects into a list of base classes for the overloaded class.
(note: not needed in C++20!).
Extension to aggregate initialisation - before C++17 you couldn’t
aggregate initialise type that derives from other types.

In the C++11 chapter, we already covered the need for using declaration.
This is important for bringing the call operators into the same scope of the
overloaded structure. In C++17 we got a syntax that supports variadic
templates, which was not possible in the previous revisions of the language.

Let’s now try to understand the remaining two features:

Custom Template Argument Deduction Rules
We derive from lambdas, and then we expose their operator() as we saw in
the previous section. But how can we create objects of this overload type?

As you know, there’s no way to know up-front the type of the lambda, as the
compiler has to generate some unique type name for each of them. For
example, we cannot just write:
overload< LambdaType1, LambdaType2> myOverload { ... } // ??? 



// what is LambdaType1 and LambdaType2 ?? 

The only way that could work would be some make function (as template
argument deduction works for function templates since, like, always):
template < typename ... T> 

constexpr auto make_overloader(T&& ... t) {

    return overloaded< T...> {std:: forward< T> (t)...};

}

With template argument deduction rules that were added in C++17, we can
simplify the creation of common template types and the make_overloader
function is not needed.

For example, for simple types, we can write:
std:: pair strDouble { std:: string{"Hello" }, 10.0 };

// strDouble is std::pair<std::string, double> 

There’s also an option to define custom deduction guides. The Standard
library uses a lot of them, for example, for std::array :
template < class T , class... U> 

array(T, U...) -> array< T, 1 + sizeof ...(U)> ;

and the above rule allows us to write:
array test{1 , 2 , 3 , 4 , 5 };

// test is std::array<int, 5> 

For the overloaded pattern we can specify a custom deduction guide:
template < class... Ts> overloaded(Ts...) -> overloaded< Ts...> ;

Now, when we initialise an overload with two lambdas:
overloaded myOverload { [](int ) { }, [](double ) { } };

The template arguments for overload will be correctly deduced. In our case,
the compiler knows the types of the two lambdas so it can resolve the types
which the overload inherits from.



Checkout the C++20 chapter as in the new Standard, the Class Template Argument
Deduction is improved! For the overloaded pattern, it means that we don’t have to write
custom deduction guides!

Let’s now go to the last missing part of the puzzle - aggregate initialisation.

Extension to Aggregate Initialisation
This functionality is relatively straightforward: we can now aggregate
initialise a type that derives from other types. From the specification
dcl.init.aggr :

An aggregate is an array or a class with:

no user-provided, explicit, or inherited constructors
no private or protected non-static data members
no virtual functions, and
no virtual, private, or protected base classes

https://timsong-cpp.github.io/cppwp/n4659/dcl.init.aggr


For example (sample from the spec draft):
Aggregate Initialisation

struct base1 { int b1, b2 = 32 ; };

struct base2 {

  base2() { b3 = 64 ; }

  int b3;

};

struct derived : base1, base2 {

   int d;

};

derived d1{{1 , 2 }, {}, 4 };

derived d2{{}, {}, 4 };

The code initializes d1.b1 with 1 , d1.b2 with 2 , d1.b3 with 64 , d1.d with 4
. And for the second object we have: d2.b1 with 0 , d2.b2 with 32 , d2.b3
with 64 , d2.d with 4 .

In our case, it has a more significant impact. Because for the overload class,
without the aggregate initialisation, we’d had to implement the following
constructor:
struct overloaded : Fs... {

  template < class ... Ts > 

  overloaded(Ts&& ...ts) : Fs{std:: forward< Ts> (ts)}...

  {}

  // ... 

}

It’s a lot of code to write, and probably it doesn’t cover all of the cases like
noexcept .

With aggregate initialisation, we “directly” call the constructor of lambda
from the base class list, so there’s no need to write it and forward arguments
to it explicitly.

OK, we covered a lot, but is there any useful example of the overloaded
pattern?

It appears it might be convenient for std::variant visitation.

Example with std::variant and std::visit



Equipped with the knowledge we can use inheritance and the overloaded
pattern for something more practical. Have a look at an example with the
visitation of std::variant :

The Overloaded Pattern with variant and visit. Live code @Compiler Explorer
#include <iostream>

#include <variant>

template < class... Ts> struct overloaded : Ts... { using Ts:: operator ()...; };

template < class... Ts> overloaded(Ts...) -> overloaded< Ts...> ;

int main () {

    const auto PrintVisitor = [](const auto & t) { std:: cout << t << " \n " ; };

    

    std:: variant< int , float , std:: string> intFloatString { "Hello" };

    std:: visit(PrintVisitor, intFloatString);

    

    std:: visit(overloaded{

        [](int & i) { i *= 2 ; },

        [](float & f) { f *= 2.0f ; },

        [](std:: string& s) { s = s + s; }

    }, intFloatString);

    

    std:: visit(PrintVisitor, intFloatString);

}

In the code above we create a variant class that can hold integers, floating-
point or string values. Later there’s a call to PrintVisitor which outputs the
current value of the variant. Please notice that thanks to the generic lambda,
the visitor can support all types (which have the << operator implemented).

Now, we have another call to std::visit that creates a visitor in place, with
three different lambda expressions - one for each type. In this artificial
example, we want to multiply the value by two, and for strings, it means
joining the values together.

Concurrent Execution Using Lambdas
It’s easy to show examples where the lambda runs on the same thread as the
caller. But how about asynchronous cases? What if you want to call a lambda
on a separate thread? What problems might you encounter? Let’s review
them in this section.

https://godbolt.org/z/f3E6Kz


This section won’t be a tutorial on how to write concurrent code in C++, but it aims to
show problems that you can encounter with lambdas in asynchronous code. For more
information about concurrency in C++, you can consult separate books like Concurrency
with Modern C++ by Rainer Grimm or C++ Concurrency in Action by Anthony
Williams.

