Table of Contents 1

Table of Contents

Chapter 0: Front Matterocccovvveveniiiere e 1
D] =To [To3= 11 o] o [N PR 1.
oo 18 o3 1o] o [P 1.
WhO iS this DOOK fOr? ... 2
Chapter SUMMATIEScoooiie e 3
TRE PrOJECT oo 4
ACKNOWIEAQEMENLSeeiiiiiii i 5.
(0] o] r= (o1 A1 1S ST PUPPPPTTR 6
Chapter 1: Linkingand Loadingcccovevrieenenninnnenneene 7
What do linkers and [0aders do? ... 7
Address binding: a historical persSp&eti..........cccccccveeeiiiiiiis 7
[T Lo TRV AN (0= To L1 o PP 10
TWO-PASS lINKING ..o 12
Object code libraries ... 15
Relocation and code modificationcccoooeviiiiiiiiiiiiiieeeeeeeeeen 17
COMPIIET DIVEIS ..ottt e e e e e e e eeeeaeeees 18....
Linker command 1anguagescooooviiiiiiiiiiiiiiiiiiieeeeeee e 19
Linking: a true-life gample ..., 20...
EXEICISES ...ttt e e eeeees 25......
Chapter 2: Architectural ISSUEScoceevirvieeree e 27
Application Binary INtErACEScooooiiiiiiiiiiiiii e 21...
MEMOIY AQUIESSES ...eviiiiiiiiiieieeee et a e e 28
Byte Order and AlIGNMENtcccovveiiiiiiiiiieeee e 28
Address fOrmationcooouuiiiiiiiiiii e 30
INSTrUCLION fFOrMALSooiieeeeeeee e e e 31
Procedure Calls and Addressabilityccccooeiiiiiieiiiiiiiiicecceeee, 32

Procedure CallS ... 33

2 Table of Contents

Data and inStruction referenNCEeSuuvvveiiiiiiieee e 36
IBIME B70 ettt ettt a e e e e e e e e e 37
SPARC it ———— 40.....

SPARC V8B ..ottt ettt a e 40
SPARC VO oo 42
INTEI X8OG ... 43

Paging and Virtual MemOIYoooiiiiiiiiiiiiee e 45
The program addreSS SPACEuueeiiiiiiieeeeeeieeeeeeee e 48
MaPPEd fIlES ... 49
Shared libraries and programsooooiiiiiiiiiiiiiiiiireee e 51
Position-independent Codecoooiiiiiiiiiiiiiiice e 51

Intel 386 SgMeNtationooovuiiiiiiiiiiii e 53....

Embedded architeCturesooovviiiiiiiiiiiiie e 55
Address SpPace QUIrKSciiiiiiii e 56
NON-UNIFOrM MEMOTY ..ot 56
Memory aligNMENT ...t 57

EXEICISES ..ot 57......

Chapter 3: Object FileScccveiieceee e 59

What goes into an object file? ... 59
Designing an object formatoooeviiiiiiiiiiiii e 60

The null object format: MS-DOS .COMilescoovvvivvreiviviniiienenn. 61

Code sections: UnixX a.0Ut fileSuuuviiiiiiiiiiiiiiii i 61
A.0UL NEAMEIS ... 64
Interactions with virtual Memoryccccooiiiiiii 65

Relocation: MS-DOS EXE fIl€Scoooeeiiiiiiiiiiiiiiieieeeeeeeee e 72

Symbols and reloCation ... 74

Relocatable @.0Utcoooviiiii e 75
RElOCAtION ENTIIES ...t 78
SymDBOIS aNnd STHNGS ...eeveiiiiiiie e 80
=IO 10 | IR0 [01 0 = YR PPPT 82

UNIX ELF oottt e e e 82
Relocatable files ... 85

ELF executable fileScoiiiiiii e 92

ELF SUMMANY .ooeiiii et 94

Table of Contents 3

IBM 360 0DJECT FOIMALevviiiiiiiiiiiiiieiei e 94
ESD FECOIIS ...ttt a e e e e 95
TXT FECOIS ittt e e e e e e e e e eeeeeeenennnnns 97
D =T o 0 o £ PPRURR 97
END FECOIUS vttt e e e e e e 98
SUMIMAIY ..t e e e e et e e e e e naa e e aeeenes 98......

Microsoft Portable Executable formatccccoeiiiiiiiiiiiiccciee. 99
PE special SECLIONScccoiiiiiiiieee e 105
Running a PExeEcutableoviiiiiiiiiien 107.

PE @Nd COFF ...t e e e e 107
PE SUMIMAIY .ot e e et sea e e eaa e ees 108

Intel/Microsoft OMF fileS ... 108
(@ 1Y | =T o0] (o £ 110
Details of an OMF fileooooiiiiiiii e 111
Summary of OMF ..o 114

Comparison of ObJeCt TOrMALSeeeeiiiiiiiiiiiiee 114

PrOJECE oot ————— 115....

EXEICISES ..ttt 117....

Chapter 4: Storage allocationcccoccvvvieeiienieenenncieene 119

Segments and dArESSESuuuuiiiiiiiie e 119

Simple storage layOutcccciiiiiiiiiieee e 120

Multiple SEgMENL LYPESccovviieeeeeeeec e 121

Segment and page alignmentouuuuiiiiiiiiiie e 124

Common blocks and other speciadiSENtsccccccvvvvvviiinnnen. 125
1©70] 111 4[] o H PP UUPP PP 125...

C++ duplicate remaleeeiiiiiiii 127
Initializers and fINANIZEISoovvvviviiiiii e 130
IBM PSEUAO-TEISIEIS ...vvviiiiiiieiii e 131.
Special tables ... 134
X86 segmented storage allocationccccceeevviiiiieiiiiiiiiiinee 134

Linker CONtrol SCHPLScoovieiieeeeeee e 136

Embedded system storage allocationccccoeeiiiiiiiiiiiiiiiiiiiiieeen. 138

Storage allocation in PractiCeeeeveeeiiiiiiiiiiieeeeeee e 138

Storage allocation in Unix a.out ligkscccceeeeeiiiii, 139

Table of Contents

Storage allocation inN ELF ... 141
Storage allocation in Windows liekScccceevveeiiiieiiinnnnnne, 144
EXEICISES ..ottt e e eeaaee 146....
PIOJECT et 147....
Chapter 5: Symbol managementc.cccccevvvvceevencieenee 149
Binding and name resolutioneeeiiiiiiiiiiiiiie e 149
Symbol table formatscccoooiiiiiiiiiiii e 150
ModUule tabIesoooiiieeee 153
Global symbol table ... 154
Symbol reSOIULIONccoeeiiieeeeeee e 157
Special SYMDOIS ..o 158
Name MangliNgooooriiiiiii e 158
Simple C and Fortran name manglingcccceevvvvvvvviiiiiiinennn. 158
C++ type encoding: types and SCOPEScoeeeveeviiiiieeiiiiiiiiieaee e 160
Link-time type checkingcooooiiiiiiiiiieeeee e 163
Weak external and other kinds of symbolscccviiiicieennnn. 164
Maintaining debugging information ... 164
Line number informationccccooeeeeeiiiiiiiiceeer e 164
Symbol and variable informationcccccocoo oo, 165
PractiCal ISSUESuuueiiiiiiii e eeeeeeeaaanes 166
EXEICISES .oiiiiieeeiiiiti et sttt n e e e e e e e e e e e e e e e aeaanee 167....
PrOJECE oot —————— 167....
Chapter 6: Librariesccccceveveiceesee e 169
PUrpose Of lIDrariesoooevvviiiiiiiiiiie e 169
Library fOrmatsoouuuueeeiiiiiieee e 169
Using the operating SYSTEMcccuuiiiiiiiiiiiieieeeee e 169
Unix and Windows Archie filesccccceiiiiiiiiiiiiiiiiiiiie 170
UNIX @rCANES .o 170
EXteNsion t0 64 DItSccooiiiiiieeccr e 174
INtel OMF lIDFrari€S ...ocooiiiieee e 174
Creating liDraries ... 176

Searching liDraries ... 177

Table of Contents 5

PerformanCe ISSUESccoeiiiiiieeeeere e e e e e e 179
Weak external SymbolSsoooovimiiiiiiiiii e 179
EXEICISES ..ottt e e eeaaee 181....
PIOJECT et 181....
Chapter 7: REIOCALIONcceeveiiiiiieeseeeee e 183
Hardware and software relocationcccceeeeiiiiieiieeeiiieeeeeeeciiiiiens 183
Link time and load time relocationcccccceeeeeeiiiiieeeiie e 184
Symbol and segment relocationoooeiiiiiiiiii 185
SYMDBDOI IOOKUPS ... 186
Basic relocation teChNIQUESoovviiiiiiiiiiiie e 186
INSLrUCtion reloCatioNcooiiiiiiiiiiiiii e 188
X86 INStruction reloCationcceeveiiiieeee e 189
SPARC instruction relocationcccoevvvveiiiiiiiiiiiiee e 189
ECOFF segment reloCationuueeeiiiiniiieeeeeeeeeeeeeeeiiii e 191
] I =] (0T o¥= 11 0] o USRS 193
(@ 1Y/ o 7= (o To= 1[0 IEEPPPURS 193
Relinkable and relocatable output formatscccccvviiiiiiiiii, 194
Other relocation fOrMaLScooeeeiiiiiiiiieece e 194
Chained referenCEeSceiiiii e 195
Bt MAPS e 195
Special SEMENLSoooiiiiii e 196..
Relocation special CaSeSscooeeeeeiiiiiiiieeec e 197
EXEICISES ..ottt 197....
PIOJECT et 198....
Chapter 8: Loading and overlaysccccccevevvcvevencneenne 201
BaSIC 10A0ING ..oooiiiiiiiiiii e 201
Basic loading, with relocationiiiiiiiii e 202
Position-independent COde ..o 203
TSS/360 position independent COAeuvvveeiiiiiiiieeeeeeeeeeeeeeeennns 203
Per-routine pointer tables ... 206
Table of CONENLS ... 207

ELF position independent COdecccceveeiiiiiiiiiiiiiiieieeee 208

6 Table of Contents

PIC costs and DenefitSccccuuuiiiiiiiiiiiiie e 212
BoOtStrap 10adinguueueiiiiiiii e 213
Tree StruCturedV@BI1aYScceiieeiiiieee e 214.

Defining O/erlaysccccveviiiiiiiiieeeeee e 217.

Implementation of @erlaysccovvvvviiiiiicii e, 220

Overlay fiNe POINTScooiiiiiiiiii s 222

DaAta ..ooveiiie e 222...
Duplicated COAEcoovvviiiiiiice e 222
MUItIPIE TEJIONS ... 223.

OVerlay SUMMANYcoooiiiiiiiiiiiiii e 223
EXEICISES oot 223....
PrOJECT et 224....

Chapter 9: Shared librariescccooevivinicnicee e 227
BiNdING tIME ..o e e eeneaaes 230
Shared libraries in PracCtiCeccovviiiiiiiiiiiiee e 231
Address space ManagemMENtccceeeeeriiiiiiieiiiiiieie s e e e e e e eeeeeeeenannan 231
Structure of shared libraries ... 232
Creating shared lIbrariesccccuuiiiiiiiii 233

Creating the jJump table ..o 234

Creating the shared librarycccoooiiiiii e, 235

Creating the stub library ... 235

VEISION NAMING oevviiiiiiiiiieie e e e e e e e e e e ee et ee e e e e e e e e eeeaaeeeeeeenneannna 237
Linking with shared libraries ..., 238
Running with shared librariescccueii 238
The malloc hack, and other shared library problems 240
EXEICISES ..ttt 243....
PIOJECT ottt 244....

Chapter 10: Dynamic Linking and Loading 247
ELF dynamic linKiNgoooiiiiiiee e 248
Contents of @an ELF fileuevviiiiiiiiie e 248
Loading a dynamically linked programuuuveiiiiiiinneeeneeeeeeeeee, 253

Starting the dynamic lirdeccccviiiiiiiiis 253

Table of Contents 7

Finding the libraries ... 254
Shared library initializationooovviiiiiiii e, 255
Lazy procedure linkage with the PL.............coooiiiiiiiiiiicien 256
Other peculiarities of dynamic linKiNgcccccceviiiiiiie, 258
Static INIIAIIZALIONScooeeiiiiie e 258
LiDrary VErSIONSccoooiiiioiiiiiiiiieieiiiiiee e 259..
Dynamic loading at runtimecooooiiiiiiiiiiiieeeeeeeee e 260
Microsoft Dynamic Link Librariesccccccceeieeeiiiiiiiiiceeen, 260
Imported and exported symbols in PEfilescccciiiiiiiiiiinnnnn 261
Lazy DINAING ..oeeiiiiiiiiiieeeee e 266
DLLS @nd threadscueeiiiiiiiiiiiiaeeeeeeeee e 267
OSF/1 pseudo-static shared librariesccccceeiiiiiiiiiiiiiiees 267
Making shared librarieSabtcccccciieiiii 268
Comparison of dynamic linking approachesccccceeeeiiiiiieeeennnn. 270
EXEICISES ..ttt 271....
PIOJECT ettt 271....
Chapter 11: Advanced teChNiQUEScccceevvreeieenieeiee 273
TeChNIQUES FOr CH oo 273
Trial INKING ..o 274
Duplicate code eliminationcccooeeeiiiiiiiiiiiiiiii e 276
Database approachesccccuuiiiiiiiiiiiiii e 278
Incremental linking and relinkingooovvviiiiiiiiiii e, 278
Link time garbage collectionoooiiiiiiii 281
Link time OptimiZation ..o 282
Link time code generationccooiviiiiieiiiiiiiiiiiieeee e e e e e e e 284
Link-time profiling and instrumentationcccccoeeeeeiiiieiiiiiinnns 284
LinK time @SSEMDBIETocoveeieiiiiiiee e 285
Load time code generationcccceeeeiiieeeeeeeeeeeeeeeeeeee e 285
The Jaa inking model ... 287
Loading JHA AASSESccoeiuuiiiiiiiiiiiiiiieie e e e e 288..
EXEICISES ..ot 290.

PrOJECT it 291....

8 Table of Contents

Chapter 12: REErencescooceveveveeveeeieesee e 293

Perl DOOKS ..o e

Linking and Loading 1-7

Chapter 1
Linking and Loading

$Revision: 2.3 $
$Date; 1999/06/30 01:02:35 %

What do linkers and loaders do?

The basic job of anlinker or loader is simple: it binds more abstract *
names to more concrete names, which permits programmers to write code
using the more abstract names. That is, it takes a name written by a pto-
grammer such aget | i ne and binds it to “the location 612 bytes from *
the beginning of thexecutable code in moduieosys.” Or it may tale a *
more abstract numeric address suchths location 450 bytes beyond the *
beginning of the static data for this modulahd bind it to a numeric ad- *
dress. *

Address binding: a historical perspectve

A useful way to get some insight into what linkers and loaders do is to
look at their part in the delopment of computer programming systems.

The earliest computers were programmed entirely in machine language.
Programmers would write out the symbolic programs on sheets of, paper
hand assemble them into machine code and then toggle the machine code
into the computeror perhaps punch it on paper tape or cards. (Real hot-
shots could compose code directly at the switchésthe programmer

used symbolic addresses at all, the symbols were bound to addresses as the
programmer did his or her hand translatidint turned out that an instruc-

tion had to be added or deleted, the entire program had to be hand-inspect-
ed and ay addresses &cted by the added or deleted instruction adjusted.

The problem was that the names were bound to addresses toolearly
semblers sokd that problem by letting programmers write programs in
terms of symbolic names, with the assembler binding the names to ma-
chine addressedf the program changed, the programmer had to reassem-
ble it, but the wrk of assigning the addresses is pushédrom the pro-
grammer to the computer.

1-8 Linkingand Loading

Libraries of code compound the address assignment proliémee the
basic operations that computers can perform are so simple, useful pro-
grams are composed of subprograms that perform higheraled more
comple operations. computenstallations keep a library of pre-written
and debugged subprograms that programmers canug@n to use in ng
programs the write, rather than requiring programmers to write all their
own subprograms. Therogrammer then loads the subprograms in with
the main program to form a complete working program.

Programmers were using libraries of subprograves éefore thg used
assemblers. By947, John Mauchjywho led the ENIA project, wrote
about loading programs along with subprograms selected from a catalog of
programs stored on tapes, and of the need to relocate the subprograms’
code to reflect the addresses at whicly there loaded. Perhaps surpris-
ingly, these tw basic linker functions, relocation and library search, ap-
pear to predateven assemblers, as Mauchlkgected both the program

and subprograms to be written in machine language. The relocating loader
allowed the authors and users of the subprograms to write each subpro-
gram as though it would start at location zero, and to defer the actual ad-
dress binding until the subprograms were linked with a particular main
program.

With the adent of operating systems, relocating loaders separate from
linkers and libraries became necessdBgfore operating systems, each
program had the machisetntire memory at its disposal, so the program
could be assembled and latk for fixed memory addresses, knowing that
all addresses in the computeowld be aailable. Butwith operating sys-
tems, the program had to share the compmuteegmory with the operating
system and perhapsen with other programs, This means that the actual
addresses at which the program would be running weteaivn until the
operating system loaded the program into mepdeferring final address
binding past link time to load timeLinkers and loaders modivided up

the work, with linlers doing part of the address binding, assigning velati
addresses within each program, and the loader doing a final relocation step
to assign actual addresses.

Linking and Loading 1-9

As systems became more complex,ytiealled upon linkers to do more

and more complename management and address bindiRgitran pro-

grams used multiple subprograms and common blocks, areas of data
shared by multiple subprograms, and it was up to the linker to lay out stor
age and assign the addresses both for the subprograms and the common
blocks. Linlers increasingly had to deal with object code libraries.
cluding both application libraries written in Fortran and other languages,
and compiler support libraries called implcitly from compiled code to han-
dle I/O and other high-e&l operations.

Programs quickly became larger thamilable memoryso inkers preid-

ed overlays, a technique that let programmers arrange for different parts of
a program to share the same memaevigh each eerlay loaded on demand
when another part of the program called into Giverlays were widely

used on mainframes from the advent of disks around 1960 until the spread
of virtual memory in the mid-1970s, then reappeared on microcomputers
in the early 1980s in exactly the same form, and faded as virtual memory
appeared on PCs in the 1990hey're still used in memory limited em-
bedded environments, and may yet reappear in other places where precise
programmer or compiler control of memory usage imgsqerformance.