Lambdas with std::thread
Let’s start with std::thread which is available since C++11. As you might
already know std::thread accepts a callable object in its constructor. It
might be a regular function pointer, a functor or a lambda expression. A
simple example:

Passing lambda to a thread. Live code @Coliru
#include <iostream>

#include <thread>

#include <vector>

#include <numeric> // for std::iota

int main () {

    const auto printThreadID = [](const char * str) {

        std:: cout << str << ": " 

                  << std:: this_thread:: get_id() << " thread id \n " ;  

    };

    

    std:: vector< int > numbers(100 );

    

    std:: thread iotaThread([& numbers, & printThreadID](int startArg) {

            std:: iota(numbers.begin(), numbers.end(), startArg);

            printThreadID("iota in" );

        }, 10 

    );

    iotaThread.join();

    printThreadID("printing numbers in" );

    

    for (const auto & num : numbers)

        std:: cout << num << ", " ;

}

In the above sample, we create a single thread with a lambda expression. The
std::thread class has a flexible constructor, so we can even pass a value for
the argument. In our code 10 is passed into the lambda as startArg .

The code is simple because we can control the thread execution, and by
joining it, we know that the results of the iota will be ready before we print
them.

https://leanpub.com/concurrencywithmodernc
https://amzn.to/2Zl0M0r
http://coliru.stacked-crooked.com/a/1b568a3eb451c30d


The critical thing to remember is that while lambdas make it easy and
convenient to create a thread, it’s still the asynchronous execution. Closures
are not “special” and also vulnerable to all race conditions and blocking.

This is visible in the following example:
Updating a shared variable by many threads. Live code @Wandbox

#include <iostream>

#include <thread>

#include <vector>

int main () {

    int counter = 0 ;

    const auto maxThreads = std:: thread :: hardware_concurrency();

    std:: vector< std:: thread > threads;

    threads.reserve(maxThreads);

    for (size_t tCounter = 0 ; tCounter < maxThreads; ++ tCounter) {

        threads.push_back(std:: thread ([& counter]() noexcept {

            for (int i = 0 ; i < 1000 ; ++ i) {

                ++ counter;

                -- counter;

                ++ counter;

                -- counter;

            }

        }));

    }

    for (auto & thread : threads) {

        thread .join();

    }

    std:: cout << counter << std:: endl;

}

In the example, we’re creating several threads 13 , and each thread performs
some computations on the counter variable. The variable is shared among all
the threads.

In C++20 you can use std::jthread which is a thread that joins on destruction and also
accepts stop tokens. This new kind of threading object allows more control for the thread
execution.

While you might expect to see 0 as the final value of counter , the result is
undefined. One thread can read the value while others might simultaneously
write to it, causing the final result to be non-deterministic.

https://wandbox.org/permlink/L5E6lNlhF9xRK4aZ
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To fix the issue, as with regular threading scenarios, we should use some sort
of a synchronisation mechanism. For this example, we can use atomics as
they seem to be the easiest to use.

Changing atomic value. Live code @Wandbox
#include <iostream>

#include <thread>

#include <vector>

int main () {

    std:: atomic< int > counter = 0 ;

    const auto maxThreads = std:: thread :: hardware_concurrency();

    std:: vector< std:: thread > threads;

    threads.reserve(maxThreads );

    for (size_t tCounter = 0 ; tCounter < maxThreads; ++ tCounter) {

        threads.push_back(std:: thread ([& counter]() noexcept {

            for (int i = 0 ; i < 1000 ; ++ i) {

                counter.fetch_add(1 );

                counter.fetch_sub(1 );

                counter.fetch_add(1 );

                counter.fetch_sub(1 );

            }

        }));

    }

    for (auto & thread : threads) {

        thread .join();

    }

    std:: cout << counter.load() << std:: endl;

}

The code above works as expected because increment and decrement
operations are now atomic. It means that when counter value changes other
threads cannot interrupt this action. The synchronisation makes code safer but
at a price of the performance. This is, however, a topic for a much longer
discussion and a separate book.

Another option to solve the synchronisation problem is to have a local variable in each
thread that is computed. Then, before the thread ends, we could lock and then update the
global value. It’s also worth adding that defining a variable as volatile doesn’t provide
correct synchronisation. And in C++20 volatile is deprecated in many places.

https://wandbox.org/permlink/HATfDzXAdMci7nRO


As we can see, it’s quite handy to create a thread with a lambda expression.
It’s local to your executing thread, and you can do everything like with a
regular function or functor object.

Let’s now try another technique that is available in C++.

Lambdas with std::async
A second way that you can leverage multithreading is through std::async .
We got that functionality together with threads in C++11. This is a high-level
API that allows you to set up and call computations lazily or fully
asynchronously.

Let’s convert our example with iota into the async call:
Invoking code asynchronously with std::async . Live code @Coliru

#include <iostream>

#include <future>  // for async and future

#include <vector>

#include <numeric> // for std::iota

int main () {

    const auto printThreadID = [](const char * str) {

        std:: cout << str << ": " 

                  << std:: this_thread:: get_id() << " thread id \n " ;  

    };

    

    std:: vector< int > numbers(100 );

    std:: future< void > iotaFuture = std:: async(std:: launch:: async,

    [& numbers, startArg = 10 , & printThreadID]() {

            std:: iota(numbers.begin(), numbers.end(), startArg);

            printThreadID("iota in" );

        }

    );

    iotaFuture.get(); // make sure we get the results... 

    printThreadID("printing numbers in" );

    for (const auto & num : numbers)

        std:: cout << num << ", " ;

}

This time rather than threads, we rely on the mechanism of std::future .
This is an object which handles the synchronisation and guarantees that the
results of the invocation are available when we ask for it through .get() .

In our case we schedule the execution of the lambda through std::async ,
and then we need to call .get() to finish the computations. The .get()

http://coliru.stacked-crooked.com/a/89e8c1ca030d22f8


member function is blocking.