With the advent of hardware relocation and virtual memlarkers and
loaders actually got less complex, since each program coaiid lagre an

entire address space. Programs could be linked to be loaded at fixed ad-
dresses, with hardave rather than software relocation taking care gf an
load-time relocation.But computers with hardware relocatiovanably

run more than one program, frequently multiple copies of the same pro-
gram. Whena computer runs multiple instances of one program, some
parts of the program are the same among all running instancexfthe e
ecutable code, in particular), while other parts are unique to each instance.
If the parts that dobh’change can be separated out from the parts that do
change, the operating system can use a singleafdhe unchanging part,
saving considerable storage&Compilers and assemblers were modified to
create object code in multiple sections, with one section for read only code
and another section for writable data, thedinkad to be able to combine

all of sections of each type so that the éidiprogram would he dl the

code in one place and all of the data in anotfi@is didnt delay address

1-10 Linkingand Loading

binding aly more than it already a&s, since addresses were still assigned
at link time, but more work was deferred to the énko assign addresses
for all the sections.

Even when difierent programs are running on a computesse diferent
programs usually turn out to share a lot of common cdae.example,
nearly &ery program written in C uses routines suchfagpen and
pri nt f, database applications all use aglarccess library to connect to
the database, and programs running under a GUI such asdoM/MS
Windows, or the Macintosh all use pieces of the GUI libravost sys-
tems nav provide shaed libraries for programs to use, so that all the pro-
grams that use a library can share a singlg cbpt. Thisboth improes
runtime performance and\&s a bt of disk space; in small programs the
common library routines often takup nore space than the program itself.

In the simpler static shared libraries, each library is bound to specific ad-
dresses at the time the library is built, and theelinkinds program refer
ences to library routines to those specific addresses at link time. Static li-
braries turn out to be inceeniently inflexible, since programs potentially
have o be relinked every time ary part of the library changes, and the de-
tails of creating static shared libraries turn out to be very ted®ystems
added dynamically linkd libraries in which library sections and symbols
arent bound to actual addresses until the program that uses the library
starts running. Sometimes the binding is delayesh éarther than that;

with full-fledged dynamic linking, the addresses of called procedures
arent bound until the first call.Furthermore, programs can bind to li-
braries as the programs are running, loading libraries in the middle of pro-
gram e&ecution. Thisprovides a powerful and high-performance way to
extend the function of programs. MicrosoftiMiows in particular maés
extensve wse of runtime loading of shared libraries (known as DLLs, Dy-
namically Linked Libraries) to construct and extend programs.

Linking vs. loading

Linkers and loaders performveeal related but conceptually separate ac-
tions.

Linking and Loading 1-11

. Program loading: Copy a program from secondary storage (which
since about 1968 variably means a disk) into main memory so
it's ready to run. In some cases loading jusbives copying the
data from disk to memoyyn others it irvolves allocating storage,
setting protection bits, or arranging for virtual memory to map vir
tual addresses to disk pages.

. Relocation:Compilers and assemblers generally create each file of
object code with the program addresses starting at zero, viout fe
computers let you load your program at location zdfaa pro-
gram is created from multiple subprograms, all the subprograms
have o be baded at nony@rlapping addressesRelocation is the
process of assigning load addresses to #news parts of the pro-
gram, adjusting the code and data in the program to reflect the as-
signed addresses. In nyasystems, relocation happens more than
once. Its quite common for a linker to create a program from mul-
tiple subprograms, and create one didloutput program that starts
at zero, with the arious subprograms relocated to locations within
the big program.Then when the program is loaded, the system
picks the actual load address and the linked program is relocated as
a whole to the load address.

. Symbol esolution:When a program is built from multiple subpro-
grams, the references from one subprogram to another are made
using symbols; a main program might use a square root routine
calledsqrt, and the math library definesyrt . A linker resoles
the symbol by noting the location assignedtp t in the library
and patching the callerbject code to so the call instruction refers
to that location.

Although theres considerable werlap between linking and loading, St’
reasonable to define a program that does program loading as a éndder
one that does symbol resolution as adinkeither can do relocation, and
there hae been all-in-one linking loaders that do all three functions.

The line between relocation and symbol resolution can be .fisrzge
linkers already can res@veferences to symbols, onewto handle code
relocation is to assign a symbol to the base address of each part of the pro-

1-12 Linkingand Loading

gram, and treat relocatable addresses as references to the base address
symbols.

One important feature that linkers and loaders share is tlyabakie patch
object code, the only widely used programs to do so other than perhaps de-
buggers. Thids a uniquely paerful feature, albeit one that igteemely
machine specific in the details, and can lead to baffling bugs if done
wrong.

Two-pass linking

Now we turn to the general structure of lers. Linking,like compiling or
assembling, is fundamentally advyass processA linker takes as its in-

put a set of input object files, libraries, and perhaps command files, and
produces as its result an output object file, and perhaps ancillary informa-
tion such as a load map or a file containing debugger symbols, Figure 1.

Figure 1-1: The linker process

picture of linker taking input files, producing output file,
maybe also other junk

Linking and Loading 1-13

[]
—shared |
Fitbrentt

\

commandsine ‘object | | '. nm'mal)

argiments | files j LR 1Ill:‘r[rar|e rl
N) Ji i E'f:_q ,

-h.nk'.gf | SN _ /"j = hj
zontrol ! By 0 \L B T ;

el o~
(linker
|i e
-k 7 e

| Gebug | eiéﬁﬂt&b[é / | link/load |
e Lfite | |_map |

< file sl ~—_

Each input file contains a set ségmentscontiguous chunks of code or
data to be placed in the output file. Each input file also contains at least
onesymbol table Some symbols are exported, defined within the file for
use in other files, generally the names of routines within the file that can
be called from elsehere. Othesymbols are imported, used in the filg b

not defined, generally the names of routines called from but not present in

the file.

1-14 Linkingand Loading

When a linker runs, it first has to scan the input files to find the sizes of the
seggments and to collect the definitions and references of all of the symbols
It creates a segment table listing all of thgnsents defined in the input
files, and a symbol table with all of the symbols imported or exported.

Using the data from the first pass, the linker assigns numeric locations to
symbols, determines the sizes and location of tgensats in the output
address space, and figures out wheeeyéhing goes in the output file.

The second pass uses the information collected in the first pass to control
the actual linking procesdt reads and relocates the object code, substitut-
ing numeric addresses for symbol references, and adjusting memory ad-
dresses in code and data to reflect relocatgohaset addresses, and writes
the relocated code to the output filethen writes the output file, general-

ly with header information, the relocated segments, and symbol table in-
formation. Ifthe program uses dynamic linking, the symbol table contains
the info the runtime linker will need to reseldynamic symbols. In man
cases, the linker itself will generate small amounts of code or data in the
output file, such as "glue code" used to call routinevénays or dynam-

ically linked libraries, or an array of pointers to initialization routines that
need to be called at program startup time.

Whether or not the program uses dynamic linking, the file may also con-
tain a symbol table for relinking or dedpging that isrt’ used by the pro-
gram itself, but may be used by other programs that deal with the output
file.

Some object formats are relinkable, that is, the output file from orer link
run can be used as the input to a subsequerrlmik. This requires that
the output file contain a symbol tableditne in an input file, as well as all
of the other auxiliary information present in an input file.

Nearly all object formats wa provision for delngging symbols, so that
when the program is run under the control of audgler the debugger can

use those symbols to let the programmer control the program in terms of
the line numbers and names used in the source prodbampending on

the details of the object format, the dghing symbols may be interneiat

in a single symbol table with symbols needed by theelirdr there may

be one table for the linker and a separate, somewhat redundant table for

Linking and Loading 1-15

the debugger.

A few linkers appear to ek in one passThey do that by luffering some

or all of the contents of the input file in memory or disk during the linking
process, then reading theftered material later Since this is an imple-
mentation trick that doednfundamentally affect the two-pass nature of
linking, we dont address it further here.

Object code libraries

All linkers support object code libraries in one form or angtivéh most
also providing support for various kinds of shared libraries.

The basic principle of object code libraries is simple enough, Figuke 2.
library is little more than a set of object code files. (Indeed, on some sys-
tems you can literally catenate anch of object files together and use the
result as a link library After the linker processes all of thegrdar input

files, if ary imported names remain undefined, it runs through the library
or libraries and links in gnof the files in the library that export one or
more undefined names.

Figure 1-2: Object code libraries

Object files fed into the lirdg, with libraries containing lots
of files following along.

1-16 Linkingand Loading

| ‘Object A " library,1 library 2
calls B,C, D . ; =
Vi T RGN g P = @ E H
e = e " § ;’ — =/ TF |,
R s &S00 REE" (¥ € 11 5 T L Swileg
_. 4 S J | :."Y
I\\xhl mkﬂfg /.J' i \
S
g
— \d
c
© D -
‘. A
| E \
executable
; file

Shared libraries complicate this task a little by moving some of trk w
from link time to load time. The linker identifies the shared libraries that
resohe the undefined names in a linker run, but rather than linkiyg an
thing into the program, the linker notes in the output file the names of the
libraries in which the symbols were found, so that the shared library can
be bound in when the program is loaded. See Chapters 9 and 10 for the
details.

Linking and Loading 1-17

Relocation and code modification

The heart of a linker or loadsrections is relocation and code modifica-
tion. Whena compiler or assembler generates and object file, it generates
the code using the unrelocated addresses of code and data defined within
the file, and usually zeros for code and data defined/le¢se. Aspart of

the linking process, the linker modifies the object code to reflect the actual
addresses assigneéor example, consider this snippet of x86 code that
moves the contents of variabke to variableb using the eax register.

mov a, %eax

nov %ax, b

If a is defined in the same file at location 1234 &&d b is imported from
somewhere else, the generated object code will be:

Al 34 12 00 00 nov a, Yeax

A3 00 00 00 00 nmov %ax, b

Each instruction contains a one-byte operation code followed by a four
byte address. The first instruction has a reference to 1234 (bgtead,

since the x86 uses a right to left byte order) and the second a reference to
zero since the location bfis unknown.

Now assume that the linker links this code so that the section in wahiEh
located is relocated by 40000 bytes, ant turns out to be at keQA12.
The linker modifies the code to be:

Al 34 12 01 00 nov a, Y%eax

A3 12 9A 00 00 nov %ax, b

That is, it adds 10000 to the address in the first instructionvgat mefers

to a’s relocated address which is 11234, and it patches in the address for
b. These adjustments affect instructiongt &ry pointers in the data part

of an object file hee © be aljusted as well.

On older computers with small address spaces and direct addressing, the
modification process is fairly simple, since there are only only onecr tw
address formats that a linker has to hanéiiedern computers, including

all RISCs, require considerably more comptede modification. No sin-

gle instruction contains enough bits to hold a direct address, so the compil-

1-18 Linkingand Loading

er and linker hee b use complicated addressing tricks to handle data at
arbitrary addressedn some cases, #'possible to concoct an address us-
ing two or three instructions, each of which contains part of the address,
and use bit manipulation to combine the parts into a full addiasthis

case, the linker has to be prepared to modify each of the instructions ap-
propriately inserting some of the bits of the address into each instruction.
In other cases, all of the addresses used by a routine or group of routines
are placed in an array used as an “address pool”, initialization code sets
one of the machine gesters to point to that arragnd code loads pointers

out of the address pool as needed using that register as agisisz réhe

linker may hae o create the array from all of the addresses used in a pro-
gram, then modify instructions that so thatythefer to the approprate ad-
dress pool entryWe aldress this in Chapter 7.

Some systems require position independent code that will work correctly
regadless of where in the address space it is loadéckers generally
have o provide extra tricks to support that, separating out the parts of the
program that cab’be made position independent, and arranging for the
two parts to communicate. (See Chapter 8.)

Compiler Drivers

In most cases, the operation of the linker \gsible to the programmer or
nearly so, because sttun automatically as part of the compilation pro-
cess. Mostompilation systems ka acompiler driverthat automatically
invokes the phases of the compiler as needEdr example, if the pro-
grammer has ta C language source files, the compileveriwill run a
sequence of programs dikhis on a Unix system:

. C preprocessor on file A, creating preprocessed A

. C compiler on preprocessed A, creating assembler file A
. Assembler on assembler file A, creating object file A

. C preprocceor on file B, creating preprocessed B

. C compiler on preprocessed B, creating assembler file B

Linking and Loading 1-19

. Assembler on assembler file B, creating object file B
. Linker on object files A and B, and system C library

That is, it compiles each source file to assembler and then object code, and
links the object code togethéncluding ay needed routines from the sys-
tem C library.

Compiler drvers are often much clerer than this. They often compare

the creation dates of source and object files, and only recompile source
files that hae dhanged. (ThéJnix makeprogram is the classixample.)
Paticularly when compiling C++ and other object oriented languages,
compiler drvers can play all sorts of tricks to work around limitations in
linkers or object formatskor example, C++ templates define a potentially
infinite set of related routines, so to find the finite set of template routines
that a program actually uses, a compilevarcan link the programs’ ob-

ject files together with no template code, read the error messages from the
linker to see what’ undefined, call the C++ compiler to generate object
code for the necessary template routines and re-Ni&. over some of

these tricks in Chapter 11.

Linker command languages

Every linker has some sort of command language to control the linking
process. Athe \ery least the linker needs the list of object files and li-
braries to link. Generally there is a long list of possible options: whether
to keep debugging symbols, whether to use shared or unshared libraries,
which of seeral possible output formats to use. Most linkers permit some
way to goecify the address at which the linked code is to be bound, which
comes in handy when using a linker to link a systemmdl or other pro-
gram that doestrun under control of an operating system. In linkers that
support multiple code and datagseents, a linker command language can
specify the order in which segments are to be linked, special treatment for
certain kinds of segments, and other application-specific options.

There are four common techniques to pass commands to a linker:

. Command lineMost systems he&e a ommand line or the equ
alent, via which one can pass a mixture of file names and switches.
This is the usual approach for Unix andndbows linkers. Onsys-

1-20

Linkingand Loading

tems with limited length command lines, theresually a way to
direct the linker to read commands from a file and treat them as
though thg were on the command line.

Intermixed with object filesSome linkers, such as IBM mainframe
linkers, accept alternating object files and linker commands in a
single input file. This dates from the era of card decks, when one
would pile up object decks and hand-punched command cards in a
card reader.

Embedded in object filesSome object formats, notably Mi-
crosofts, permit linker commands to be embedded inside object
files. Thispermits a compiler to passyaoptions needed to link an
object file in the file itself.For example, the C compiler passes
commands to search the standard C library.

Sepaate configuration languge A few linkers hae a 1l fledged
configuration language to control linking. The GNU knkwvhich

can handle an enormous range of object file formats, machine ar
chitectures, and address spaceventions, has a comptecontrol
language that lets a programmer specify the order in whigh se
ments should be lirdd, rules for combining similar segmentgy-se
ment addresses, and a wide range of other optiotiser linkers

have less compbe languages to handle specific features such as
programmer-definedverlays.

Linking: a true-life example

We complete our introduction to linking with a small but real linking e
ample. Figure shows a pair of C language source files, m.c with a main
program that calls a routine namadand a.c that contains the routine
with a call to the library routinest r | en andprintf.

Figure 1-3: Source files

Source file m.c

extern void a(char *);

Linking and Loading 1-21

int main(int ac, char **av)

{

static char string[] = "Hello, world!'\n";

a(string);

}

Source file a.c
#i ncl ude <uni std. h>
#i ncl ude <string. h>

void a(char *s)

{

wite(l, s, strlen(s));

}

The main program m.c compiles, on my Pentium with GCC, into a 165
byte object file in the classic a.out object format, Figure 4. That object file
includes a fixed length headd6 bytes of "text" sgment, containing the
read only program code, and 16 bytes of "data" segment, containing the
string. Following that are tw relocation entries, one that marks the pushl
instruction that puts the address of the string on the stack in preparation
for the call toa, and one that marks the call instruction that transfers con-
trol to a. The symbol table exports the definition_ofai n, imports_a,

and contains a couple of other symbols for theudgbr (Each global
symbol is prefixed with an underscore, for reasons described in Chapter
5.) Notethat the pushl instruction refers to location 10 hex, the teatati
address for the string, sincesith the same object file, while the call refers

to location O since the address @f is unknown.

Figure 1-4: Object code for m.o

Sect i ons:
| dx Nane Size VIVA LMVA File off Algn

1-22 Linkingand Loading

0 .text 00000010 00000000 00000000 00000020 2**3
1 .data 00000010 00000010 00000010 00000030 2**3
Di sassenbly of section .text:

00000000 <_mai n>:

0: 55 pushl %bp
1: 89 e5 movl Y%esp, Yebp
3: 68 10 00 00 00 pushl $0x10
4: 32 .data
8: e8 f3 ff ff ff call 0
9: DISP32 _a
d: c¢9 | eave
e: c3 ret

The subprogram file a.c compiles into a 160 byte object file, Figure 5, with
the headera 28 lyte text segment, and no datéwo relocation entries
mark the calls tst rl en andwri t e, and the symbol tablexports _a

and imports strlenand_wite.

Figure 1-5: Object code for m.o

Secti ons:
| dx Nane Si ze VNVA LMVA File off Algn
0 .text 0000001c 00000000 00000000 00000020 2**2
CONTENTS, ALLOC, LOAD, RELOC, CODE
1 .data 00000000 0000001c 0000001c 0000003c 2**2

CONTENTS, ALLOC, LQAD, DATA
Di sassenbly of section .text:

00000000 <_a>:
0: 55 pushl %bp
1: 89 e5 nmovl Y%esp, Yebp
3: 53 pushl %ebx

Linking and Loading 1-23

4: 8b 5d 08 nmov| 0x8(%ebp) , Yebx
7: 53 pushl %ebx
8: e8 f3 ff ff ff call 0
9: DISP32 strlen
d: 50 pushl %eax
e: 53 pushl %ebx
f: 6a 01 pushl $0x1
11: e8 ea ff ff ff call 0
12: DISP32 wite
16: 8d 65 fc | eal -4(%bp), Yesp
19: 5b popl %ebx
la: c9 | eave
1b: c¢3 ret

To produce an xecutable program, the linker combines these thject

files with a standard startup initialization routine for C programs, and nec-
essary routines from the C libragroducing an xecutable file displayed

in part in Figure 6.

Figure 1-6: Selected parts of executable

Secti ons:

| dx Nane Size VNA LMVA File off Algn
0 .text 00000f e0 00001020 00001020 00000020 2**3
1 .data 00001000 00002000 00002000 00001000 2**3
2 .bss 00000000 00003000 00003000 00000000 2**3

Di sassenbly of section .text:
00001020 <start-c>:
1092: e8 0d 00 00 00 call 10a4 <_mai n>

000010a4 <_mai n>:

1-24 Linkingand Loading

10a4: 55 pushl %bp
10a5: 89 e5 novl Y%esp, Yebp
10a7: 68 24 20 00 00 pushl $0x2024
10ac: e8 03 00 00 00 call 10b4 < a>
10b1l: c9 | eave

10b2: c3 ret

000010b4 < a>:

10b4: 55 pushl %bp

10b5: 89 e5 novl Y%esp, Yebp
10b7: 53 pushl %ebx

10b8: 8b 5d 08 novl 0x8(Yebp) , %ebx
10bb: 53 pushl %ebx

10bc: e8 37 00 00 00 call 10f8 < strlen>
10cl: 50 pushl %ax

10c2: 53 pushl %ebx

10c3: 6a 01 pushl $0x1

10c5: e8 a2 00 00 00 call 116c < wite>
10ca: 8d 65 fc | eal -4(%ebp) , Y%esp
10cd: 5b popl %ebx

10ce: ¢9 | eave

10cf: c¢3 ret

000010f 8 <_strlen>:

0000116c < wite>:

The linker combined correspondingysgents from each input file, so there

is one combined text segment, one combined danes® and one bss
seggment (zero-initialized data, which theawnput files didnt use). Each
segment is padded out to a 4K boundary to match the x86 page size, so the
text segment is 4K (minus a 20 byte a.out header present in the file but not
logically part of the segment), the data and bss segments are also each 4K.

Linking and Loading 1-25

The combined text genent contains the text of library startup code called
start-c, then text from m.o relocated to 10a4, a.o relocated to 10b4,
and routines linked from the C libramglocated to higher addresses in the
text sgment. Thedata segment, not displayed here, contains the com-
bined data segments in the same order as the tgntes¢s. Sincdhe
code for_mai n has been relocated to address 10a4 hex, that address is
patched into the call instruction in start-@ithin the main routine, the
reference to the string is relocated to 2024 kiee strings final location in

the data segment, and the call is patched to 10b4, the final address of
Within _a, the callsto strl enand_wri t e are patched to the final ad-
dresses for those twoutines.

The eecutable also contains about a dozen other routines from the C li-
brary, not displayed here, that are called directly or indirectly from the
startup code or fromwr i t e (error routines, in the latter case.) The e
ecutable contains no relocation data, since this file format is not relinkable
and the operating system loads it at avkmdixed address. It contains a
symbol table for the benefit of a dejger dthough the recutable doest’

use the symbols and the symbol table can be strippéal ssivespace.

In this example, the code linked from the library is considerabletar
than the code for the program itselfhat's quite common, particularly
when programs use & graphics or windowing libraries, which pided

the impetus for shared libraries, Chapters 9 and 10. The linked program is
8K, but the identical program linked using shared libraries is only 264
bytes. Thisis a ty example, of course, but real programs ofteneha
equally dramatic space savings.

Exercises

What is the advantage of separating a linker and loader into separate pro-
grams? Undewhat circumstances auld a combined linking loader be
useful?

Nearly erery programming system produced in the past 50 years includes
a linker. Why?

In this chapter we'e dscussed linking and loading assembled or compiled
machine codeWould a linker or loader be useful in a purely intermeeti

1-26 Linkingand Loading

system that directly interprets source language cdde® about in a in-
terpretve g/stem that turns the source into an intermediate representation
like P-code or the dJa Mirtual Machine?

Architectural Issues 2-27

Chapter 2
Architectural Issues

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

Linkers and loaders, along with compilers and assemblersxguesigely *
sensitve © the architectural details, both the hardware architecture and the
architecture corentions required by the operating system of theigear *
computers. Irthis chapter we a@r enough computer architecture to un- *
derstand the jobs that linkersvieaio do. Thedescriptions of all of the *
computer architectures in this chapter are deliberately incomplete arid
leave aut the parts that donaffect the linler such as floating point and *
1/O. *

Two aspects of hardware architecture affect linkers: program addressifig
and instruction formatsOne of the things that a linker does is to modify *
addresses and offsets both in data memory and in instructiontsoth ~ *
cases, the linkr has to ensure that its modifications match the addressing
scheme that the computer uses; when modifying instructions it must fuf
ther ensure that the modifications daw'sult in an imalid instruction. *

At the end of the chaptewe dso look at address space architecture, that
is, what set of addresses a program has to work with.

Application Binary Interfaces

Every operating system presentsAgplication Binary Interfac€ABI) to
programs that run under that system. The ABI consists of programming
conventions that applications ki@ o follow to run under the operating
system. ABIS invaiably include a set of system calls and the technique to
invoke the system calls, as well as rules about what memory addresses a
program can use and often rules about usage of maclgiséers. From

the point of viev of an gplication, the ABI is as much a part of the system
architecture as the underlying hardware architecture, since a program will
fail equally badly if it violates the constraints of either.

In mary cases, the lindr has to do a significant part of the workdned
in complying with the ABI. For example, if the ABI requires that each

2-28 Architecturalssues

program contains a table of all of the addresses of static data used by rou-
tines in the program, the linker often creates that table, by collecting ad-
dress information from all of the modules linked into the progrdime
aspect of the ABI that most often affects the linker is the definition of a
standard procedure call, a topic we return to later in this chapter.

Memory Addresses

Every computer includes a main memoffhe main memory wariably
appears as an array of storage locations, with each location having a nu-
meric addressThe addresses start at zero and run up to some large num-
ber determined by the number of bits in an address.

Byte Order and Alignment

Each storage location consists of a fixed number of Qigr the past 50
years computers kia been designed with storage locations consisting of
as mam as 64 lits and as f& as 1 hit, but nav nearly e/ery computer in
production addresses 8 bit byteSince much of the data that computers
handle, notably program addresses, are bigger than 8 bits, the computers
can also handle 16, 32, and often 64 or 128 bit data as well, with multiple
adjacent bytes grouped togeth€n some computers, notably those from
IBM and Motorola, the first (humerically lowest addressed) byte in multi-
byte data is the most significant byte, while others, notably DEC and Intel,
it's the least significant byte, Figure 1. In a nod3wlliver’s Travelsthe
IBM/Motorola byte order scheme is known &agy-endian while the
DEC!/Intel scheme ibttle-endian

Figure 21: Byte addressable memory

the usual picture of memory addresses

Architectural Issues 2-29

1 bytes i
16-bitwords | |
o | $hiwords | 8H
big-endian little-endian

The relatve nerits of the two schemes ha&e povoked vehement aju-
ments @er the years.In practice the major issue determining the choice
of byte order is compatibility with older systems, since it is considerably
easier to port programs and data betweenmachines with the same byte
order than between machines with different byte ordelany recent chip
designs can support either byte ordeith the choice made either by the
way the chip is wired up, by programming at system boot time, or iwa fe
cases een slected per application(On these switch-hitting chips, the
byte order of data handled by load and store instructions changes, but the
byte order of constants encoded in instructions doediisis the sort of
detail that keeps the life of the linker writer interesting.)

Multi-byte data must usually baligned on a natural boundaryThat is,
four byte data should be aligned on a four-byte boundexybyte on
two-byte, and so forth. Anotheray to think of it is that the address of
ary N byte datum should wa & least log2(N) lav zero bits. On some
systems (Intel x86, DECAX, IBM 370/390), misaligned data references

2-30 Architecturalssues

work at the cost of reduced performance, while on others (most RISC
chips), misaligned data causes a prograaitf Exen on systems where
misaligned data donhtause a fault, the performance loss is usually great
enough that is worth the effort to maintain alignment where possible.

Marny processors also kia dignment requirements for program instruc-
tions. MostRISC chips require that instructions be aligned on-byte
boundaries.

Each architecture also definesgjisters a snall set of fied length high-
speed memory locations to which program instructions can refer directly
The number of registers varies from one architecture to andtber as

few as eght in the Intel architecture to 32 in some RISC desidResgis-

ters are almost uwariably the same size as a program address, that is, on a
system with 32 bit addresses, the registers are 32 bits, and on systems with
64 bit addresses, the registers are 64 bits as well.

Address formation

As a computer programxecutes, it loads and stores data to and from
memory as etermined by instructions in the program. The instructions
are themselves stored in memaryually a diferent part of memory from

the prograns data. Instructionsare logically &ecuted in the sequence
they are stored, except that jump instructions specify & pkace in the
program to start»@cuting instructions. (Some architectures use the term
branch for some or all jumpsutbwe call them all jumps here.) Each in-
struction that references data memory and each jump specifies the address
or addresses or the data to load or store, or of the instruction to jump to.
All computers hae a \ariety of instruction formats and address formation
rules that linkers hee © be @le to handle as tlggelocate addresses in in-
structions.

Although computer designers ygamme up with innumerable dgrent
and comple addressing schemes@ the years, most computers currently
in production hae a elatively simple addressing schemd&Designers
found that it5 hard to build a fast version of a complicated architecture,
and compilers rarely makgood use of complicated addressing features.)
We'l | use three architectures as examples:

Architectural Issues 2-31

. The IBM 360/370/390 (which wh'refer to as the 370)Although
this is one of the oldest architectures still in use, its velgtclean
design has wrn well despite 35 years of added features, and has
been implemented in chips comparable in performance to modern
RISCs.

. SPARC V8 and V9.A popular RISC architecture, witkifly sim-
ple addressing. V8 uses 32 bit registers and addresses, V9 adds 64
bit registers and addresses. The SPARC design is similar to other
RISC architectures such as MIPS and Alpha.

. The Intel 386/486/Pentium (henceforth x86). One of the mest ar
cane and irregular architectures still in use, but undeniably the
most popular.

Instruction formats

Each architecture hasvaeal different instruction formatswe'll only ad-
dress the format details relai © program and data addressing, since
those are the main details that affect thedmihe 370 uses the same-for
mat for data references and jumps, while thaRBP has different formats
and the x86 has some common formats and some different.

Each instruction consists of an opcode, which determines what the instruc-
tion does, and operands. An operand may be encoded in the instruction it-
self (animmediateoperand), or located in memoryhe address of each
operand in memory has to be calculated somel@8metimes the address

is contained in the instruction (direct addressing.) More often the address
is found in one of the registers (register indirect), or calculated by adding a
constant in the instruction to the contents ofgster If the value in the
register is the address of a storage area, and the constant in the instruction
is the offset of the desired datum in the storage area, this scheme&is kno
asbasedaddressing. Ithe roles are swapped and the register contains the
offset, the scheme is known amlexedaddressing. Théelistinction be-
tween based and indal addressing isrt’'well-defined, and manarchitec-

tures combine them, e.g., the 370 has an addressing mode that adds togeth-
er two regsters and a constant in the instruction, arbitrarily calling one of
the registers the base register and the other th& redster, dthough the

2-32 Architecturalssues

two are treated the same.

Other more complicated address calculation schemes are still inutise, b
for the most part the linker doesiiaveto worry about them since the
don't contain aw fields the linker has to adjust.

Some architectures use dtk length instructions, and some useiable
length instructions. All SPARC instructions are four bytes long, aligned
on four byte boundaries. IBM 370 instructions can be 2, 4, or 6 bytes
long, with the first tw bits of the first byte determining the length and for
mat of the instruction.Intel x86 instructions can be anywhere from one
byte to 14 long. The encoding is quite complex, partly because the x86
was ariginally designed for limited memory environments with a dense in-
struction encoding, and partly because the mestructions added in the
286, 386, and later chips had to be shoe-horned into unused bit patterns in
the existing instruction sefortunately from the point of viev of a linker

writer, the address and offset fields that adinkas to adjust all occur on
byte boundaries, so the linker generally need not be concerned with the in-
struction encoding.

Procedure Calls and Addressability

In the earliest computers, memories were small, and each instruction con-
tained an address field large enough to contain the addresg mearory
location in the computea s£heme nw called direct addressingBy the

early 1960s, addressable memomsvgetting large enough that an instruc-
tion set with a full address in each instruction wouldehamge instruc-

tions that took up too much of still-precious memoryp solve this prob-

lem, computer architects abandoned direct addressing in some or all of the
memory reference instructions, using iRdad base rgisters to preide

most or all of the bits used in addressifAgis allowed instructions to be
shorter at the cost of more complicated programming.

On architectures without direct addressing, including the IBM 370 and
SFARC, programs hae a ‘bootstrapping’ problem for data addressiné
routine uses base values irgisters to calculate data addresses, but the
standard way to get a base value intogagster is to load it from a memory
location which is in turn addressed from another base value igistere

Architectural Issues 2-33

The bootstrap problem is to get the first basleerinto a register at the be-
ginning of the program, and subsequently to ensure that each routine has
the base values it needs to address the data it uses.

Procedure alls

Every ABI defines a standard procedure call sequence, using a combina-
tion of hardware-defined call instructions andwamtions about rgister

and memory useA hardware call instruction ses the return address (the
address of the instruction after the call) and jumps to the proceQure.
architectures with a hardware stack such as the x86 the return address is
pushed on the stack, while on other architecturessated in a regster,

with software having the responsibility tov@&the register in memory if
necessaryArchitectures with a stack generallywbkaa fardware return in-
struction that pops the return address from the stack and jumps to that ad-
dress, while other architectures usébaanch to address in gester’ in-
struction to return.

Within a procedure, data addressing falls into four categories:
. The caller can passgumentdo the procedure.

. Local variablesare allocated withing procedure and freed before
the procedure returns.

. Local staticdata is stored in a fixed location in memory and is pri-
vate to the procedure.

. Global staticdata is stored in a fixed location in memory and can
be referenced from maifferent procedures.
The chunk of stack memory allocated for a single procedure call is
known as astadk frame Figure 2 shows a typical stack frame.

Figure 2-2: Stak frame memory layout

Picture of a stack frame

2-34 Architecturalssues

\ | [N
Unallocated Lower
| stack- addresses:

regtster e e 1 S B

Local ~
‘»yariables \

~Stack pointer o —

i e ————

l

|

4

1 ¥
|

f

Frame pointer . 5
“register | L“_'"-'-i__.r'“; - Return
7l {_ﬁ‘\“ aﬂdress OId
ncomin) S S, frame pointer
oming
arguments B |
/Pmﬂnus \
frame |

Arguments and localaviables are usually allocated on the stack. One of
the registers serves as a stack pointer which can be used as ajistse re
In a common ariant of this scheme, used with SPARC and x86, a separate

Architectural Issues 2-35

frame pointer or base pointer register is loaded from the stack pointer at
the time a procedure starts. This makes it possible to push variable sized
objects on the stack, changing tredue in the stack pointer register to a
hard-to-predict value,u still lets the procedure address arguments and lo-
cals at fixed offsets from the frame pointer which ddegdrénge during a
procedures execution. Assuminghe stack grows from higher tower
addresses and that the frame pointer points to the address in memory
where the return address is stored, arguments are at smallgpd$gets

from the frame pointeend local variables at getive dfsets. Theperat-

ing system usually sets the initial stack pointer register before a program
starts, so the program need only update the register as needed when it
pushes and pops data.

For local and global static data, a compiler can generate a table of pointers
to all of the static objects that a routine references. If one of ¢hsters
contains a pointer to this table, the routine can addresdesired static
object by loading the pointer to the object from the table using the table
pointer register into anothergister using the table pointer register as a
base rgister then using that second register as the base register to address
the object. The trick, then, is to get the address of the table into the first
register On SPARC, the routine can load the table address into tis-re

ter using a sequence of instructions with immediate operands, and on the
SFARC or 370 the routine can use atant of a subroutine call instruction

to load the program counter (the register that keeps the address of-the cur
rent instruction) into a basegister though for reasons we discuss later
those techniques cause problems in library colldoetter solution is to

foist off the job of loading the table pointer on the rousin&ller, since

the caller will hae its avn table pointer already loaded and can get ad-
dress of the called routirgefable from its own table.

Figure 3 shows a typical routine calling sequence. Rfis the frame pointer
Rt is the table pointeend Rx is a temporary scratchgister The caller

saves its own table pointer in its own stack frame, then loads both the ad-
dress of the called routine and the called rousipeinter table into rgis-

ters, then makes the call’he called routine can then find all of its neces-
sary data using the table pointer in Rt, including addresses and table point-
ers for ay routines that it in turn calls.

2-36 Architecturalssues

Figure 2-3: Idealized calling sequence

push argunments on the stack ...
store Rt - xxx(Rf) ; save caller’s table pointer in caller’s stack frane
load Rx « MW Rt) ; load address of called routine into tenp register
load Rt « NNN(Rt) ; load called routine’s table pointer
call (Rx) ; call routine at address in Rx
load Rt ~ xxx(Rf) ; restore caller’s table pointer

Several optimizations are often possiblen mary cases, all of the routines

in a module share a single pointer table, in which case intra-module calls
neednt change the table pointefhe SPARC covention is that an entire
library shares a single table, created by theelinrdo he table pointer g

ister can remain unchanged in intra-module calls. Calls within the same
module can usually be made using a version of‘tladf’’ i nstruction with

the offset to the called routine encoded in the instruction, wiakdsathe

need to load the address of the routine intogéster With both of these
optimizations, the calling sequence to a routine in the same module re-
duces to a single call instruction.

To return to the address bootstram quesiony Hoes this chain of table
pointers gets started? If each routine gets its table pointer loaded by the
preceding routine, where does the initial routine get its pointer? The an-
swer varies, but alays involves special-case coddhe main routines

table may be stored at adtk address, or the initial pointer value may be
tagged in thexecutable file so the operating system can load it before the
program startsNo matter what the technique is, ivanably needs some

help from the linker.

Data and instruction references

We row look more concretely at the way that programs in our three archi-
tectures address data values.

Architectural Issues 2-37

IBM 370

The 1960s vintage System/360 started with a very straightforward data ad-
dressing scheme, which has become someone more complivetetieo

years as the 36(valved into the 370 and 39 very instruction that ref-
erences data memory calculates the address by adding a 12-bit unsigned
offset in the instruction to a base register and maybe ax mdgster.