However the code above is cheating a little, as we’re using future<void>
and the vector is still passed as the reference captured by lambda. As an
alternative you might want to create std::future<std::vector<int>> so
that we pass vector through the future mechanism:
std:: future< std:: vector< int >> iotaFuture = std:: async(std:: launch:: async,

[star\

tArg = 10 ]() {

        std:: vector< int > numbers(100 );

        std:: iota(numbers.begin(), numbers.end(), startArg);

        std:: cout << "calling from: " 

                  << std:: this_thread:: get_id() << " thread id \n " ;

        return numbers;

    }

);

auto vec = iotaFuture.get(); // make sure we get the results... 

// ... 

It seems that over the years std::async/std::future has earned itself a
mixed reputation. It looks like the functionality was a bit too rushed. It works
for relatively simple cases but fails with advanced scenarios like:

continuation,
task merging,
no cancellation/joining,
it’s not a regular type,
and few other issues.

If you want to know more, you should read or watch the following resources:

There is a Better Future - Felix Petriconi - code::dive 2018 - YouTube
code::dive 2016 conference – Sean Parent – Better Code: Concurrency -
YouTube
Core C++ 2019 :: Avi Kivity :: Building efficient I/O intensive
applications with Seastar - YouTube

Lambdas and Parallel Algorithms from C++17
After discussing the threading support in C++11, we can move to further
standards: C++17. This time you have a super easy-to-use technique that

https://www.youtube.com/watch?v=WZdKFlH7qxo
https://www.youtube.com/watch?v=QIHy8pXbneI
https://www.youtube.com/watch?v=p8d28t4qCTY&feature=emb_logo


allows you to parallelise most of the algorithms from the Standard Library.
All you have to do is to specify the first argument into the algorithm, for
example:
auto myVec = GenerateVector();

std:: sort(std:: execution:: par, myVec.begin(), myVec.end());

Please notice the first argument: std::execution::par . It’s used to enable
parallel execution of the sort algorithm.

And we have other options:

Policy Name Description

sequenced_policy

It is an execution policy type used as
a unique type to disambiguate
parallel algorithm overloading and
require that a parallel algorithm’s
execution not be parallelised.

parallel_policy

It is an execution policy type used as
a unique type to disambiguate
parallel algorithm overloading and
indicate that a parallel algorithm’s
execution may be parallelised.

parallel_unsequenced_policy

It is an execution policy type used as
a unique type to disambiguate
parallel algorithm overloading and
indicate that a parallel algorithm’s
execution may be parallelised and
vectorised.

For each policy we have a predefined global instance that you can pass to
algorithms:

std::execution::par

std::execution::seq

std::execution::par_unseq

Execution policy declarations and global objects are located in the
<execution> header.



In C++20 there’s also one more execution policy: unsequenced_policy along with the
global instance std::execution::unseq . It’s used to enable vectorised execution on a
single thread.

While we can easily enable parallel sorting, we can also quickly write some
bad code:

Copying into vector and dangerous behaviour.
#include <iostream>

#include <vector>

#include <numeric>

#include <execution>

int main ()

{

   std:: vector< int > vec(1000 );

   std:: iota(vec.begin(), vec.end(), 0 );

   std:: vector< int > output;

   std:: for_each(std:: execution:: par, vec.begin(), vec.end(),

      [& output](int & elem) {

         if (elem % 2 == 0 ) {

            output.push_back(elem);

         }

      });

   for (const auto & elem : output)

      std:: cout << elem << ", " ;

}

The code above doesn’t contain any “Live Code” link as it requires a compiler with the
parallel algorithm support. This is possible in MSVC (starting with VS 2017) but doesn’t
work well with any online compiler. You can take the code and then play inside Visual
Studio.

Do you see all the issues here?

By passing a lambda to std::for_each we need to remember that the
execution doesn’t happen on a single thread and locally. Several threads
might be used here, for example, using a thread pool solution. That’s why
accessing a shared output vector is not the best idea. Not only can it insert
elements in a wrong order, but it can even crash if several threads attempt to
change the vector at the same time.



We can fix the synchronisation problem by having a mutex and locking it
before each call of push_back . But is that code still efficient? If the filter
condition is straightforward and fast to execute, then you might even get
slower performance than the serial version (seq ).

Not to mention that by running it in parallel, you don’t know the order of the
copied elements in the output vector.

This section shows only a basic overview of the parallel algorithms, and if
you like to see more, please have a look at the following article: Bartek’s
coding blog: The Amazing Performance of C++17 Parallel Algorithms, is it
Possible?

Lambdas And Async - Wrap Up
To wrap up: Lambda expressions are convenient when you want to start a
thread, invoke asynchronous code through std::async or use with parallel
algorithms. However, it’s essential to keep in mind that closure objects aren’t
unique regarding the concurrency and all challenges apply here as well.

Summary
In this chapter, you’ve seen that C++17 joined two essential elements of
C++: constexpr with lambdas. Now you can use lambdas in a constexpr
context! This is a necessary step towards improved metaprogramming
support in the language. We’ll see that even more in the next chapter about
C++20. What’s more, the C++17 Standard also addressed the capturing this
problem. In the new standard, you can capture this by value so that the code
can be much safer.

We also had a look at some use cases for lambdas: IIFE technique, fold
expressions and variadic generic lambdas, deriving from lambda expressions
and asynchronous code execution. Thanks to the various features enabled in
C++17, we now have much nicer syntax and more straightforward ways to
write efficient code.

https://www.bfilipek.com/2018/11/parallel-alg-perf.html


5. Lambdas in C++20

During the meeting in Prague, in February 2020, the ISO Committee finally
approved the C++20 Standard and pushed it to the official publication
(probably at the end of 2020). The new specification brings a lot of
substantial improvements to the language and the Standard Library! Lambda
expressions also got a few upgrades.

In this chapter, you’ll see:

What changes in C++20.
New options to capture the this pointer.
Template lambdas.
How to improve generic lambdas with concepts.
How to use lambdas with constexpr algorithms.
How to make the overloaded pattern even shorter.