There are 16 general registers, each 32 bits, numbered from 0 to 18, all b
one of which can be used as irdegsters. Ifregister O is specified in an
address calculation, the value 0 is used rather than the register contents.
(Register 0 exists and is usable for arithmetic, but not for addresdimg.)
instructions that takthe target address of a jump from giséer regster O
means dort’jump.

Figure 4 shows the major instruction formafs RX instruction contains

a regster operand and a single memory operand, whose address is calcu-
lated by adding the f#fet in the instruction to a base register andnde
register More often than not the indeegster is zero so the address is
just base plus tdet. Inthe RS, SI and SS formats, the 12 bit offset is
added to a basegmster An RS nstruction has one memory operand, with
one or two other operands being ingisters. AnSl instruction has one
memory operand, the other operand being an immediate 8 bit value in the
instruction An SS instruciton hasawnemory operands, storage to storage
operations. TheRR format has te regster operands and no memory
operands at all, although some RR instructions interpret one or both of the
registers as pointers to memoryhe 370 and 390 added some minariv
ations on these formats, but none with different data addressing formats.

Figure 2-4: IBM 370 instruction formats
Picture of IBM instruction formats RX, RS, SI, SS

2-38 Architecturalssues

4
bytes

= Note to artist; In all letter-digit pairs

RR . OP | R1R2. the digit should be a subscript, like Rg

R | op R B2 D2

Rs OP |RiR3 B2 D2
s [op[[12 |[Bi[b1 |
ss [op [fiz sf i Bz 02

Instructions can directly address the lowest 4096 locations in memory by
specifying base register zero. This ability is essentialvunlével system
programming but is rnver used in application programs, all of which use
base register addressing.

Note that in all three instruction formats, the 12 bit addrefsetois al-
ways stored as thewn12 hits of a 16-bit aligned halfard. Thismakes it
possible to specify fixups to address offsets in object files withgute&n
erence to instruction formats, since the offset formatnaya the same.

The original 360 had 24 bit addressing, with an address in memory or a
register being stored in thevo24 hts of a 32 bit word, and the high eight
bits disrgarded. The370 extended addressing to 31 biténfortunately,

mary programs including OS/360, the most popular operating system,
stored flags or other data in the high byte of 32 bit address words in mem-
ory, so it wasnt possible to gtend the addressing to 32 bits in theiohs

way and still support existing object code. Instead, the system has 24 bit
and 31 bit modes, and atyamoment a CPU interprets 24 bit addresses or

Architectural Issues 2-39

31 bit addressesA corvention enforced by a combination of haahe

and software states that an addressdwvith the high bit set contains a 31

bit address in the rest of the word, while one with the high bit clear con-
tains a 24 bit address. As a result, a linker has to be able to handle both 24
bit and 31 bit addresses since programs can and do switch modes depend-
ing on hav long ago a particular routine was writteRor historical rea-

sons, 370 linkers also handle 16 bit addresses, since early small models in
the 360 line often had 64K or less of main memory and programs used
load and store halfword instructions to manipulate address values.

Later models of the 370 and 390 addegnsented address spaces some-
what like those of the x86 series. These feature let the operating system
define multiple 31 bit address spaces that a program can addresx-with e
tremely complg rules defining access controls and address space switch-
ing. Asfar as | @n tell, there is no compiler or liak support for these
features, which are primarily used by high-performace database systems,
so we wort address them further.

Instruction addressing on the 370 is also reditistraightforvard. Inthe
original 360, the jumps (akys referred to as branch instructions) were all
RR or RX format. In RR jumps, the second register operand contained the
jump target, rgister 0 meaning donhjump. InRX jumps, the memory
operand is the jump t@et. Theprocedure call is Branch and Link (sup-
planted by the later Branch and Store for 31 bit addressing), which stores
the return address in a specifiedisger and then jumps to the address in
the second gaster in the RR form or to the second operand address in the
RX form.

For jumping around within a routine, the routine has to estabéiddress-
ability’”, that is, a base ggster that points to (or at least close to) the be-
ginning of the routine that RX instructions can use. Bwention, reyis-

ter 15 contains the address of the entry point to a routine and can be used
as a base gister Alternatvely an RR Branch and Link or Branch and
Store with a second register of zero stores the address of the subsequent
instruction in the first operandgister but doeshjump, and can be use to

set up a base register if the prior register contents are wnkn®inceRX
instructions hee a P hit offset field, a single base regist&overs” a 4K

chunk of code.If a routine is bigger than that, it has to use multiple base

2-40 Architecturalssues

registers to ceer al of the routine$ code.

The 390 added relat forms of all of the jumps. In thesewméorms, the
instruction contains a signed 16 bifsaft which is logically shifted left
one bit (since instructions are aligned eerebytes) and added to the ad-
dress of the instruction to get the address of the jungettaiThesenew
formats use no ggster to compute the address, and permit jumps within
+/- 64K bytes, enough for intra-routine jumps in all but the largest rou-
tines.

SPARC

The SPARC comes close t@ihg up to its name as a reduced instruction
set processothough as the architecture haslged through nine er-
sions, the original simple design has wnosomewhat more comple
SFARC versions through V8 are 32 bit architectur88ARC V9 expands
the architecture to 64 bits.

SPARC V8

SFARC has four major instruction formats and 31 minor instruction for
mats, Figure 5, four jump formats, andtdata addressing modes.

In SPARC V8, there are 31 general purpose registers, each 32 bits, num-
bered from 1 to 31Reyister O is a pseudo-register thawvafls contains
the value zero.

An unusualregister windowscheme attempts to minimize the amount of
register saving and restoring at procedure calls and retdims.windavs
have little effect on linkers, so we am't discuss them further(Register
windows originated in the Bedtey RISC design from which SPARC is
descended.)

Data references use one ofotaddressing modes. One mode computes
the address by adding thaelwes in tvo regsters together(One of the rg-

isters can be r0 if the other register already contains the desired address.)
The other mode adds a 13 bit signed offset in the instruction to a gase re
ister.

Architectural Issues 2-41

SFARC assemblers and lieks support a pseudo-direct addressing scheme
using a two-instruction sequence. Thetwstructions are SETHI, which
loads its 22 bit immediate value into the high 22 bits ofgéster and ze-

ros the lower 10 bits, followed by OR Immediate, which ORs its 13 bit im-
mediate value into the o part of the rgister The assembler and liek
arrange to put the high andnugarts of the desired 32 bit address into the
two instructions.

Figure 25: SPARC

30 bit call 22 bit branch and SETHI 19 bit branch 16 bit
branch (V9 only) op R+R op R+113

' - T

can [p| displacement.
sethiorfop/ | reg | | op21 ~ | .immediate or displacement |
branch22 =t . o P

—

f— * frmpa] ————
brancht90p/ @ cond = 1 op2 | rc- p displacement

branch16 op| 'a ccorid op2 | '-:'-’I'f;p TR E—

Note: displacement is disphi || d_i.,spla'

iediate®P regdest | op2 | | s, 5 51 {i} immediate

The procedure call instruction and most conditional jump instructions (re-
ferred to as branches in SPARC literature) use velaidressing with

2-42 Architecturalssues

various size branch offsets ranging from 16 to 30 bithatever the ofset

size, the jump shifts the offset avbits left, since all instructions ka ©

be at four-byte word addresses, sign extends the result to 32 or 64 bits, and
adds that value to the address of the jump or call instruction to get-the tar
get address. The call instruction uses a 30 fsetfwhich means it can
reach ag address in a 32 bit V8 address spaCalls store the return ad-
dress in register 15Various kinds of jumps use a 16, 19, or 22 bitef,
which is large enough to jump anywhere iry gohausibly sized routine.
The 16 bit format breaks thefgét into a two-bit high part and a fourteen-
bit low part stored in different parts of the instruction word, but that
doesnt cause ay great trouble for the linker.

SFARC also has a "Jump and Link" which computes the target address the
same \vay that data reference instructions do, by adding together either
two source registers or a sourcayister and a constant offset. It also can
store the the return address in a target register.

Procedure calls use Call or Jump and Link, which store the return address
in register 15, and jumps to the target address. Procedure return uses JMP
8[r15], to return tw instructions after the call(SFARC calls and jumps

are "delayed" and optionallyecute the instruction following the jump or

call before jumping.)

SPARC V9

SFARC V9 expands all of the registers to 64 bits, using the3d hts of
each rgister for old 32 bit programs. All existing instructions continue to
work as before, except that register operands awe G¥brather than 32
bits. Nev load and store instructions handle 64 bit data, amdbnanch
instructions can test either the 32 or 64 bit result of @que instructions.
SFARC V9 adds no ne instructions for synthesizing full 64 bit addresses,
nor is there a e call instruction. Full addresses can be synthesized via
lengthy sequences that create theot®2 kit halves of the address in sepa-
rate registers using SETHI and OR, shift the high half 32 bits to the left,
and OR the tw parts together In practice 64 bit addresses are loaded
from a pointer table, and inter-module calls load the address of get tar
routine from the table into a register and then use jump and link te mak
the call.

Architectural Issues 2-43

Intel x86

The Intel x86 architecture is by far the most commethe three that we
discuss. lItfeatures an asymmetrical instruction set and segmented ad-
dresses. Therare six 32 bit general purpose registers named EAX, EBX,
ECX, EDX, ESI, and EDI, as well as dwegsters used primarily for ad-
dressing, EBP and ESéhd six specialized 16 bit segment registers CS,
DS, ES, FS, GS, and SShe lav half of each of the 32 bit registers can
be used as 16 bitgesters called AX, BX, CX, DX, SI, DI, BRnd SP

and the lav and high bytes of each of the AX through DX registers are
eight-bit reisters called AL, AH, BL, BH, CL, CH, DL, and DH. On the
8086, 186, and 286, mannstructions required its operands in specific
registers, but on the 386 and later chips, most but not all of the functions
that required specific gesters hae keen generalized to useyaregster.

The ESP is the hardware stack poingad alvays contains the address of
the current stackThe EBP pointer is usually used as a frame register that
points to the base of the current stack frame. (The instruction set encour
ages but doesnrequire this.)

At any moment an x86 is running in one of three modes: real mode which
emulates the original 16 bit 8086, 16 bit protected mode which was added
on the 286, or 32 bit protected mode which was added on thel83é.

we primarily discuss 32 bit protected mode. Protected moatvas the
x86’s motorious segmentation, but we’ll digigd that for the moment.

Most instructions that address addresses of data in memory use a common
instruction format, Figure 6(The ones that dohuse specific architecture
defined rgisters, e.g., the PUSH and POP instructionsyd use ESP to
address the stack.) Addresses are calculated by adding togetiuerain

of a signed 1, 2, or 4 byte displacement value in the instruction, a lgase re
ister which can be gnof the 32 bit rgisters, and an optional indeegs-

ter which can be gnof the 32 bit registers except ESPhe inde can be
logically shifted left O, 1, 2, or 3 bits to m&alt easier to inde arrays of
multi-byte values.

Figure 26: Generalized x86 instruction format

2-44 Architecturalssues

one or tvo opcode bytes, optional mod R/M byte, optional
s-i-b byte, optional 1, 2, or 4 byte displacement

"3 optional optional optional
opcode - mod r/im s-i-b: aord E
one ortwo one one ,
‘hytes byte byte aord |
aord|

One, two, or four byte
address or displacement

Mod rim speeiﬁes address format
S-1-B specifies scaled index and/or base register

Address may be absolute or relative to base and/or index

Although it’s possible for a single instruction to include all of displace-
ment, base, and index, most just use a 32 bit displacement, whiatiesro
direct addressing, or a base with a one ar yte displacement, which
provides stack addressing and pointer dereferendingm a linker’s point

of view, direct addressing permits an instruction or data address to be em-
bedded anywhere in the program oy byte boundary.

Conditional and unconditional jumps and subroutine calls all useveelati
addressing. Aypjump instruction can va a 1 2, or 4byte offset which is
added to the address of the instruction following the instruction to get the
target address. Call instructions contain either a 4 byte absolute address,
or else use anof the the usual addressing modes to refer to a memory lo-
cation containing the target addresBhis permits jumps and calls yan
where in the current 32 bit address spadaconditional jumps and calls

also can compute the target address using the full data address calculation

Architectural Issues 2-45

described abee, most often used to jump or call to an address stored in a
register Call instructions push the return address on the stack pointed to
by ESP.

Unconditional jumps and calls can alswéa 1l six byte sgment/offset
address in the instruction, or calculate the address at which ghe se
ment/ofset target address is store@ihese call instructions push both the
return address and the calfegegmnent numberto permit intersgment
calls and returns.

Paging and Virtual Memory

On most modern computers, each program can potentially addrass a v
amount of memoryfour gigabytes on a typical 32 bit machirfeav com-
puters actually hae that much memorand esen the ones that do need to
share it among multiple program®aging hardware divides a progran’
address space into fixed siages, typically 2K or 4K bytes in size, and
divides the physical memory of the computer ipége famesof the same
size. Thehardware conatinpage tableswith an entry for each page in the
address space, as shown in Figure 7.

Figure 27: Page napping

Picture of pages mapped through a big page table to real
page frames

2-46 Architecturalssues
 Virtual , |15
address el ' Physical,-

space Page table memory |
=S F—-—-—"{
& - - |
e —— o | J
e —— s v o x — r-_ . -
4K or . _.
8K page
X - page not SN
~present, will - |
cause page . /
fault T

A page table entry can contain the real memory page frame for the page,
or flag bits to mark the page “not presénty hen an application program
attempts to use a page that is not present, lamedgenerates @age fult

which is handled by the operating systeihe operating system can load

Architectural Issues 2-47

a aopy of the contents page from disk into a free page frame, then let the
application continue. By moving pages back and forth between main
memory and disk as needed, the operating system caidenartual
memorywhich appears to the application to be far larger than the real
memory in use.

Virtual memory comes at a cost, thoudhdividual instructions xecute

in a fraction of a microsecond, but a pagelf and consequent page in or
page out (transfer from disk to main memory or vice versa) takesake
milliseconds since it requires a disk transf€éhe more page faults a pro-
gram generates, the slower it runs, with the worst case theaghing all

page faults with no useful work getting done. The fewer pages a program
needs, the fewer page faults it will generate. If the linker can pack related
routines into a single page or a small group of pages, paging performance
improves.

If pages can be marked as read-ppérformace also impres. Read-on-

ly pages dort’need to be paged out sinceyttgan be reloaded from wher

eve they came from originally If identical pages logically appear in mul-
tiple address spaces, which often happens when multiple copies of the
same program are running, a single physical padeesifor all of the ad-
dress spaces.

An x86 with 32 bit addressing and 4K pagesnd need a page table with
2720 entries to map an entire address sp&aece each page table entry is
usually four bytes, this suld male the page tables an impractical 4
megabytes long. As a result, paged architectures page the page tables,
with upper leel page tables that point to thewler level page tables that
point to the actual page frames corresponding to virtual addresses. On the
370, each entry in the uppewnék page table (called the segment table)
maps 1MB of address space, so thgnsent table in 31 bit address mode
may contain up to 2048 entries. Each entry in the segment table may be
empty in which case the entire g@ent is not present, or may point to a
lower level page table that maps the pages in thgtmemt. EacHower

level page table has up to 256 entries, one for each 4K chunk of address
space in the ggnent. Thex86 divides up its page tables similarg-
though the boundaries arefdilent. Eachupper leel page table (called a
page directory) maps 4MB of address space, so the upgepégie table

2-48 Architecturalssues

contains 1024 entries. Each lowevdepage table also contains 1024 en-
tries to map the 1024 4K pages in the 4MB of address space correspond-
ing to that page table. The SPARC architecture defines the page size as
4K, and has threeVels of page tables rather than two.

The two- or three-legel nature of page tables are invisible to applications
with one important xeception: the operating system can change the map-
ping for a lage chunk of the address space (1MB on the 370, 4MB on the
x86, 256K or 16MB on SPARC) by changing a single entry in an upper
level page table, so for ifiency reasons the address space is often man-
aged in chunks of that size by replacing individual secord page table
entries rather than reloading the whole page table on process switches.

The program address space

Every application program runs in an address space defined by a combina-
tion of the computes hardware and operating system. The linker or load-
er needs to create a runnable program that matches that address space.

The simplest kind of address space is that provided by PDP-11 versions of
Unix. Theaddress space is 64K bytes starting at location zero. The read-
only code of the program is loaded at location zero, with the read-write da-
ta following the code. The PDP-11 had 8K pages, so the data starts on the
8K boundary after the codeThe stack grows denward, starting at
64K-1, and as the stack and datavgrihe respectie aeas were enlged;

if they met the program ran out of spadgnix on the VAX, the follev-on

to the PDP-11, used a similar scheme. The firstliytes of @ery VAX

Unix program were zero (a registevearask saying not to se any-
thing.) Asa result, a null all-zero pointer wasaadys valid, and if a C pro-
gram used a null value as a string pointee zero byte at location zero
was treated as a null stringAs a result, a generation of Unix programs in
the 1980s contained hard-to-find bugsolaing null pointers, and for
mary years, Unix ports to other architectures provided a zero byte at loca-
tion zero because itag easier than finding and fixing all the null pointer

bugs.
Unix systems put each application program in a separate address space,

and the operating system in an address space logically separate from the
applications. Othesystems put multiple programs in the same address

Architectural Issues 2-49

space, making the linker and particularly the load@b more comple
because a programectual load address ignknown until the prograns
about to be run.

MS-DOS on x86 systems uses no hardware protection, so the system and
running applications share the same address spdben the system runs

a program, it finds the lgest chunk of free memaqrwhich can be an

where in the address space, loads the program into it, and stdBMit.
mainframe operating systems do roughly the same thing, loading a pro-
gram into an ailable chunk of sailable address space. In both cases, ei-
ther the program loader or in some cases the program itself has to adjust to
the location where the program is loaded.

MS Windows has an unusual loading scheme. Each program is linked to
load at a standard starting address, butxkeutable program file contains
relocation information. When Wdows loads the program, it places the
program at that starting address if possible, but may load itvdoene

else if the preferred address tsavailable.

Mapped files

Virtual memory systems e data back and forth between real memory
and disk, paging data to disk when it doefihin real memory Original-

ly, paging all went to‘anonymous’ disk space separate from the named
files in the file system. Soon after thgention of paging, though, design-

ers noticed that it was possible to unify the paging system and the file sys-
tem by using the paging system to read and write named disk\leen

a program maps a file to a part of the progmaldress space, the operat-

ing system marks all of the pages in that part of the address space not pre-
sent, and uses the file as the paging disk for that part of the address space,
as in Figure 8.The program can read the file merely by referencing that
part of the address space, at which point the paging system loads the nec-
essary pages from disk.

Figure 28: Mapping a file

Program points to set of page frames that map to disk file or

2-50 Architecturalssues

local RAM

disk” 'LH, |
file imnss

i €@ R gy Real rriemory copies
il T , A of disk pages
Mapped | | | N _
address | R L
range -)

|
| !
; \
|
. e | | ; |
|
i1

x = not present,
will be mapped
from file on reference

There are three ddrent approaches to handling writes to mapped files.
The simplest is to map a file read-onlyQ)R so that ay attempts to store

into the mapped region fail, usually causing the program to abidw.
second is to map the file read-write (RW), so that changes to the memory
copy of the file are paged back to the disk by the time the file is un-
mapped. Thehird is to map the file copy-on-write (@ not the most
felicitous acrogm). Thismaps the page read-only until the program at-
tempts to store into the page. At that time, the operating systemsmak
copy of the page which is then treated as agbei page not mapped from a

Architectural Issues 2-51

file. Fromthe prograns point of view, mapping a file C®/ is very simi-

lar to allocating a fresh area of anonymous memory and reading tke file’
contents into that area, since changes the program makes are visible to that
program but not to gnother program that might ka mapped the same

file.

Shared libraries and programs

In nearly @ery system that handles multiple programs simultanepusly
each program has a separate set of page tables, giving each program a log-
ically separate address space. This makes a system considerably more ro-
bust, since buggy or malicious programs taamage or spon each oth-

er, but it potentially could cause performance problems. If a single pro-
gram or single program library is in use in more than one address space,
the system can sa a geat deal of memory if all of the address spaces
share a single physical gppf the program or library This is relatvely
straightforvard for the operating system to implement — just map xhe e
ecutable file into each prograsn&dress space. Unrelocated code and
read only data are mapped RO, writable data are mappéd Te oper

ating system can use the same physical page frame®fandRunwritten

COW data in all the processes that map the file. (If the code has to be re-
located at load time, the relocation process changes the code pages and
they haveto be treated as G& not RO.)

Considerable linker support is needed to entiis sharing wrk. Inthe
executable program, the linker needs to group all of tkeewgable code

into one part of the file that can be mappé&d, Bnd the data into another
part that can be mapped @O Each section has to start on a page bound-
ary, both logically in the address space and physically in the YWéen
several different programs use a shared libydhe linker needs to mark

the each program so that when each starts, the library is mapped into the
programs address space.

Paosition-independent code

When a program is in use inveeal different address spaces, the operating
system can usually load the program at the same place in each of the ad-
dress spaces in which it appears. This makes thernpb much easier

2-52 Architecturalssues

since it can bind all of the addresses in the programed focations, and
no relocation need be done at the time the program is loaded.

Shared libraries complicate this situation considerabty some simple
shared library designs, each library is assigned a globally unique memory
address either at system boot time or at the time the libraries are created.
This puts the each library at a fixed address, but at the cost of creating a
serious bottleneck to shared library administration, since the global list of
library memory addresses has to be maintained by the system manager
Furthermore, if a ne version of a library appears that isger than the
previous \ersion and doesnfit into the address space assigned, the entire
set of shared libraries and, potentialiy of the programs that reference
them, may need to be relinked.

The alternatie is to permit different programs to map a library tofelient
places in the address spacEhis eases library administration, but the
compilet and linker, and program loader need to cooperate so that the li-
brary will work regardless of where in the address space the library ap-
pears.

One simple approach is to include standard relocation information with the
library, and when the library is mapped into each address space, the loader
can fix up ag relocatable addresses in the program to reflect the loaded
addresses. Unfortunatethie process of fixing upwolves writing into the
library’s code and data, which means that the pages will no longer be
shared, if thg're mapped C@/, or the program will crash if the pages are
mapped RO.

To avoid this problem, shared libraries use Position Independent Code
(PIC), code which will work rgardless of where in memory it is loaded.

All the code in shared libraries is usually PIC, so the code can be mapped
read-only Data pages still usually contain pointers which need relocation,
but since data pages are mappedWZ@yway, theres little sharing lost.

For the most part, PIC is pretty easy to creadd.three of the architec-
tures we discussed in this chapter use kedgtimps, so that jump instruc-
tions within the routines need no relocation. References to local data on
the stack use based addressing nadaih a kase rgister which doesrt’

need ay relocation, either The only challenges are calls to routines not in

Architectural Issues 2-53

the shared libraryand references to global dat®irect data addressing
and the SPARC highfe regster loading trick wen’t work, because tlye
both require run-time relocatiorzortunately there are a variety of tricks
one can use to let PIC code handle inter-library calls and global \d&ta.
discuss them when we @ shared libraries in detail in Chapter 9 and 10.

Intel 386 Segmentation

The final topic in this chapter is the notorious Intel architectugeneata-

tion system. The x86 series is the only segmented architecture still in
common use, other than somgdey exBurroughs Unisys mainframes,
but since it’'s so ppular we haveto deal with it. Although, as wk'short-

ly discuss, 32 bit operating systems daonake any dgnificant use of s
mentation, older systems and the very popular 16-bit embeddsbivs

of the x86 series use it extevely.

The original 8086 was intended as a follow-on to Ingeltuite popular

8-bit 8080 and 8085 microprocessors. The 8080 has a 16 bit address
space, and the 8086 designers were torn between keeping the 16 bit ad-
dress space, which made translation of 8085 easier and permitted more
compact code, and providing a larger address spaceddggadroom”

for future applications in lger programs.They compromised, by prad-

ing multiple 16 bit address spaces. Each 16 bit address space was kno
as a segment.

A running x86 program has four aaisgnents defined by the fourge

ment rgisters. TheCS register defines the code segment, from which in-
structions are fetched. The DSgigter defines the data segment, from
which most data are loaded and stored. The SS register defines the stack
segment, used for the operands of push and pop instructions, the program
address values pushed and popped by call and return instructionsyand an
data reference made using the EBP or ESP as a lggstereThe ES rg-

ister defines thex¢ra segment, used by anfestring manipulation instruc-
tions. The386 and later chips define awnore segment registers FS and
GS. Ary data reference can be directed into a specific segment by using a
sgment oerride. For example, the instruction MOEAX,CS:TEMP
fetches a data value from the location TEMP in code segment rather than
the data sgment. TheFS and GS segments are only used vgmsat

2-54 Architecturalssues

overrides.

The segment values need not all béedént. Mostprograms set the DS
and SS alues the same, so that pointers to stack variables and géobal v
ables can be used interchably. Some small programs set all fourgse
ment reisters the same, providing a single address space knowryas tin
model.

On the 8086 and 186, the architecture defined a fixed mapping fgpm se
ment numbers to memory addresses by shifting thmeet number four
bits to the left. Sggment number 0x123 would start at memory location
0x1230 for @ample. Thissimple addressing is known as real mogeo-
grammers often refer informally {waragraphs 16-byte units of memory
that a segment number can address.

The 286 added a protected mode, in which the operating system can map
segments to arbitrary places in real memory and can mark segments as not
present, providing sgnent based virtual memorfach segment can be
marked eecutable, readable, or read/write, providingreent-lerel pro-
tection. The386 extended protected mode to 32 bit addressing, so that
each segment can be up to 4GB in size rather than only 64K.

With 16 bit addressing, all but the smallest programe lahandle sg-
mented addresse<hanging the contents of a segment register is quite
slow, 9 dock cycles on a 486 compared to 1 cycle to change the contents
of a general purposegister As a lesult, programs and programmers to
go great lengths to pack code and data intovasdégments as possible to
avad having to change the contents of thgrsent rgisters. Linlers aid

this process by providinggroups’ that can collect related code or data in-

to a single sgment. Codeand data pointers can be either nedth an
offset value but no segment numbaarfar, with both segment and offset.

Compilers can generate code farious memory models which determine
whether code and data addresses are near or far éyitdedmallmodel

code makes all pointers near and has one code and one gla@nse
Medium model code has multiple code segments (one per program source
file) using far calls, but a single default datgreent. Lage model code

has multiple code and data segments and all pointers are fardwltdef
Writing efficient segmented code is very tyclend has been well docu-

Architectural Issues 2-55

mented elsewhere.

Segymented addressing places significant demands on tles ligkery ad-

dress in a program has both a segment andfaet.ofObjecffiles consist

of multiple chunks of code which the linker packs intgmrsents. Eg-
cutable programs to be run in real modeeh® mark all of the sgment
numbers that occur in the program soythan be relocated to the actual
seggments where the program is loadétkecutable programs to be run in
protected mode further & to mark what data is to be loaded into what
segment and the protection (code, read-only data, read-write data) for each
segment.

Although the 386 supports all of the 16 bit segmentation features of the
286, as well as 32 bitevsions of all of the segmentation features, most 32
bit programs dor’use segmentation at alPaging, also added in the 386,
provides most of the practical benefits ofjsentation without the perfor
mance cost and the extra complications of writingmeant manipulation
code. Most386 operating systems run applications in thg timodel,

more often known as tH&at model since a segment on a 386 is no longer
tiny. They create a single code segment and a single data segment each
4GB long and mapping them both to the full 32 bit paged address space.
Even though the prograsionly using a single segment, that segment can
be the full size of the address space.

The 386 maks it possible to use both 16 bit and 32 bit segments in the
same program and aweoperating systems, notablyilidows 95 and 98,
take advantage of that abilityWindows 95 and 98 run a lot ofgecy Win-

dows 3.1 code in 16 bit genents in a shared address space, while each
nev 32 kit program runs in its own tynmodel address space, with the
16-bit programs’ address space mapped in to permit calls back and forth.

Embedded architectures

Linking for embedded systems posesasiety of problems that rarely oc-

cur in other emronments. Embeddedhips ha&e limited amounts of
memory and limited performance, but since an embedded program may be
built into chips in thousands or millions of devices, there are great incen-
tives to make programs run as fast as possible in as little memory as possi-
ble. Someembedded systems use low-cost versions of general-purpose

2-56 Architecturalssues

chips, such as the Intel 80186, while others use specialized processors
such as the Motorola 56000 series of digital signal processors (DSPSs).

Address space quirks

Embededed systemsJeasnall address spaces with quirkayouts. A

64K address space can contain combinationsasff én-chip ROM and
RAM, slow off-chip ROM and RAM, on-chip peripherals, and-ciip pe-
ripherals. Therenay be seeral non-contiguous areas ofoR1 or RAM.

The 56000 has three address spaces of 64K 24-bit words, each with com-
binations of RAM, ROM, and peripherals.

Embedded chip delopment uses system boards that contain the proces-
sor chip along with supporting logic and chigstequently different de-
velopment boards for the same processor willehdfferent memory lay-
outs. Diferent models of chips ka dffering amounts of RAM and
ROM, so programmers ka trade of the effort to squeeze a program
into a smaller memory versus thdra cost of using a moregensve va-

sion of the chip with more memory.

A linker for an embedded system needs a way to specify the layout of the
linked program in great detail, assigning particular kinds of code or data,
or even individual routines and variables, to specific addresses.

Non-uniform memory

References to on-chip memory are faster than those to off-chip, so in a
system with both kinds of memorje most time-critical routines need to

go in the fast memorySometimes it possible to squeeze all of the pro-
gram’ tme-critical code into the fast memory at link time. Other times it
malkes more sense to gppode or data from sl memory to fast memory

as needed, sos®al routines can share the same fast memory fatrelift
times. For this trick, its very useful to be able to tell a linker "put this
code at location XXXX bt link it as though i at bcation YYYY", so

the code will be correct whenstopied from XXXX in slav memory to
YYYY in fast memory at runtime.

Architectural Issues 2-57

Memory alignment

DSPs frequently he dringent memory alignment requirements for-cer
tain kinds of data structures. The 56000 series, for example, has an ad-
dressing mode to handle circulanfiers \ery eficiently, so bng as the

base address of theifter is aligned on a peer-of-two boundary at least

as large as thauffer size (so a 50 wordufffer would need to be aligned on

a 64 word boundaryfor example.) TheFast Fourier Transform (FFT), an
extremely important calculation for signal processing, depends on address
bit manipulations that also require that the data on which an FFT operates
be paver-of-two digned. Unlike on conventional architectures, The align-
ment requirements depend on the sizes of the data arrays, so that packing
them efficiently into @ailable memory can be trigkand tedious.

Exercises

1. A SFARC program contains these instructiorf$hese aren’intended
as a useful program, just as some instruction format examples.)
Loc Hex Synbol i c

1000 40 00 03 00 CALL X

1004 01 00 00 00 NOP; no operation, for delay

1008 7F FF FE ED CALL Y

100C 01 00 00 00 NOP

1010 40 00 00 02 CALL Z

1014 01 00 00 00 NOP

1018 03 37 AB 6F SETH r1, 3648367 ; set high 22 bits of r1l
101C 82 10 62 EF ORI r1,r1,751; ORin low 10 bits of r1

la. Ina CALL instruction the high tw bits are the instruction code, and
the lowv 30 hits a signed word (not byte)feét. Whatare the he address-
es for X, Yand Z?

1b. What does the call to Z at location 1010 accomplish?

1c. Thetwo instructions at 1018 and 101C load a 32 bit address igto re
ister 1. The SETHI loads thewWo22 hts of the instruction into the high
22 bits of the rgister and the ORI logically os the lov 13 hbts of the in-
struction into the registeMhat address will register 1 contain?

2-58 Architecturalssues

1d. If the linker maes X to be at bcation 2504(he but doesrt change
the location of the code in the example, to what will it change the instruc-
tion at location 1000 so it still refers to X ?

2. A Pentium program contains these instructioB®n’t forget that the
x86 is little-endian.

Loc Hex Symbol i c

1000 E8 12 34 00 00 CALL A

1005 E8 ?2? ?? ?? ?? CALL B

100A Al 12 34 00 00 MOV 9EAX, P

100F 03 05 ?? ?2? ?? ??ADD %EAX Q

2a. Atwhat location are routine A and data word P locatédp: On the

x86, relatve aldresses are computed relatio the byte addresafter the
instruction.) 2b If routine B is located at address OF00 and data word Q

is located at address 3456, what are the byte values of the ?? bytes in the
example? 3. Doea linker or loader need ttunderstand’every instruc-

tion in the target architectueeinstruction set? If a ne model of the tar

get adds ne& instructions, will the linker need to be changed to support
them? Whaif it adds nev addressing modes to existing instructionse lik

the 386 did relate o the 2867

4. Backin the Golden Age of computing, when programmeosked in

the middle of the night because that was the only timedbald get com-

puter time, rather than because thathen thg woke up, mary computers

used word rather than byte addresses. The PDP-6 and 10, for example had
36 bit words and 18 bit addressing, with each instruction beingrd w

with the operand address in thevlbalf of the word. (Programsould al-

so store addresses in the high half of a daiadwalthough there was no
direct instruction set support for thatdow different is linking for a wrd-
addressed architecture compared to linking for a byte addressed architec-
ture?

5. How hard would it be to build a retargetable kmkthat is, one that
could be built to handle dédrent target architectures by changing & fe
specific parts of the source code for thedirtk Hav about a multi-taget
linker, that could handle code for a variety of different architectures (al-
though not in the same linker job)?

Object Files 3-59

Chapter 3
Object Files

$Revision: 2.6 $
$Date; 1999/06/29 04:21:48 $

Compilers and assemblers create object files containing the generated*bi-
nary code and data for a source filenkers combine multiple object files *
into one, loaders takdoject files and load them into memoryn an inte- *
grated programming gmonment, the compilers, assemblers, anddisk *
are run implicitly when the user tells it to build a program, buy’'tee *
there under the eers.) Inthis chapter we dedvinto the details of object *
file formats and contents. *

What goes into an object file?
An object file contains fevkinds of information.

. Header informationoverall information about the file, such as the
size of the code, name of the source fileaswranslated from, and
creation date.

. Object codeBinary instructions and data generated by a compiler
or assembler.
. Relocation:A list of the places in the object code thaten# be

fixed up when the linker changes the addresses of the object code.

. Symbols:Global symbols defined in this module, symbols to be
imported from other modules or defined by the linker.

. Debuging information: Other information about the object code
not needed for linking but of use to a dgber This includes
source file and line number information, local symbols, descrip-
tions of data structures used by the object code such as C structure
definitions.

(Some object files contaiven more than this, but these are plenty
to keep us occupied in this chapter.)

3-60 ObjectFiles

Not all object formats contain all of these kinds of information, asd it’
possible to heae cuite useful formats with little or no information yaend
the object code.

Designing an object format

The design of an object format is a compromiseedrby the various uses
to which an object file is putA file may belinkable, used as input by a
link editor or linking loader It my be executable capable of being loaded
into memory and run as a progradoadable capable of being loaded into
memory as a library along with a program, oy @ombination of the
three. Somdormats support just one or &vof these uses, others support
all three.

A linkable file containsxensve symbol and relocation information need-
ed by the linker along with the object codEhe object code is often di-
vided up into may small logical segments that will be treatedfetiéntly

by the linler An executable file contains object code, usually page
aligned to permit the file to be mapped into the address space, buttdoesn
need ay symbols (unless it will do runtime dynamic linking), and needs
little or no relocation information. The object code is a single large se
ment or a small set of segments that reflect the hardwecet®n ewi-
ronment, most often read-only vsead-write pages. Depending on the
details of a systerm’runtime environment, a loadable file may consist
solely of object code, or may contain complete symbol and relocation in-
formation to permit runtime symbolic linking.

There is some conflict among these applicatioRise logically oriented
grouping of linkable sgments rarely matches the hardware oriented
grouping of @ecutable sgments. Rrticularly on smaller computers, link-
able files are read and written by the linker a piece at a time, while e
ecutable files are loaded in their entirely into main mematys distinc-
tion is most obious in the completely different MS-DOS linkable OMF
format and gecutable EXE format.

WEe'll tour a series of popular formats, starting with the simplest, and
working up to the most complicated.