You can see the specification related to lambdas in N4861 (the current
C++20 draft, post Prague version) and the lambda section:
[expr.prim.lambda] .

https://timsong-cpp.github.io/cppwp/n4861/
https://timsong-cpp.github.io/cppwp/n4861/expr.prim.lambda


Lambda Syntax Update
With C++20, we have more changes regarding the syntax of lambda
expressions:

You can now add consteval after the parameter list.
There’s an option to specify the template tail.
And after the trailing return you can put requires declaration.

[] <tparams> () specifiers exception attr -> ret requires { /*code; */ }

^  ^          ^  ^                            ^

|  |          |  |                            |

|  |          |  |                     optional: trailing return type

|  |          |  |

|  |          |  optional: mutable, constexpr, consteval, noexcept, attributes

|  |          |

|  |          parameter list (optional when no specifiers added)

|  |

|  optional: template parameter list

|

lambda introducer with an optional capture list

You can read about new modifications in the next sections.

A Quick Overview of the Changes
With C++20 we’ll get the following features related to lambda expressions:

Allow [=, this] as a lambda capture - P0409R2 and deprecate implicit
capture of this via [=] - P0806 .
Pack expansion in lambda init-capture: ...args = std::move(args)]
(){} - P0780 .
static , thread_local , and lambda capture for structured bindings -
P1091 .
template lambdas (also with concepts) - P0428R2 .
Simplifying implicit lambda capture - P0588R1 .
Default constructible and assignable stateless lambdas - P0624R2 .
Lambdas in unevaluated contexts - P0315R4 .
constexpr Algorithms - most importantly P0202 ,P0879 and P1645 .

If you’d like to know more about C++20, you can have a look at the paper
that summarises all the changes: Changes between C++17 and C++20 DIS -
P2131 .

https://wg21.link/p0409r2
https://wg21.link/P0806
https://wg21.link/P0780
https://wg21.link/P1091
https://wg21.link/P0428R2
https://wg21.link/P0588R1
https://wg21.link/P0624R2
https://wg21.link/P0315R4
https://wg21.link/p0202
https://wg21.link/P0879
https://wg21.link/P1645
https://wg21.link/P2131


You can also see my Reference Card with all language and the library
features: Bartek’s coding blog: C++20 Reference Card .

Let’s now have a quick look at some of the changes.

In most of the cases the newly added features “clean-up” lambda syntax.
Plus, C++20 adds enhancements that allow us to use lambdas in advanced
scenarios.

For example, with P1091 you can capture a structured binding:
Capturing a structured binding in a lambda. Live code @Wandbox

#include <tuple>

#include <string>

auto GetParams () {

    return std:: tuple { std:: string{"Hello World" }, 42 };

}

int main () {

   auto [x, y] = GetParams();

   const auto ParamLength = [& x, & y]() { return x.length() + y; }();

   return ParamLength;

}

Some compilers supported capturing structured binding even in C++17 (for example
GCC), but it was not mandated by the Standard back then.

C++20 also brings clarifications related to *this capture. You’ll get a
warning if you capture [=] in a method:

Warning about implicit *this capture. Live code @Wandbox
struct Baz {

    auto foo() {

        return [= ] { std:: cout << s << '\n' ; };

    }

    std:: string s;

};

Compiling with GCC 9 yields the following warning:
warning: implicit capture of 'this' via '[=]' is deprecated in C++20 

The warning appears, because even with [=] you’ll capture this as a pointer.
It’s better to write what you want explicitly: [=, this] , or [=, *this] .

https://www.bfilipek.com/2020/01/cpp20refcard.html
https://wg21.link/P1091
https://wandbox.org/permlink/7d8oK3o5nP3wYbWB
https://wandbox.org/permlink/yRosU85B0Q9LnwOv


After a quick review, let’s have a look at more prominent features in C++20
related to lambdas.

consteval Lambdas
While constexpr from C++11 allows function execution at the compilation
phase, it’s also possible to run those functions at runtime. It appears that in
some cases, it might be best to limit the functionality only to compile-time.
That’s why in C++20, we have a new keyword that creates functions which
conform to the rules of a constexpr function but can be only evaluated at
compile-time. Such functions are also called “immediate functions ”.

This new keyword can be also applied to lambdas. Let’s review a simple
example:

A Simple Immediate Lambda. Live code @Wandbox
int main () {

    const int x = 10 ;

    auto lam = [](int x) consteval { return x + x; };

    return lam(x);

}

Above, you can see that we applied consteval after the argument list of the
lambda. This is very similar to the application of constexpr . The critical
difference is that if you remove const from x , then the constexpr lambda
can work (at runtime), while the immediate lambda won’t compile.

By default, if a lambda body follows the rules of a constexpr function, the
compiler marks the call operator as constexpr implicitly. This is not the case
with consteval as it forms a stronger restriction on such a code. And you
cannot use both of those keywords at the same time. You can find the full
specification for the new feature in this proposal: P1073R3 .

Capturing a Parameter Pack
One improvement that we got in C++20 is pack expansion in lambda init-
capture.
template < typename ...Args> void call(Args&& ... args) {

    auto ret = [...capturedArgs = std:: move(args)](){};

}

https://wandbox.org/permlink/3lFNMB080LBz2d1z
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1073r3.html


Previously, before C++20, the code wouldn’t compile (see the C++11 section
on that ) and to work around this issue, you had to wrap arguments into a
separate tuple. You can read about the history of this capture restriction in
P0780 .