Object Files 3-61

The null object format: MS-DOS .COM files

It's quite possible to hee a sable object file with no information in it
whatsoeger other than the runnable binary code. The MS-DOS .COM for
mat is the best-knowrxample. A.COM file literally consists of nothing
other than binary code. When the operating system runs a .COM file, it
merely loads the contents of the file into a chunk of free memory starting
at of'set 0x100, (O-FF are the, BSPogram Segment Prefix with com-
mand line aguments and other parameters), sets the x86 segmestere

all to point to the PSRhe SP (stack pointer)gister to the end of the ge
ment, since the stack growsvdowvard, and jumps to the beginning of the
loaded program.

The segmented architecture of the x86 makes tlik.wSinceall x86
program addresses are interpreted nedath the base of the currentgse
ment and the ggnent registers all point to base of the segment, the pro-
gram is alays loaded at sgment-relatre location 0x100. Hence, for a
program that fits in a single segment, no fixups are needed sgroerge
relatve aldresses can be determined at link time.

For programs that donfit in a sngle segment, the fixups are the program-
mer’s problem, and there are indeed programs that start out by fetching
one of their segment gesters, and adding its contents to storegirent
values elsewhere in the program. Of course, thigastty the sort of tedi-

um that linkers and loaders are intended to automate, and MS-DOS does
that with .EXE files, described later in this chapter.

Code sections: Unix a.out files

Computers with hardware memory relocation (nearly all of them, these
days) usually create aweorocess with an empty address space for each
newly run program, in which case programs can beekhko start at a
fixed address and require no relocation at load time. The Unix a.out object
format handles this situation.

In the simplest case, an a.out file consisted of a small headevddlloy

the executable code (called the text section for historical reasons) and the
initial values for static data, Figure 1. The PDP-11 had only 16 bit ad-
dressing, which limited programs to a total of 64K. This limit quickly be-

3-62 ObjectFiles

came too small, so later models in the PDP-11 line provided separate ad-
dress spaces for code (I for Instruction space) and data (D space), so a sin-
gle program could contain both 64K of code and 64K of datasupport

this feature, the compilers, assempéerd linker were modified to create
two-section object files, with the code in the first section and the data in
the second section, and the program loader loaded the first section into a
process’ | space and the second into the D space.

Figure 3-1: Simplifed a.out

a.out header
text section
data section

other sections

Object Files 3-63

a:out header

text section

~data section

- other’‘sections

ey

3-64 ObjectFiles

Separate | and D space had another performance advantage: since a pro-
gram couldrt change its own | space, multiple copies of a single program
could share a single cppf a programs wde, while keeping separate
copies of the program’'data. Ona ime-shared system kkUnix, multiple

copies of the shell (the command interpreter) and ertwWlaemons are
common, and shared program codeesaonsiderable real memory.

The only currently common computer that still uses separate addressing
for code and data is the 286 (or 386 in 16 bit protected mdfien on

more modern machines with ¢gr address spaces, the operating system
can handle shared read-only code pages in virtual memory much more ef-
ficiently than read/write pages, so all modern loaders support tiharms.
means that lingr formats must at the least mark read-only versus read-
write sections. In practice, most likformats hee marny sections, such

as read-only data, symbols and relocation for subsequent linkingg-deb
ging symbols, and shared library informatiofunix corvention confus-

ingly calls the file sections gments, so we use that term in discussions of
Unix file formats.)

a.out headers

The header varies somewhat from one version of Unix to andititethe
version in BSD Unix, Figure 2 is typical. (In theamples in this chapter
int values are 32 bits, and short are 16 bits.)

Figure 32: a.out header

nt a_magi c; // magi ¢ numnber

nt a_t ext; /] text segment size
nt a_dat a; /1 initialized data size
nt a bss; // uninitialized data size
nt a_syns; /1 synbol table size

nt a_entry; // entry point
nt a trsize; // text relocation size
nt a_drsize; // data relocation size

Object Files 3-65

The magic numbes_magi ¢ indicates what kind ofb@cutable file this is.

(Make this a footnote:Historically, the magic number on the original
PDP-11 was octal 407, which was a branch instruction tbatdyump
over the next seen words of the header to the beginning of the tegt se
ment. Thatpermitted a primitie form of position independent codé
bootstrap loader could load the entiseaitable including the file header
to be loaded by into memqgmysually at location zero, and then jump to the
beginning of the loaded file to start the program. Onlywa $&andalone
programs eer used this abilitybut the 407 magic number is still with us
25 years latey Different magic numbers tell the operating system pro-
gram loader to load the file in to memory differently; we discuss these
variations belav. The text and data segment sizeg ext anda_dat a

are the sizes in bytes of the read-only code and read-write data that follo
the header Since Unix automatically initializes mdy allocated memory

to zero, ag data with an initial contents of zero or whose contentstdon’
matter need not be present in the a.out file. The uninitializedhsizes

says hw much uninitialized data (really zero-initialized) data logically
follows the data in the a.out file.

The a_entry field gives the starting address of the program, while
a_syns, a trsize, anda_drsi ze say hov much symbol table and
relocation information follev the data segment in the file. Programs that
have keen linled and are ready to run need no symbol nor relocation info,
so these fields are zero in runnable files unless the linker has included
symbols for the debugger.

Interactions with virtual memory

The process wolved when the operating system loads and starts a simple
two-segment file is straightforward, Figure 3:

Figure 3-3: Loading an a.out into a process

picture of file and ggments with arrows pointing out data
flows

3-66 ObjectFiles

a.out sl

= te Tl
|- | X¢ process
text e e
jRAETEE Tk ﬁ,@ - segment

1 | ﬁ'

» data
 E———— -

. ; bss .'-

bss size QN docone =
from a.out 'heap |
header ; i

|
1
|

Object Files 3-67

. Read the a.out header to get the segment sizes.

. Check to see if therge’dready a sharable code segment for this file.
If so, map that segment into the process’ address space. If not, cre-
ate one, map it into the address space, and read the gextrge
from the file into the n@ memory segment.

. Create a priate data sgment large enough for the combined data
and BSS, map it into the process, and read the data segment from
the file into the data genent. Zeraut the BSS segment.

. Create and map in a stack segment (usually separate from the data
sgment, since the data heap and stackvgeparately) Placear-
guments from the command line or calling program on the stack.

. Set registers appropriately and jump to the starting address.

This scheme (known as NMAGIC, where the N meang, @ of eout
1975) works quite well, and PDP-11 and early VAX Unix systems used it
for years for all object files, and linkable files used it throughout the life of
the a.out format into the 19908Vhen Unix systems gained virtual memo-
ry, seveaal improvements to this simple scheme sped up program loading
and s&ed considerable real memory.

On a paging system, the simple schemevalabocates fresh virtual mem-

ory for each text segment and datgrsent. Sincehe a.out file is already
stored on the disk, the object file itself can be mapped into the process’ ad-
dress space. This\sss dsk space, since medisk space for virtual mem-

ory need only be allocated for pages that the program writes into, and can
speed program startup, since the virtual memory system need only load in
from disk the pages that the prograr&ctually using, not the whole file.

A few dchanges to the a.out format neakis possible, Figure 4,. and cre-

ate whats known as ZMAGIC format. These changes align thgnsents

in the object file on page boundaries. On systems with 4K pages, the a.out
header is expanded to 4K, and tha sgments sze is rounded up to the

next 4K boundary Theres no reed to round up the size of the datg-se

3-68 ObjectFiles

ment, since the BSS segment logically follows the data segment, and is ze-
roed by the program loader anyway.

Figure 34: Mapping an a.out into a process

Picture of file and ggments, with page frames mapping in-
to segments

3-69

Object Files
pagable
a.out file nheader page process
. (notmapped)
Gkt [T SN eonly T T e
| [mapped pages) | 42 S
Le ke :— ot -4 . segment
B B | (read-only)
~data | o -
S | - -
i 2l ~i | copyonwrite |, e
| | mappedpages | data -
bss . read
write
stack. "€ad
write

ZMAGIC files reduce unneeded pagingt ht the cost of wasting a lot of
disk space. The a.out header is only 32 bytes long, yet an entire 4K of
disk space is allocated. Thamgbetween the text and data also wastes 2K,
half a 4K page, onvarage. Bothof these are fixed in the compact phlg

3-70 ObjectFiles

format known as QMAGIC.

Compact paagble files consider the a.out header to be part of the tgxt se
ment, since there’no mrticular reason that the code in the texgnsent

has to start at location zero. Indeed, program zero is a particularly bad
place to load a program since uninitialized pointer variables often contain
zero. Thecode actually starts immediately after the heaahet the whole

page is mapped into the second page of the procegsddhe first page
unmapped so that pointer references to location zero ailijl Figure 5.

This has the harmless side-effect of mapping the header into the process as
well.

Figure 35: Mapping a compact a.out into a process

Picture of file and ggments, with page frames mapping in-
to segments

Object Files 3-71
pagable process
a.outfile | . .6l ~— — ., Page 0 not valid
" textpager” *" r——— address 0x1000
}» -‘-ill . o1 | [.'t xn‘t 3
-\ [_Feadohlyl="_ 51 ' segment
, = mapped pages = | (read-only)
- last text/first data A S i
) { double mapped i L ‘-].
+ = W copy 'on write L E i !
{ -"‘[| - / 1." F - 1
o \ | read
s SE e
| bss | Wwrite
’ theap g
|
| I
| ~ write

Note: this figure is supposed to be
almost the same as 3-4, so I've put the

different stuff in red.

3-72 ObjectFiles

The text and data segments in a QMAGKecaitable are each rounded up

to a full page, so the system can easily map file pages to address space
pages. Thdast page of the datageent is padded out with zeros for BSS
data; if there is more BSS data than fits in the padding area, the a.out head-
er contains the size of the remaining BSS area to allocate.

Although BSD Unix loads programs at location zero (or 0x1000 for
QMAGIC), other ersions of Unix load programs at other addresses.
example, System V for the Motorola 68K series loads at 0x80000000, and
for the 386 loads at 0x8048000. It do¢snatter where the load address

is so long as i$ page aligned, and the linker and operating system can per
manently agree what it is.

Relocation: MS-DOS EXE files

The a.out format is quite adequate for systems that assign a fresh address
space to each process so thareprogram can be loaded at the same log-
ical address.Many systems are not so fortunate. Some load all the pro-
grams into the same address space. Otheesegch program its own ad-
dress space, but dardlways load the program at the same addrg3&.

bit versions of Windows fall into this last category.)

In these casesxecutable files contaimelocation entriesoften calledfix-

ups that identify the places in the program where addresses need to be
modified when the program is loaded. One of the simplest formats with
fixups is the MS-DOS EXE format.

As we sav with the .COM format abee, DOS loads a program into a con-
tiguous chunk of ilable real-mode memorylif the program doesnfit

in one 64K segment, the program has to use explicit segment numbers to
address program and data, and at load time the segment numbers in the
program hge o be fixed up to match the address where the program is ac-
tually loaded. The segment numbers in the file are stored as though the
program will be loaded at location zero, so the fixup action is to add to
evay stored sgment number the base paragraph number at which the pro-
gram is actually loaded. That is, if the program is loaded at location
0x5000, which is paragraph 0x500, a reference to segment 12 is relocated
to be a reference to segment 512. The offsets within the segments don’
change, since the program is relocated as a unit, so the loadert @dedn’

Object Files 3-73

just anything other than the segment numbers.

Each .EXE File starts with a header shown in Figuré=@lowing the
header is somex&ra information of variable length (used foreday load-
ers, self-extracting arches, and other application-specific hackery) and a
list of the fixup addresses in 32 bigegent:ofset format. The fixup ad-
dresses are relaé o the base of the program, so the fixups theneselv
have o be elocated to find the addresses in the program to chakitg.

the fixups comes the program codehere may be more information, ig-
nored by the program loadedfter the code. (In the example belofar
pointers are 32 bits with a 16 bit segment number and 16 bit offset.)

Figure 3-6: Format of .EXE file header

char signature[2] = "M";// magic nunber

short lastsize; // # bytes used in |ast block

short nbl ocks; // nunmber of 512 byte bl ocks

short nreloc; // nunber of relocation entries

short hdrsize; // size of file header in 16 byte paragraphs
short mnalloc; // mnimmextra menmory to allocate

short nmaxalloc; // maximumextra menory to allocate

void far *sp; // initial stack pointer

short checksum // ones conplenent of file sum

void far *ip;// initial instruction pointer

short relocpos; // location of relocation fixup table
short noverlay; // Overlay nunber, 0 for program

char extra[];// extra material for overlays, etc.

void far *relocs[]; // relocation entries, starts at rel ocpos

Loading an .EXE file is only slightly more complicated than loading a
.COM file.

. Read in the headetheck the magic number for validity.

3-74 ObjectFiles

. Find a suitable area of memoryhemni nal | oc andnaxal | oc
fields say the minimum and maximum number xifae paragraphs
of memory to allocate lyend the end of the loaded program.
(Linkers irvariably default the minimum to the size of the pro-
gram’s BSS-like wninitialized data, and the maximum to OxFFFF.)

. Create a PSRhe control area at the head of the program.

. Read in the program code immediately after the .P3Re
nbl ocks andl ast si ze fields define the length of the code.

. Start readingnr el oc fixups atr el ocpos. For each fixup, add
the base address of the program code to the segment number in the
fixup, then use the relocated fixup as a pointer to a program ad-
dress to which to add the base address of the program code.

. Set the stack pointer t®p, relocated, and jump tiop, relocated, to
start the program.

Other than the peculiarities associated witnsented addressing, this is a
pretty typical setup for program loading. In avfeases, different pieces

of the program are relocated fdifently In 286 protected mode, which
EXE files do not support, eachgseent of code or data in theeeutable

file is loaded into a separate segment in the systenhthé segment num-
bers cannot for architectural reasons be consecuiiach protected mode
executable has a table near the beginning listing all of the segments that
the program will require. The system makes a table of actgahes®
numbers corresponding to eaclgreent in the xecutable. Wherprocess-

ing fixups, the system looks up the logical segment number in that table
and replaces it with the actual segment numagrocess more akin to
symbol binding than to relocation.

Some systems permit symbol resolution at load time as well, butwee sa
that topic for Chapter 10.

Symbols and relocation

The object formats weé mnsidered so far are all loadable, that isythe
can be loaded into memory and run directi§ost object files arehload-
able, lut rather are intermediate files passed from a compiler or assembler

Object Files 3-75

to a linker or library managerThese linkable files can be considerably
more complg than runnable ones. Runnable filesvdnap be smple
enough to run on the “bare metadf the computerwhile linkable files
are processed by a layer of software which can do very sophisticated pro-
cessing. Irprinciple, a linking loader could do all of functions of a &nk
as a program was loaded, but fdicéncy reasons the loader is generally
as simple as possible to speed program staif@pnamic linking, which
we cover in chapter 10, mees a bt of the function of the linker into the
loader with attendant performance losgjtlmodern computers arast
enough that the agns from dynamic linking outweigh the performance
penalty.)

We look at five formats of increasing compiigy: relocatable a.out used on
BSD UNIX systems, ELF used on SystenBM 360 objects, thextend-
ed COFF linkable and PEeeutable formats used on 32 biinlows, and
the OMF linkable format used on pre-COFF Windows systems.

Relocatable a.out

Unix systems ha dways used a single object format for both runnable
and linkable files, with the runnable files leaving out the sections of use
only to the linker. The a.out format we ain FHgure 2 includes seral
fields used by the lirde. The sizes of the relocation tables for the #nd

data segments are@n t r si ze anda_dr si ze, and the size of the sym-

bol table is ina_syns. The three sections follothe text and data, Fig-
ure 7.

Figure 3-7: Simplifed a.out

a.out header
text section
data section

text relocation

3-76 ObjectFiles

data relocation
symbol table

string table

Object Files 3-77

~-a.out header

text
| E

data’

text
reloc
==

‘data |
| reloc|

b=t
symbol
table

3-78 ObjectFiles

Relocation entries

Relocation entries seewwo functions. Whera sction of code is relocat-

ed to a different base address, relocation entries mark the places in the
code that hee © be nodified. Ina linkable file, there are also relocation
entries that mark references to undefined symbols, so the linkerskno
where to patch in the symbskalue when the symbol is finally defined.

Figure 8 shows the format of a relocation entiBach entry contains the
address within the text or data section to be relocated, along with informa-
tion that defines what to do. The address is the offset from theney

of the tet or data segment of a relocatable item. The length field says
how long the item is, alues 0 through three mean 1, 2, 4, or (on some ar
chitectures) 8 bytes. The pcrel flag means that this is a “PCvelati
item, that is, it used in an instruction as a relatialdress.

Figure 3-8: Relocation entry format

Draw this with boxes
-- four byte address

-- three byte index, one bit pcrel flag, 2 bit length field, one
bit extern flag, four spare bits

Object Files 3-79

Ili_ - '|- E .ﬁ ; _.l‘. " 1
o address

index

spare

-

. length
port B

The extern flag controls the interpretation of the xnfileld to determine
which sgment or symbol the relocation refers to. If the extern flagfjs of
this is a plain relocation item, and the irdells which segment (text, da-

3-80 ObjectFiles

ta, or BSS) the item is addressing. If teen flag is on, this is a refer
ence to an external symbol, and the mde the symbol number in the
file’s symbol table.

This relocation format is adequate for most machine architectunes, b
some of the more compl®nes need extra flag bits to indicate, e.g., three-
byte 370 address constants or high amdHalf constants on the SPARC.

Symbols and strings

The final section of an a.out file is the symbol talf&ach entry is 12
bytes and describes a single symbol, Figure 9.

Figure 3-9: Symbol format

Draw this with boxes, too:
- four byte name offset

- one byte type

- one spare byte

- two byte debugger info

- four byte value

Object Files 3-81

name offset
1, il = - cdebug info

e,

" — wvalue

Unix compilers permit arbitrarily long identifiers, so the name strings are
all in a string table that folles the symbol table. The first item in a sym-
bol table entry is the tdfet in the string table of the null-terminated name
of the symbol. In the type byte, if thewdoit is set the symbol isx¢éernal

(a misnomerit'd better be called global, visible to other moduleNpn-
external symbols are not needed for linking but can be used ggets.

The rest of the bits are the symbol type. The most important types in-
clude:

. text, data, or bss A symbol defined in this module. External bit
may or may not be onValue is the relocatable address in the mod-
ule corresponding to the symbol.

3-82 ObjectFiles

. abs An absolute non-relocatable symbol. (Rare outside ofigeb
ger info.) External bit may or may not be oWalue is the absolute
value of the symbol.