To sum up, capturing a variadic parameter pack, we can take the example that
we got from the C++11 chapter and experiment with it, adding the latest
feature. For instance, we can leverage fold expression to do a print of each
captured object:

Capturing a Variadic Pack. Live code @Wandbox
#include <iostream>

#include <memory>

template < class First , class... Args> 

void captureTest(First&& first, Args&& ... args) {

    const auto printer = [first = std:: move(first),

                          ...capturedArgs = std:: move(args)] {

        std:: cout << first;

        ((std:: cout << ", " << capturedArgs), ...);

        std:: cout << '\n' ;

    };

    printer();

}

int main() {

    auto ptr = std:: make_unique< int > (10 );

    captureTest(std:: move(ptr), 2 , 3 , 4 );

    captureTest(std:: move(ptr), 'a' , 'b' );

}

The output:
0x1f0cb20, 2, 3, 4

0, a, b

In the example, we used a printer object which is similar to the code that we
wrote in the C++17 chapter, but this time we capture variables rather than
forward them as lambda arguments. The code shows that we can even pass a
unique pointer. We pass it twice to the lambda and as you can see the second
time we get 0 on the second line since the pointer lost the ownership of the
memory block.

Template Lambdas
With C++14, we got generic lambdas which means that parameters declared

https://wg21.link/P0780
https://wandbox.org/permlink/8Bjc78jm2OpfcOcN


as auto are template parameters.

For a lambda:
[](auto x) { x; }

The compiler generates a call operator that corresponds to the following
template method:
template < typename T> 

void operator ()(T x) { x; }

But there was no way to change this template parameter and use “real”
template arguments. With C++20 it’s possible now.

For example, how can we restrict our lambda to work only with vectors of
some type?

We can write a generic lambda:
auto foo = [](auto & vec) {

        std:: cout<< std:: size(vec) << '\n' ;

        std:: cout<< vec.capacity() << '\n' ;

    };

But if you call it with an int parameter (like foo(10); ) then you might get
some hard-to-read error:
prog.cc: In instantiation of

         'main()::<lambda(const auto:1&)> [with auto:1 = int]':

prog.cc:16:11:   required from here

prog.cc:11:30: error: no matching function for call to 'size(const int&)'

               11 | std::cout<< std::size(vec) << '\n';

In C++20 we can write:
auto foo = []< typename T> (std:: vector< T> const & vec) {

        std:: cout<< std:: size(vec) << '\n' ;

        std:: cout<< vec.capacity() << '\n' ;

    };

The above lambda resolves to a templated call operator:
< typename T> 

void operator ()(std:: vector< T> const & s) { ... }



The template parameter comes after the capture clause [] .

If you call it with int (foo(10); ) then you get a nicer message:
note:    mismatched types 'const std::vector<T>' and 'int' 

Play with code @Wandbox

In the above example, the compiler can warn us about the mismatch in the
interface of the lambda.

Another important aspect is that in the generic lambda example, you only
have a variable and not its template type. If you want to access the type, you
have to use decltype(x) (for a lambda with (auto x) argument). This
makes code more wordy and complicated.

For example (using code from P0428 ):
Deducting from generic argument

auto f = [](auto const & x) {

    using T = std:: decay_t< decltype (x)> ;

    T copy = x;

    T:: static_function();

    using Iterator = typename T:: iterator;

}

Can be now written as:
Using template lambda

auto f = []< typename T> (T const & x) {

    T copy = x;

    T:: static_function();

    using Iterator = typename T:: iterator;

}

As you can see above, in the first example we need to write:
using T = std:: decay_t< decltype (x)> ;

To get the type of the input argument. In the C++20 version, there’s no need
for this as we can access the template parameter.

And another important use case is perfect forwarding in a generic variadic

https://wandbox.org/permlink/gupbJfUfHHQ2y48q
https://wg21.link/P0428


lambda:
// C++17 

auto ForwardToTestFunc = [](auto && ...args) {

  // what's the type of `args` ? 

  return TestFunc(std:: forward< decltype (args)> (args)...);

};

Each time you want to access the type of the template argument, you need to
use decltype() , but with template lambdas there’s not need for that:
// C++20: 

auto ForwardToTestFunc = []< typename ...T> (T&& ...args) {

  return TestFunc(std:: forward< T> (args)...); // we have all the types! 

};

As you can see, template lambdas provide cleaner syntax and better access to
types of arguments.

But there’s more! You can also use concepts with lambdas! See in the next
section.

Concepts and Lambdas
Concepts are a revolutionary approach for writing templates! They allow you
to put constraints on template parameters which improve the readability of
code, might speed up compilation time and give better error messages.

One simple example:
A custom concept declaration

// define a concept: 

template < class T > 

concept SignedIntegral = std:: is_integral_v< T> && std:: is_signed_v< T> ;

// use: 

template < SignedIntegral T> 

void signedIntsOnly(T val) { }

In the code above we first create a concept that describes types that are signed
and integral. Please notice that we can use existing type traits. Later, we use it
to define a template function that supports only types that match the concept.
Here we don’t use typename T , but we can refer to the name of a concept.

Ok, but how is that related to lambda expressions?



The key part here is the terse syntax and constrained auto template
parameter.

Simplifications and Terse Syntax

Thanks to the terse concept syntax you can also write templates without the
template<typename..> part.

With unconstrained auto :
void myTemplateFunc (auto param) { }

Or with constrained auto :
void signedIntsOnly (SignedIntegral auto val) { }

void floatsOnly (std:: floating_point auto fp) { }

Such syntax is similar to what you could use in generic lambdas from C++14,
as right now you can also write:
void myTemplateFunction (auto val) { }

In other words, for lambdas, we can leverage this terse style and for example
put extra restrictions on the generic lambda argument:
auto GenLambda = [](SignedIntegral auto param) { return param * param + 1 ; };

As you can see in the above example, I restricted the auto param with the
SignedIntegral concept. The whole expression is even more readable than
template lambda that we discussed in the previous section.

Here’s a bit more complicated example, where we can even define a concept
of some class interface:

IRenderable concept, with requires keyword
template < typename T > 

concept IRenderable = requires(T v) {

    {v.render()} -> std:: same_as< void > ;

    {v.getVertCount()} -> std:: convertible_to< size_t > ;

};

In the above example we define a concept that matches all types with
render() and getVertCount() member functions. We can then use it to



write a generic lambda:
Implementations of IRenderable concept/interface. Live code @Wandbox

#include <concepts>

#include <iostream>

template < typename T> 

concept IRenderable = requires(T v) {

    {v.render()} -> std:: same_as< void > ;

    {v.getVertCount()} -> std:: convertible_to< size_t > ;

};

struct Circle {

    void render() { std:: cout << "drawing circle \n " ; }

    size_t getVertCount() const { return 10 ; };

};

struct Square {

    void render() { std:: cout << "drawing square \n " ; }

    size_t getVertCount() const { return 4 ; };

};

int main () {

    const auto RenderCaller = [](IRenderable auto & obj) {

        obj.render();

    };

    Circle c;

    RenderCaller(c);

    Square s ;

    RenderCaller(s);

}

In the above example RenderCaller is a generic lambda which can support
types that satisfies the IRenderable concept.

Changes to Stateless Lambdas
You might recall from the chapter about C++11 that lambdas, even stateless,
are not default constructible. However, this limitation is lifted in C++20.

That’s why, if your lambda doesn’t capture anything, then you can write the
following code:

A stateless lambda. Live code @Wandbox
#include <set>

#include <string>

#include <iostream>

struct Product {

    std:: string _name;

    int _id {0 };

    double _price { 0.0 };

};

https://wandbox.org/permlink/5jLMVJIckSvDdgMv
https://wandbox.org/permlink/nWXXJiZyk8ZhVej9


int main () {

    const auto nameCmp = [](const auto & a, const auto & b) {

        return a._name < b._name;

    };

    const std:: set< Product, decltype (nameCmp)> prodSet {

        {"Cup" , 10 , 100.0 }, {"Book" , 2 , 200.5 },

        {"TV set" , 1 , 2000 }, {"Pencil" , 4 , 10.5 }

    };   

    

    for (const auto & elem : prodSet )

        std:: cout << elem._name << '\n' ;

}

In the preceding example, I declared a set that stores a list of Products. I need
a way to compare products, so I passed a stateless lambda that compares their
string names.

For example, if you compiled that code with a C++17 flag, then you’d get an
error about using a deleted default constructor:
stl_set.h: In constructor

'std::set<_Key, _Compare, _Alloc>...

[with _Key = Product;

      _Compare = main()::<lambda(const auto:1&, const auto:2&)>;

...

stl_set.h:244:29: error: use of deleted function

'main()::<lambda(const auto:1&, const auto:2&)>::<lambda>()'

But in C++20 you can store stateless lambdas and even copy them:
Storing a stateless lambda. Live code @Wandbox

template < typename F> 

struct Product {

    int _id {0 };

    double _price { 0.0 };

    F _predicate;

};

int main () {

    const auto idCmp = [](const auto & a) noexcept {

        return a._id != 0 ;

    };

    Product p { 10 , 10.0 , idCmp };

    [[maybe_unused]] auto p2 = p;

}

Even more with unevaluated contexts
There are also changes related to advanced use cases like unevaluated
contexts. All together with default constructible lambdas you can now write:

https://wandbox.org/permlink/wTMFVluKdDbsLyOK


std:: map< int , int , decltype ([](int x, int y) { return x > y; })> map;

As you can see, it’s now possible to specify the lambda inside the declaration
of map container. It can be used as a comparator functor. Such “unevaluated
contexts” are especially handy for advanced template metaprogramming. For
example, in the proposal of the feature, the authors mention sorting of tuple
objects at compile time using a predicate which is a lambda.

More reasoning in P0315R2 .

Lambdas and constexpr Algorithms
If you recall from the previous chapter, since C++17 we can use lambdas
which are constexpr . With this functionality, you can pass a lambda to
functions which are evaluated at compile time. In C++20 most of the standard
algorithms are now marked with the constexpr keyword which makes
constexpr lambdas even more convenient!

Let’s consider a few examples.

Below you can find code that runs std::accumulate on an array, with a
custom lambda:

Using std::accumulate with a custom constexpr lambda. Live code @Compiler Explorer
#include <array>

#include <numeric>

int main () {

    constexpr std:: array arr{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 };

    

    // with constexpr lambda 

    static_assert (std:: accumulate(begin(arr), end(arr), 0 ,

        [](auto a, auto b) noexcept {

            return a + b;

        }) == 55 );    

    return arr[0 ];

}

In the example with std::accumulate we used lambda, which is, in fact, the
std::plus operation.

And in the next example there’s a constexpr function that takes a cmp
comparator/predicate for the count_if algorithm:

https://wg21.link/P0315R2
https://godbolt.org/z/Tqkphs


Passing a constexpr lambda to a custom function. Live code @Compiler Explorer
#include <array>

#include <algorithm>

constexpr auto CountValues (auto container, auto cmp) {

    return std:: count_if(begin(container), end(container), cmp);

}

int main () {

    constexpr auto minVal = CountValues(std:: array{-10 , 6 , 8 , 4 , -5 , 2 , 4 ,

6 },

        [](auto a) { return a >= 0 ; }

    );

    return minVal;

}

What standard algorithms are constexpr ? All of the algorithms from the <algorithm> ,
<utility> and <numeric> headers are now marked with constexpr except of functions
shuffle , sample , stable_sort , stable_partition , inplace_merge and functions or
overloads that accepts the Execution Policy argument. Read more in Papers P0202
,P0879 and P1645 .

C++20 Updates to the Overloaded Pattern
In the previous chapter, you learned about deriving from multiple lambda
expressions and exposing them through the overloaded pattern. Such a
technique is handy for std::variant visitation.

Thanks to the Class Template Argument Deduction (CTAD) updates in
C++20 we can now have even shorter syntax!

Why?

It’s because in C++20 there are extensions to CTAD and aggregates are
automatically handled. That means that there’s no need to write a custom
deduction guide.