. undefined A symbol not defined in this moduld=xternal bit must
be on. Value is usually zero, but see the “common block hack’
below.

These symbol types are adequate for older languages such as C and
Fortran and, just barelyor C++.

As a special case, a compiler can use an undefined symbol to request that
the linker resery a Hock of storage by that symbslame. Ifan unde-

fined external symbol has a non-zero value, tahtevis a hint to the link-

er hav large a block of storage the program expects the symbol to address.
At link time, if there is no definition of the symbol, the linker creates a
block of storage by that name in the BS§nsent with the size being the
largest hint value found in grof the linked modules. If the symbol is de-
fined in ay module, the linker uses the definition and ignores the size
hints. This“ common block hack’'supports typical (albeit non standard
conformant) usage of Fortran common blocks and uninitializextésral

data.

a.out summary

The a.out format is a simple andeetive me for relatvely simple sys-
tems with paging. It has fallen out @ivior because it doeshéasily sup-
port for dynamic linking. Also, a.out doessupport C++, which requires
special treatment of initializer and finalizer code, very well.

Unix ELF

The traditional a.out format served the Unix community f@r @ decade,

but with the adent of Unix System VAT&T decided that it needed some-
thing better to support cross-compilation, dynamic linking and other mod-
ern system features. Early versions of System V used CC#tRmon
Object File Format, which as originally intended for cross-compiled em-
bedded systems and ditdmwork all that well for a time-sharing system,
since it couldrt support C++ or dynamic linking withoutxeensions. In
later versions of System, YOFF was superseded by ElHxecutable and

Object Files 3-83

Linking Format. ELFhas been adopted by the popular irare Linux

and BSD variants of Unix as well. ELF has an associated debugging for
mat called WVARF which we visit in Chapter 5. In this discussion we
treat the 32 bit version of ELFThere are 64 bit variants that extend sizes
and addresses to 64 bits in a straightforward way.

ELF files come in three slightly dérent flavors: relocatable, »ecutable,

and shared object. Relocatable files are created by compilers and assem-
blers lut need to be processed by the linker before runnibgcutable

files hare dl relocation done and all symbols resadv except perhaps
shared library symbols to be resolved at runtime. Shared objects are
shared libraries, containing both symbol information for the linker and di-
rectly runnable code for runtime.

ELF files hae an unusual dual nature, Figure 10. Compilers, assemblers,
and linkers treat the file as a set of logical sections described by a section
header table, while the system loader treats the file as a set of segments de-
scribed by a program header tabke single segment will usually consist

of several sections.For example, a “loadable read-onlysegment could
contain sections forxecutable code, read-only data, and symbols for the
dynamic linler. Relocatable files ha sction tables,»ecutable files hae
program header tables, and shared objeats bath. Thesections are in-
tended for further processing by a kmkwhile the segments are intended

to be mapped into memory.

Figure 310: Two views of an ELF file

linking view and execution view, adapted from fig 1-1 in
Intel TIS document

ObjectFiles

3-84
linkable executable
sections segments

_ELF 'headqr

(optional, | program header | describes segments
ignored) | table A

]

sections | | ..f-segments

describes = section header (optional,
sections ‘table ignored)

ELF files all start with the ELF headd&iigure 11. The header is designed

to be decodableven on nachines with a different byte order from the
file’s target architecture. The first four bytes are the magic number identi-
fying an ELF file, followed by three bytes describing the format of the rest
of the header Once a program has read théass and byt eor der

flags, it knows the byte order and word size of the file and can do the nec-

Object Files 3-85

essary byte swapping and size waeions. Otheffields prwide the size
and location of the section header and program hgageesent,

Figure 311: ELF header

char magic[4] = "\177ELF";// magi c numnber

char class; // address size, 1 = 32 bit, 2 = 64 bit
char byteorder; // 1 =1little-endian, 2 = big-endian
char hversion; // header version, always 1

char pad[9];

short filetype; // file type: 1 rel ocatabl e, 2 = executabl e,
/1 3 = shared object, 4 = core inmage

short archtype; // 2 = SPARC, 3 = x86, 4 = 68K, etc.

int fversion;// file version, always 1

int entry; // entry point if executable

int phdrpos; // file position of program header or 0

int shdrpos; // file position of section header or O

int flags; // architecture specific flags, usually O

short hdrsize; // size of this ELF header

short phdrent; // size of an entry in program header

short phdrcnt; // nunber of entries in program header or 0

short shdrent; // size of an entry in section header

short phdrcnt; // nunber of entries in section header or 0O

short strsec; // section nunber that contains section name strings

Relocatable files

A relocatable or shared object file is considered to be a collection of sec-
tions, defined in section headers, Figure 12. Each section contains a single
type of information, such as program code, read-only or read-write data,
relocation entries, or symbol&very symbol defined in the module is de-
fined relatve o a ®ction, so a proceduseitry point would be relate

the program code section that contains that proceslarde. Thereare

also two pseudo-sectionSHN_ABS (number Oxff 1) which logically con-

3-86

ObjectFiles

tains absolute non-relocatable symbols, &idN COMMON (number
0xfff2) that contains uninitialized data blocks, the descendant of the a.out
common block hack. Section zero isvays a null section, with an all-ze-

ro section table entry.

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

Figure 3-12: Section header

sh_nane; // name, index into the string table
sh_type; // section type

sh_flags; // flag bits, bel ow

sh_addr; // base menory address, if |oadable, or zero
sh _offset; // file position of beginning of section
sh size; [/ size in bytes

sh_link; // section nunber with related info or zero
sh_info; // nore section-specific info

sh_align; // alignnent granularity if section is noved
sh_entsize; // size of entries if section is an array

Section types include:

PROGBI TS: Program contents including code, data, andudeler
info.

NCBI TS: Like PROGBI TS but no pace is allocated in the file it-
self. Usedor BSS data allocated at program load time.

SYMI'AB and DYNSYM Symbol tables, described in more detail
later The SYMTAB table contains all symbols and is intended for
the regular linkr, while DYNSYMis just the symbols for dynamic
linking. (Thelatter table has to be loaded into memory at runtime,
so it's kept as small as possible.)

STRTAB: A string table, analogous to the one in a.out fildslike

a.out files, ELF files can and often do contain separate string tables
for separate purposes, e.g. section names, regular symbol names,
and dynamic linker symbol names.

Object Files 3-87

REL andRELA: Relocation information.REL entries add the relo-
cation value to the base value stored in the code or data, while
RELA entries include the base value for relocation in the relocation
entries themsebs. (for historical reasons, x86 objects UREL
relocation and 68K objects uRELA.) Thereare a bunch of relo-
cation types for each architecture, similar to (andvdérirom) the
a.out relocation types.

DYNAM C and HASH: Dynamic linking information and the run-
time symbol hash table.

There are three flag bits usedl:LOC, which means that the sec-
tion occupies memory when the program is loadd, TE which
means that the section when loaded is writable,E&(tCl NSTR
which means that the section contairecetable machine code.

A typical relocatable>ecutable has about a dozen sectiohtany of the
section names are meaningful to the dinkvhich looks for the section
types it knows about for specific processing, while either discarding or
passing through unmodified sections (depending on flag bits) that it
doesnt know about.

Sections include:

.t ext which is type PRGBITS with attributes ALLOC+EX-
ECINSTR. Its the equraent of the a.out text segment.

.data which is type PROGBITS with attuites AL-
LOC+WRITE. It’s the equraent of the a.out data segment.

. rodat a which is typePROGBI TS with attribute ALLOC. It’s
read-only data, hence no WRITE.

. bss which is type NOBITS with attrites ALLOC+WRITE.
The BSS section takes no space in the file, hence NOBITS, but is
allocated at runtime, hence ALLOC.

.rel.text, .rel.data, and.rel.rodata, each which is
type REL or RELA. The relocation information for the corre-
sponding text or data section.

3-88 ObjectFiles

. .init and.fini, each type PROGBITS with attributes AL-
LOC+EXECINSTR. Thesare similar to. t ext , but are code to
be executed when the program starts up or terminates, regggcti
C and Fortran dort’need these, Ui the/'re essential for C++ which
has global data withxecutable initializers and finalizers.

. .synt ab, and. dynsymtypes SYMRB and DYNSYM respec-
tively, regqular and dynamic linker symbol tables. The dynamic
linker symbol table is ALLOC set, sincesitoaded at runtime.

. .strtab, and . dynstr both type STRAB, a table of name
strings, for a symbol table or the section names for the section
table. Thedynstr section, the strings for the dynamic lark
symbol table, has ALLOC set sincesitbaded at runtime.

There are also some specialized sectiores. lgot and. pl t, the
Global Offset &ble and Procedure Linkage Table used for dynam-
ic linking (covered in Chapter 10), debug which contains sym-
bols for the debgger, .| i ne which contains mappings from
source line numbers to object code locations again for thageeb
ger, and . comment which contains documentation strings, usual-
ly version control version numbers.

An unusual section type is nt er p which contains the name of a pro-
gram to use as an interpretéf this section is present, rather than running
the program directlythe system runs the interpreter and passes it the ELF
file as an ggument. Unixhas for man years had self-running interpreted
text files, using

#! /path/to/interpreter

as the first line of the file. ELFxtends this facility to interpreters which
run non-text programs. In practice this is used to call the run-time dynam-
ic linker to load the program and link inyarequired shared libraries.

The ELF symbol table is similar to the a.out symbol taltileconsists of
an array of entries, Figure 13.

Figure 313: ELF symbol table

Object Files 3-89

int name; // position of name string in string table
int value; // synbol value, section relative in reloc,
/] absolute in executable
int size; // object or function size
char type:4; // data object, function, section, or special case file
char bind:4; // local, global, or weak
char other; // spare
short sect; // section nunmber, ABS, COVMON or UNDEF

The a.out symbol entry is fleshed out with @ f@ore fields. The size
field tells hav large a data object is (particularly for undefined BSS, the
common block hack an.) A symbols binding can be local, just visible
in this module, global, visibleverywhere, or weak A weak symbol is a
half-hearted global symbol: if a definition isadable for an undefined
weak symbol, the linker will use it, but if not the value defaults to zero.

The symbob type is normally data or function. There is a section symbol
defined for each section, usually with the same name as the section itself,
for the benefit of relocation entries. (ELF relocation entries are allveslati

to symbols, so a section symbol is necessary to indicate that an item is re-
located relatie o one of the sections in the fileA file entry is a pseudo-
symbol containing the name of the source file.

The section number is the section refatio which the symbol is defined,
e.g., function entry points are defined refatio . t ext. Three special
pseudo-sections also appe®NDEF for undefined symbols, ABS for
non-relocatable absolute symbols, and COMMON for common blocks not
yet allocated.(The value of a COMMON symbol\gs the required align-
ment granularityand the size gies the minimum size. Once allocated by
the linkef COMMON symbols mge into the. bss section.)

A typical complete ELF file, Figure 14, contains quite \a $ections for
code, data, relocation information, letksymbols, and debugger symbols.
If the file is a C++ program, it will probably also containni t, . fi ni,
.rel.init,and.rel.fini sections as well.

3-90

ObjectFiles

Figure 3-14: Sample relocatable ELF file

ELF header
ext

.data
.rodata
.bss

.Ssym
.rel.text
.rel.data
.rel.rodata
dine
.debug
.strtab

(section table, not considered to be a section)

Object Files 3-91

| _ELF header | - {(fiot considered sections)
(segment table) -

text

. .data

.sym
1 .re'l.text
rel .daﬁ:a_

-~ .rel.rodata

! | ...I_ine
F?debug_.
gt
| -s;i;:tion t'able:. “(not considered a section)

3-92 ObjectFiles

ELF executable files

An ELF executable file has the same general format as a relocatable ELF
but the data are arranged so that the file can be mapped into memory and
run. Thefile contains a program header that feléothe ELF header in the

file. Theprogram header defines the segments to be mapiesl.pro-

gram headeiFigure 15, is an array of segment descriptions.

Figure 315: ELF pogram header

nt type; // |oadable code or data, dynanic linking info, etc.

nt offset; // file offset of segnent

nt virtaddr; // virtual address to map segnent

nt physaddr; // physical address, not used

nt filesize; // size of segnent in file

nt mensize; // size of segment in nmenory (bigger if contains BSS)
nt flags; // Read, Wite, Execute bits

nt align; // required alignnment, invariably hardware page size

An executable usually has only a handful of segments, a read-only one for
the code and read-only data, and a read-write one for read/writeAlata.

of the loadable sections are padkinto the appropriate segments so the
system can map the file with one ootaperations.

ELF files extend the “header in the address spagek used in QMASIC

a.out files to mak the executable files as compact as possible at the cost of
some slop in the address spaéesegment can start and end at arbitrary

file offsets, but the virtual starting address for the segment musttia

same lov bits modulo the alignment as the starting offset in the file, i.e,
must start in the same offset on a page. The system maps in the entire
range from the page where thegsent starts to the page where thg-se
ment ends,\en if the sgment logically only occupies part of the first and
last pages mapped. Figure 16 shows a typical segment arrangement.

Object Files 3-93

Figure 316: ELF loadable segments

File offset | Load address yjpe
ELF header 0 0x8000000
Program header 0x40 0x8000040

Read only text
(size 0x4500) 0x100 0x8000100 | LOAD, Read/Execute

Read/write data
(file size 0x2200, 0x4600 0x8005600 | LOAD, Read/Write/Execute
memory size 0x3500

non-loadable info and optional section headers

174

The mapped text segment consists of the ELF hepdgram headeiend
read-only t&t, since the ELF and program headers are in the same page as
the beginning of the x. Theread/write lot the data segment in the file
starts immediately after the textgseent. Thepage from the file is
mapped both read-only as the last page of tktessgment in memory and
copy-on-write as the first page of the datgmeent. Inthis example, if a
computer has 4K pages, and in axeceitable file the text ends at
0x80045f, then the data starts at 0x8005600. The file page is mapped into
the last page of the text segment at location 0x8004000 where the first
0x600 bytes contain thextefrom 0x8004000-0x80045ff, and into the data
seggment at 0x8005000 where the rest of the page contain the initial con-
tents of data from 0x8005600-0x80056ff.

The BSS section again is logically continuous with the end of the read
write sections in the data segment, in this case 0x1300 bytes, fére dif
ence between the file size and the memory site last page of the data
segment is mapped in from the file, but as soon as the operating system
starts to zero the BSS segment, theyemp-write system makes a yaie

copy of the page.

3-94 ObjectFiles

If the file contains i nit or.fini sections, those sections are part of
the read only text segment, and the linker inserts code at the entry point to
call the.init section code before it calls the main program, and the

. fini section code after the main program returns.

An ELF shared object contains all the bageg of a relocatable and axt e
ecutable file. It has the program header table at the beginning, followed by
the sections in the loadablegseents, including dynamic linking informa-
tion. Following sections comprising the loadablgmsents are the relocat-
able symbol table and other information that thedmhkeeds while creat-

ing executable programs that refer to the shared object, with the section
table at the end.

ELF summary

ELF is a moderately compldormat, but it serves its purposes wdtls a
flexible enough relocatable format to support C++, while beingfaesit
executable format for a virtual memory system with dynamic linking, and
makes it easy to mapxecutable pages directly into the program address
space. ltalso permits cross-compilation and cross-linking from one plat-
form to anotherwith enough information in each ELF file to identify the
target architecture and byte order.

IBM 360 object format

The IBM 360 object format was designed in the early 1960s, but remains
in use today It was originally designed for 80 column punch cardsg, b

has been adapted for disk files on modern systems. Each object file con-
tains a set of control sections (csects), which are optionally nhamed sepa-
rately relocatable chunks of code and/or datgpically each source rou-

tine is compiled into one csect, or perhaps one csect for code and another
for data. A csects mame, if it has one, can be used as a symbol that ad-
dresses the ening of the csect; other types of symbols include those
defined within a csect, undefined external symbols, common blocks, and a
few others. Eachsymbol defined or used in an object file is assigned a
small integer External Symbol ID (ESID). An object file is a sequence of
80 byte records in a common format, Figure The first byte of each
record is 0x02, aalue that marks the record as part of an object (ie.
record that starts with a blank is treated as a command by the.)link

Object Files 3-95

Bytes 2-4 are the record type, TXT for program code ott";t&€SD for an
external symbol directory that defines symbols and ESIDs, RLD for Relo-
cation Directoryand END for the last record that also defines the starting
point. Therest of the record up through byte 72 is specific to the record
type. Bytes73-80 are ignored. On actual punch cardy there usually a
sequence number.

An object file starts with some ESD records that define the csects and all
symbols, then the TXT records, the RLD records and the ENi&re’s

quite a lot of flexibility in the order of the recordSeveral TXT records

can redefine the contents of a single location, with the last one in the file
winning. This made it possible (and not uncommon) to punchva fe

“ patch’ cards to stick at the end of an object deck, rather than reassem-
bling or recompiling.

Figure 317: IBM object recad format

char flag = 0x2;

char rtype[3]; // three letter record type

char data[68]; // format specific data

char seq[8]; // ignored, usually sequence nunbers

ESD records

Each object file starts with ESD records, Figure 18, that define the csects
and symbols used in the file angegihem all ESIDs.

Figure 318: ESD format

char flag = 0x2; // 1

char rtype[3] = "ESD';// 2-4 three letter type

char padl[6];

short nbytes; // 11-12 nunber of bytes of info: 16, 32, or 48
char pad?[2];

short esid; // 15-16 ESID of first synbol

3-96 ObjectFiles

{ [l 17-72, up to 3 synbols

char nane[8] ; /1 bl ank padded synmbol name
char type; /1 synbol type
char base[3]; /1l csect origin or |abel offset

char bits; [l attribute bits
char len[3]; /1 length of object or csect ESID

Each ESD records defines up to three symbols with sequential ESIDs.
Symbols are up to eight EBCDIC characters. The symbol types are:

. SD and PC: Section Definition or Rete Code, defines a csect.
The csect origin is the logical address of the beginning of the csect,
usually zero, and the length is the length of the csect. Theu&dtrib
byte contains flags saying whether the csect uses 24 or 31 bit pro-
gram addressing, and whether it needs to be loaded into a 24 or 31
bit address space. PC is a csect with a blank name; names of
csects must be unique within a program there can be multiple
unnamed PC sections.

. LD: label definition. The base is the labsldfset within its csect,
the len field is the ESID of the csect. No attribute bits.

. CM: common. Len is the length of the common block, other fields
are ignored.