For a simple type:
template < typename T, typename U, typename V> 

struct Triple { T t; U u; V v; };

In C++20 you can write:

https://godbolt.org/z/ouJ_4q
https://wg21.link/p0202
https://wg21.link/P0879
https://wg21.link/P1645


Triple ttt{ 10.0f , 90 , std:: string{"hello" }};

And T will be deduced as float, U as int and V as std::string .

The overloaded pattern in C++20 is now just:
template < class... Ts> struct overload : Ts... { using Ts:: operator ()...; };

The proposal for this feature is available in P1021 and also P1816 (wording).

GCC10 seems to implement this proposal, but it doesn’t work for advanced cases with
inheritance, so we have to wait for the full conformance here.

Summary
In this chapter, we reviewed the changes that C++20 has brought.

First of all, we have a few clarifications and improvements: for example with
the capture of this , capturing structured bindings or the ability to default
construct stateless lambdas. What’s more, there are more significant
additions! One of the prominent capabilities now is template lambdas and
concepts - so that you get more control over generic lambdas.

To sum up, with C++20 and all of its features, lambdas are even more
powerful tools!

https://wg21.link/P1021
https://wg21.link/P1816


Appendix A - List of Techniques

Below you can find a list of techniques and patterns used throughout the
book:

C++11 Chapter

Calculating the number of invocations - An example of instrumenting a
default functor to gather extra information.
Deriving from lambda - A basic technique that allows you to wrap a
closure type and extend it with additional functionality.
IIFE - Immediately Invoked Function Expression - An efficient way to
compute the value of a const variable which requires a complex
initialisation without creating an extra function.
Passing C++ a captureless lambda as a function pointer to C-style API
functions.
How to store lambdas in a container - we can do a little trick and store
lambdas wrapped into std::function .

C++14 Chapter

Replacing std::bind1st , std::bind2nd - how to use Modern C++ and
replace deprecated functionality.
An optimisation thanks to capture with initialiser - An example of
storing a temporary value used for the body of the lambda.
Perfect forwarding with generic lambdas - How to use std::forward on
a generic argument to pass the arguments further in the call stack.
LIFTING with lambdas - This allows passing a set of function overloads
into a function template which takes a callable object. For example,
when you call algorithms from the Standard Library.
Recursive lambdas - Several tricks you can use to call the closure object
inside its body.
Variadic generic lambdas - How to use variadic arguments in a lambda
expression.



C++17 Chapter

The overload pattern - The mechanism that allows to derive from
multiple lambda expressions and pass it to std::visit .
IIFE improvements - How to improve readability with std::invoke .
Updates to Variadic Generic Lambdas - Leveraging fold expressions for
simpler code.
Lambdas and asynchronous execution - What are the pitfalls of using
lambdas with threads async and parallel algorithms.

C++20 Chapter

Updates to the overloaded pattern - Even more simplification with more
deduction guides.
Updates to Capturing a Parameter Pack - Better support for r-value
references.



Appendix B - Top Five Advantages of C++
Lambda Expressions 14

I hope you enjoyed the book and learned a lot about lambda expressions. It
appears that this powerful feature has become one of the most visible
trademarks of Modern C++. The evolution of lambdas is also tightly coupled
with improvements in the language and thus by reading this book, you’ve
also seen a lot of cool C++ techniques.

As a summary for the book, let’s wrap up our knowledge and list a few
benefits of lambdas.

1. Lambdas Make Code More Readable
The first point might sound quite obvious, but it’s always good to appreciate
the fact that since C++11, we’ve been able to write more compact code.

For example, in the chapter about C++98/03 we tried to decipher the
following code that used bind expressions and predefined helper functors
from the Standard Library:

Functional Composition and std::bind . Live code @Compiler Explorer
#include <algorithm>

#include <functional>

#include <vector>

int main () {

    using std:: placeholders:: _1;

    const std:: vector< int > v { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

    const auto val = std:: count_if(v.begin(), v.end(),

                               std:: bind(std:: logical_and< bool > (),

                               std:: bind(std:: greater< int > (),_1, 2 ),

                               std:: bind(std:: less_equal< int > (),_1,6 )));

    return val;                                        

}

Can you immediately tell what the final value of val is?

Let’s now rewrite this into lambda expression:

https://godbolt.org/z/_9Ptzg


Cleaner Syntax with Lambdas. Live code @Compiler Explorer
#include <algorithm>

#include <vector>

int main () {

    const std:: vector< int > v { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

    const auto val = std:: count_if(v.begin(), v.end(),

                        [](int v) noexcept { return v > 2 && v <= 6 ;});     

    return val;                                        

}

Isn’t that better?

Not only have we got shorter syntax for the anonymous function object, but
we could even reduce one include statement (as there’s no need for
<functional> any more).

In C++98/03, it was convenient to use predefined helpers to build those
callable objects on the fly. They were handy and even allowed you to
compose functionalities to get some complex conditions or operations.
However, the main issue is the hard-to-learn syntax. You can of course still
use them, even with C++17 or C++20 code (and for places where the use of
lambdas is not possible), but I guess that their application for complex
scenarios is a bit limited now. In most cases, it’s far easier to use lambdas.

I bet you can list a lot of examples from your projects where applying lambda
expressions made code much cleaner and easier to read.

Regarding the readability, we also have another part: locality.

https://godbolt.org/z/h8dvbf


2. Lambdas Improve Locality of the Code
In C++98/03, you had to create functions or functors that could be far away
from the place where you passed them as callable objects.

This is hard to show on simple artificial examples, but you can imagine a
large source file, with more than a thousand lines of code. The code
organisation might cause functors to be located in one place of a file (for
example on top). Then the use of a functor could be hundreds of lines further
or earlier in the code, so if you wanted to see the definition of a functor you
had to navigate to a completely different place in the file. Such jumping
might slow your productivity.

Jumping around a source file

We should also add one more topic to the first and the second point. Lambdas
improve locality, readability, but there’s also the naming part . Since
lambdas are anonymous, there’s no need for you to select the meaningful
name for all of your small functions or functors.

3. Lambdas Allow Storing State Easily
In the C++11 chapter, we covered a simple example of modifying the default
comparator for std::sort so that we could count the number of invocations.

Capturing state. Live code @Compiler Explorer
#include <algorithm>

#include <iostream>

#include <vector>

int main () {

    std:: vector< int > vec { 0 , 5 , 2 , 9 , 7 , 6 , 1 , 3 , 4 , 8 };

    size_t compCounter = 0 ;

    std:: sort(vec.begin(), vec.end(),

        [& compCounter](int a, int b) noexcept {

            ++ compCounter;

            return a < b;

https://godbolt.org/z/BgbFWv


        });

    std:: cout << "number of comparisons: " << compCounter << '\n' ;

    for (const auto & v : vec)

        std:: cout << v << ", " ;

}

As you can see, we can capture a local variable and then use it across all
invocations of the binary comparator. Such behaviour is not possible with
regular functions 15 , but it’s also not straightforward with custom functors
types. Lambdas make it very natural and also very convenient to use.

4. Lambdas Allow Several Overloads in the Same Place
This is one of the coolest examples not just related to lambdas, but also to
several major Modern C++ features (primarily available in C++17). We
learned about this technique in the C++17 chapter, where we discussed the
ability to inherit from several lambdas.

Have a look:
The overloaded Pattern. Live code @Compiler Explorer

#include <iostream>

#include <string>

#include <variant>

template < class... Ts> struct overload : Ts... { using Ts:: operator ()...; };

template < class... Ts> overload(Ts...) -> overload< Ts...> ;

int main () {

    std:: variant< int , float , std:: string> intFloatString { "Hello" };

    std:: visit(overload  {

        [](const int & i) { std:: cout << "int: " << i; },

        [](const float & f) { std:: cout << "float: " << f; },

        [](const std:: string& s) { std:: cout << "string: " << s; }

      },

      intFloatString

    );        

}

The above example is a handy approach to building a callable object with all
possible overloads for variant types on the fly. The overloaded pattern is
conceptually equivalent to the following structure:

The Print Visitor Structure
struct PrintVisitor {

  void operator ()(int & i) const { cout << "int: " << i; }

https://godbolt.org/z/fcNdrF


  void operator ()(float & f) const { cout << "float: " << f; }

  void operator ()(const std:: string& s) const { cout << "str: " << s; }

};

Additionally, it’s also possible to write a compact generic lambda that works
for all types from a variant object. This can support runtime polymorphism
based on std::variant .

Runtime Polymorphism Based on std::variant/std::visit. Live code @Compiler Explorer
#include <variant>

struct Circle { void Draw() const { } };

struct Square { void Draw() const { } };

struct Triangle { void Draw() const { } };

int main () {

    std:: variant< Circle, Square, Triangle> shape;

    shape = Triangle{};

    const auto callDraw = [](auto & sh) { sh.Draw(); };

    std:: visit(callDraw, shape);

}

This technique is an alternative to runtime polymorphism based on virtual
functions. Here we can work with unrelated types. There’s no need for a
common base class. You can read about this approach in my blog article at:
Runtime Polymorphism with std::variant and std::visit .

5. Lambdas Get Better with Each Revision of C++!
Here’s the list of major features related to lambdas that we got with C++
Standards after the initial release with C++11:

C++14

https://godbolt.org/z/EcwqHe
https://www.bfilipek.com/2020/04/variant-virtual-polymorphism.html


C++17

constexpr lambdas - in C++17 your lambdas can work in a constexpr
context.
Capturing this improvements - Before C++17 this pointer was
captured only as a pointer which might lead to dangling issues. In
C++17 you can capture a copy of the object represented by this* .
Fold Expressions that can improve generic variadic lambdas.

C++20

Template lambdas - improvements to generic lambdas which offer more
control over the input template argument.
Lambdas and concepts - Lambdas can also work with constrained auto
and Concepts, so they are as flexible as functors as template functions.
Lambdas in unevaluated contexts - you can now create a map or a set
and use a lambda as a predicate.
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Notes

1  You can use globals or static variables in a regular function, but it’s not
the best solution. Such an approach makes it hard to control the state across
many groups of lambda invocations.↩

2  bind1st , bind2nd and other functional helpers were deprecated in C++11
and removed in C++17. The code in this chapter uses them only to illustrate
C++98/03 issues. Please use some modern alternatives in your projects. See
the C++14 chapter for more information .↩

3  “Effective Modern C++: 42 Specific Ways to Improve Your Use of
C++11 and C++14” 1st Edition by Scott Meyers, 2014↩

4  std::function is required in C++11 as there’s no return type deduction
for regular functions. This limitation is lifted in C++14.↩

5  Thanks to Tomek for finding the correct link!↩

6  You can read more about universal references in this article from Scott
Meyers: Universal References in C++11 ↩

7  I used val as a vague name on purpose, so its meaning is not clear.↩

8  . For more information and proposals on how to improve the syntax, you
can read this blog post Passing overload sets to functions .↩

9  We discussed assigning to std::function in the “The Type of a Lambda
Expression” in the C++11 chapter. ↩

10  See Quick Q: Why can noexcept generate faster code than throw()? -

https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
https://blog.tartanllama.xyz/passing-overload-sets/
https://isocpp.org/blog/2014/09/noexcept-optimization


Standard C++ .↩

11  See in the C++11 Chapter - Capturing a Class Member ↩

12  To capture *this , the class has to be copyable. You can’t use *this to
capture a move-only class.↩

13  std::thread::hardware_concurrency() is a static member function
which returns the number of concurrent threads supported by the
implementation. Usually, it might be several hardware threads on a given
system. On Wandbox it’s usually 3, Coliru reports 4.↩

14  this appendix is based on a blog article available at
https://www.bfilipek.com/2020/05/lambdasadvantages.html↩

15  You can use globals or static variables in a regular function, but it’s not
the best solution.↩
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