. ER and WX: external reference and weakternal. Symbolge-

fined elswhere. Thdinker reports an error if an ER symbol isn’
defined elsewhere in the progranot lan undefined WX is not an
error.

. PR: pseudorgister a snall area of storage defined at link tim# b
allocated at runtimeAttribute bits gve the required alignment, 1
to 8 bytes, and len is the size of the area.

Object Files 3-97

TXT records

Next come text records, Figure 19, that contain the program code and data.
Each text record defines up to 56 contiguous bytes within a single csect.

Figure 3-19: TXT format
char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad;
char 1oc[3]; /1 6-8 csect relative origin of the text

char pad[2];

short nbytes; // 11-12 nunber of bytes of info
char pad[2];

short esid; // 15-16 ESID of this csect

char text[56]; [l 17-72 data

RLD records

After the text come RLD records, Figure 20, each of which contains a se-
guence of relocation entries.

Figure 320: RLD format

char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad[6];

short nbytes; // 11-12 nunber of bytes of info
char pad[7];

{ [l 17-72 four or eight-byte relocation entries
short t_esid,; /] target, ESID of referenced csect or synbo
/1 or zero for CXD (total size of PR defs)
short p_esid; /'l pointer, ESID of csect with reference

3-98 ObjectFiles

char flags; [// type and size of ref,
char addr[3]; /'l csect-relative ref address

}

Each entry has the ESIDs of the target and the pomfixg byte, and the
csect-relatie address of the pointeiThe flag byte has bits giving the type

of reference (code, data, PR, or CXD), the length (1, 2, 3, or 4 bytes), a
sign bit saying whether to add or subtract the relocation, and a "same" bit.
If the "same" bit is set, the next entry omits the #&5IDs and uses the
same ESIDs as this entry.

END records

The end record, Figure 21,vgs the starting address for the program, ei-
ther an address within a csect or the ESID of an external symbol.

Figure 3-21: END format
char flag = 0x2; // 1

char rtype[3] = "END';// 2-4 three letter type

char pad;

char | oc[3]; /1 6-8 csect relative start address or zero
char pad[6];

short esid; // 15-16 ESID of csect or synbol

Summary

Although the 80 column records are quite dated, the IBM object format is
still surprisingly simple and figble. Extremelysmall linkers and loaders

can handle this format; on one model of 360, | used an absolute loader that
fit on a single 80 column punch card and could load a program, interpret-
ing TXT and END records, and ignoring the rest.

Object Files 3-99

Disk based systems either store object files as card images, orarsa v
version of the format with the same record types but much longer records
without sequence numbers. The linkers for DOS (I8Nghtweight oper

ating system for the 360) produce a simplified output format withfectef
one csect and a stripped down RLD without ESIDs.

Within object files, the ingidual named csects permit a programmer or
linker to arrange the modules in a program as desired, putting all the code
csects togethefor exkample. Themain places this format shows its age is

in the eight-character maximum symbol length, and no type information
about individual csects.

Microsoft Portable Executable format

Microsoft's Windows NT has etremely mixed heritage including earlier
versions of MS-DOS and Wdows, Digital's VAX VMS (on which mag

of the programmers hadonked), and Unix System V (on which maaf

the rest of the programmers hadrked.) NTs format is adapted from
COFF a file format that Unix versions used after a.out but before. ELF
We'll take a bok at PE and, where it é8fs from PE, Microsof§ version

of COFF.

Windowns developed in an underpeered environment with sho proces-

sors, limited RAM, and originally without haréwne paging, so thereas

always an emphasis on shared libraries tees@emory and ad-hoc tricks

to improve performance, some of which are apparent in the PE/COFF de-
sign. MostWindowns executables contaimesources a general term that
refers to objects such as cursors, icons, bitmaps, menus, and fonts that are
shared between the program and the GAIPE file can contain a re-
source directory for all of the resources the program code in that file uses.

PE eecutable files are intended for a paged environment, so pages from a
PE file are usually be mapped directly into memory and run, muelanik

ELF executable. PES can be either EXE programs or DLL shared li-
braries (known as dynamic link libraries). The format of the tsvthe

same, with a status bit identifying a PE as one or the.oHa&mh can con-

tain a list of exported functions and data that can be used by other PE files
loaded into the same address space, and a list of imported functions and
data that need to be resolved from othersRiEbad time. Each file con-

3-100 ObjecFiles

tains a set of chunks analogous to ELF segments thatvagously been
called sections, segments, and objede all them sections here, the
term that Microsoft n@ uses.

A PE file, Figure 22, starts with a small DOS .EXE file that prints out
something lilke "This program needs Microsoft iddows." (Microsofts
dedication to certain kinds of backward compatibility is impressi A
previously unused field at the end of the EXE header points to the PE sig-
nature, which is followed by the file header which consists of a COFF sec-
tion and the‘optional” headey which despite its name appears in all PE
files, and a list of section headers. The section headers descritaithe v
ous sections of the fileA COFF object file starts with the COFF header
and omits the optional header.

Figure 3-22: Microsoft PE and COFF file

DOS header (PE only)

DOS program stub (PE only)

PE signature (PE only)

COFF header

Optional header (PE only)

Section table

Mappable sections (pointed to from section table)

COFF line numbers, symbols, debug info (optional in PE
File)

Object Files 3-101

DOS header |

See callouts in chapter
for the captions for all
these boxes.

B o Sl
e

Figure 23 shas the PE, COFFRnd "optional" headers. The COFF header
describes the contents of the file, with the most important values being the
number of entries in the section table, The "optional" header contains
pointers to the most commonly used file sectioAddresses are allejpt

as ofsets from the place in memory that the program is loaded, also called
Relative Mirtual Addresses orVAs.

3-102 ObjecFiles

Figure 3-23: PE and COFF header

PE signature
char signature[4] = "PE\O\0";// magi c number, al so shows byte order

COFF header
unsi gned short Machine;// required CPU, 0x14C for 80386, etc.
unsi gned short Nunber Of Sections;// creation tine or zero
unsi gned | ong Ti neDat eSt anp; // creation time or zero
unsi gned | ong Poi nt er ToSynbol Tabl e;// file offset of synbol table in COFF or
unsi gned | ong Nunmber Of Synbol s;// # entries in COFF synbol table or zero
unsi gned short SizeOf Optional Header;// size of the foll ow ng optional header
unsi gned short Characteristics;// 02 = executable, 0x200 = nonrel ocat abl e,
/1 0x2000 = DLL rather than EXE

Optional header that follows PE headw®t present in COFF objects
/1 COFF fields

unsi gned short Magic;// octal 413, froma.out ZMAG C
unsi gned char Maj or Li nker Ver si on;

unsi gned char M nor Li nker Ver si on;

unsi gned | ong Si zeOrF Code; // .text size

unsi gned | ong SizeOlnitializedData;// .data size

unsi gned | ong SizeOUninitializedData;// .bss size

unsi gned | ong AddressOf Ent ryPoi nt;// RVA of entry point
unsi gned | ong BaseOf Code; // RVA of .text

unsi gned | ong BaseO'Data;// RVA of .data

// additional fields.

unsi gned | ong | mmgeBase;// virtual address to map begi nning of file

unsi gned | ong Secti onAlignment;// section alignment, typically 4096, or 64K
unsi gned | ong FileAlignment;// file page alignnent, typically 512

unsi gned short Maj or Oper at i ngSyst enVer si on;

unsi gned short M nor Qper at i ngSyst enVer si on;

unsi gned short Maj orl mageVer si on;

unsi gned short M norl mageVer si on;

unsi gned short Maj or Subsyst enVer si on;

unsi gned short M nor Subsyst enVer si on;

unsi gned | ong Reservedl;

Object Files

3-103

unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned short
/1 3 = Wndows
unsi gned short
/1 1 = process
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
/1 follow ng pa
{
unsi gned | ong
unsi gned | ong

}

Directories are, in
Export Directory
Import Directory

SizeOrImage;// total size of mappable i mage, rounded to Sectio
Si zeOXf Headers; // total size of headers up through section tab
CheckSum // often zero

Subsystem // required subsystem 1 = native, 2 = Wndows GU
non-GUJ, 5 = 0S8/2, 7 = PCsSI X

D | Characteristics;// when to call initialization routine (obs
start, 2 = process end, 4 = thread start, 8 = thread end

Si zeX St ackReserve;// size to reserve for stack

Si zeOFr StackConmit;// size to allocate initially for stack

Si zeOF HeapReserve;// size to reserve for heap

Si zeOf HeapConmit;// size to allocate initially for heap
Loader Fl ags;// obsol ete

Nunber Of RvaAndSi zes; // nunber of entries in followi ng i mrage da
r is repeated once for each directory

Virtual Address;// relative virtual address of directory
Si ze;

order:

Resource Directory
Exception Directory

Security Directory

Base Relocation Table

Debug Directory

Image Description String
Machine specific data

Thread Local Storage Directory
Load Configuration Directory

Each PE file is created in a way that makes it straigh#fiahfor the sys-

tem loader to map it into memor¥ach section is physically aligned on a
disk block boundary or greater (the filealign value), and logically aligned
on a memory page boundary (4096 on the x86.) Thelickeates a PE

file for a specific target address at which the file will be mapped (image-

3-104 ObjecFiles

base). Ifa chunk of address space at that addressataale, as it almost
always is, no load-time fixups are needdd.a fav cases such as the old
win32s compatbility system target addresses aewailable so the loader

has to map the file somewhere else, in which case the file must contain re-
location fixups in the .reloc section that tell the loader what to change.
Shared DLL libraries also are subject to relocation, since the address at
which a DLL is mapped depends on whateady occupying the address
space.

Fdlowing the PE header is the section table, an array of entreEdire
24.

Figure 3-24: Section table

/1 array of entries

unsi gned char Nane[8] ;// section nane in ASCl

unsi gned | ong Virtual Size;// size mapped into nenory

unsi gned | ong Virtual Address;// nenory address relative to i nage base

unsi gned | ong Si zeOr RawbDat a; // physical size, muntiple of file alignnment

unsi gned | ong Poi nt er ToRawbDat a; // file offset

/1 next four entries present in COFF, present or 0 in PE

unsi gned | ong Poi nt er ToRel ocations;// offset of relocation entries

unsi gned | ong Poi nt er ToLi nenunbers;// offset of |line nunber entries

unsi gned short Nunber Of Rel ocations;// nunber of relocation entries

unsi gned short Nunber O Li nenunbers;// nunber of |ine nunber entries

unsi gned | ong Characteristics;// 0x20 = text, 0Ox40 = data, 0x80 = bss, 0x200
/1 0x800 = don’t link, 0x10000000 = shared,
/1 0x20000000 = execute, 0x40000000 = read, 0x80000000 = write

Each section has both a file address and size (PaRaxData and Size-
OfRawData) and a memory address and size (VirtualAddress et
Size) which aren’necessarily the samerhe CPUS page size is often
larger than the disk’ Hock size, typically 4K pages and 512 byte disk
blocks, and a section that ends in the middle of a page needvet ha
blocks for the rest of the page allocated, saving small amounts of disk

Object Files 3-105

space. Eackection is marked with the hardve permissions appropriate
for the pages, e.g. reackeeute for code and read+write for data.

PE special sections

A PE file includes .text, .data, and sometimes .bss sectiana likix ex-
ecutable (usually under those namesaut)fas well as a lot of MWdows-
specific sections.

Exports A list of the symbols defined in this module and visible to
other modules. EXE files typicallyxport no symbols, or maybe
one or tw for delugging. DLLsexport symbols for the routines
and data that tlyeprovide. Inkeeping with Wndows space sang
tradition, eported symbols can be references via smallgere
called export ordinals as well as by names. The exports section
contains an array of theVRs of the exported symbols. It also
contains tw parallel arrays of the name of the symbol (as tH& R

of an ASCII string), and the export ordinal for the symbol, sorted
by string name.To look up a symbol by name, perform a binary
search in the string name table, then find the entry in the ordinal
table in the position corresponding to the found name, and use that
ordinal to ind& the array of RAs. (Thisis arguably faster than it-
erating @er an aray of three-word entries.) Exports can also be

“ forwarders’ in which case the VA points to a string naming the
actual symbol which is found in another library.

Imports The imports table lists all of the symbols that need to be
resoled at load time from DLLsThe linker predetermines which
symbols will be found in which DLLs, so the imports table starts
with an import directoryconsisting of one entry per referenced
DLL. Eachdirectory entry contains the name of the DLL, and par
allel arrays one identifying the required symbols, and the other be-
ing the place in the image to store the symladli®. Theentries in

the first value can be either an ordinal (if the high bit is set), or a
pointer to a name string preceded by a guess at the ordinal to speed
up the search. The second array contains the place to store the
symbol’s value; if the symbol is a procedure, the énkvill already

have aljusted all calls to the symbol to call indirectly via that loca-

3-106 ObjecFiles

tion, if the symbol is data, references in the importing module are
made using that location as a pointer to the actual d&eme
compilers provide the indirection automaticaliyhers require e

plicit program code.)

. ResourcesThe resource table isganized as a tree. The structure
supports arbitrarily deep treesjtbn practice the tree is threesle
els, resource type, name, and langua@@anguage here means a
natural language, this permits customizingogitables for spe&ks
of languages other than EnglistEach resource can veather a
name or and number® typical resource might be type DIALOG
(Dialog box), name ABOUT (the About This Program box), lan-
guage English.Unlike symbols which hae ASCIlI names, re-
sources ha Unicode names to support non-English languages.
The actual resources are chunks of binary data, with the format of
the resource depending on the resource type.

. Thread Local Stage Windows supports multiple threads of-e
ecution per process. Each thread cavehits ovn private storage,
Thread Local Storage or TLS. This section points to a chunk of
the image used to initialize TLS when a thread starts, and also con-
tains pointers to initialization routines to call when each thread
starts. Generallpresent in EXE but not DLL files, becausenw
dows doesrt’ dlocate TLS storage when a program dynamically
links to a DLL. (See Chapter 10.)

. Fixups If the executable is meed, it is moved as a mit so all fix-
ups hae the same value, the thfence between the actual load ad-
dress and the target address. The fixup table, if present, contains
an array of fixup blocks, each containing the fixups for one 4K
page of the mappedkecutable. (Ercutables with no fixup table
can only be loaded at the linked target address.) Each fixup block
contains the base\R of the page, the number of fixups, and an ar
ray of 16 bit fixup entries. Each entry contains in the 12 hts
the offset in the block that needs to be relocated, and in the high 4
bits the fixup type, e.g., add 32 bit value, adjust high 16 bitsaor lo
16 bits (for MIPS architecture)This block-by-block scheme &z
considerable space in the relocation table, since each entry can be

Object Files 3-107

squeezed to tavbytes rather than the 8 or 12 bytes the ELF\equi
alent takes.

Running a PE executable
Starting a PE»&cutable process is a reladly straightforward procedure.

. Read in the first page of the file with the DOS heaHE&r leader,
and section headers.

. Determine whether the target area of the address spa@dable,
if not allocate another area.

. Using the information in the section headers, map all of the sec-
tions of the file to the appropriate place in the allocated address
space.

. If the file is not loaded into its target address, apply fixups.

. Go through the list of DLLs in the imports section and loagl an
that arert already loaded. (This process may be rewerki

. Resole dl the imported symbols in the imports section.

. Create the initial stack and heap using values from the PE header.

. Create the initial thread and start the process.

PE and COFF

A Windows COFF relocatable object file has the same COFF file header
and section headers asFE, but the structure is more similar to that of a
relocatable ELF file. COFF files darflavethe DOS header nor the op-
tional header following the PE head&ach code or data section also-car
ries along relocation and line number informatigihe line numbers in

an EXE file, if ay, ae collected in in a debug section not handled by the
system loadey COFFobjects hae sction-relatve relocations, lie B_F

files, rather than YA relative relocations, and wrariably contain a symbol
table with the symbols needed. COFF files from language compilers typi-
cally do not contain gnresources, rathethe resources are in a separate
object file created by a specialized resource compiler.

3-108 ObjecFiles

COFF files can also ke veal other section types not used in PEhe

most notable is the .dree#i ®ction which contains text command strings
for the linker. Compilers usually use .dree# © tell the linker to search

the appropriate language-specific libraries. Some compilers including
MSVC also include linker direates to eport code and data symbols
when creating a DLL. (This mixture of commands and object code goes
way back; IBM linkers accepted mixed card decks of commands and ob-
ject files in the early 1960s.)

PE summary

The PE file format is a competent format for a linearly addressed operating
system with virtual memorywith only small amounts of historical bag-
gage from its DOS heritage. It includes some extra features such as ordi-
nal imports and»gorts intended to speed up program loading on small
systems, but of debatablefexftiveness on modern 32 bit systemBhe
earlier NE format for 16 bit ggnented recutables was far more compli-
cated, and PE is a definite impement.

Intel/Microsoft OMF files

The penultimate format we look at in this chapter is one of the oldest for
mats still in use, the Intel Object Modulerfat. Inteloriginally defined
OMF in the late 1970s for the 808@&ver the years a variety oemdors,
including Microsoft, IBM, and Phar Lap (who wrote ary widely used

set of 32 bit extension tools for DOS), defined their owteresions. The
current Intel OMF is the union of the original spec and most ofxtene
sions, minus a fe extensions that either collided with othextensions or
were neer used.

All of the formats we/e ®en so far are intended for environments with
random access disks and enough RAM to do compiler and linker process-
ing in straightforward wys. OMFdates from the early days of micropro-
cessor declopment when memories were {tirand storage was often
punched paper tapes. As a result, OMkddis the object file into a series

of short records, Figure 25. Each record contains a type byte-byte
length, the contents, and a checksum byte that makes the byte-wise sum of
the entire record zerdaPaper tape equipment had no built-in error detec-
tion, and errors due to dust or siigsarts were not rare.) OMF files are

Object Files 3-109

designed so that a lisk on a machine without mass storage can do its job
with a minimum number of passegeothe files. Usually 1 1/2 passes do

the trick, a partial pass to find the symbol names which are placed near the
front of each file, and then a full pass to do the linking and produce the
output.

Figure 325: OMF recod format

picture of

-- type byte

-- two-byte length

-- variable length data
-- checksum byte

- —— . i S E
Jl'ﬂl—--_ _— - i S el u

I
‘3'?‘3' |gngth data checksum

OMF is greatly complicated by the need to deal with the 808G aerted
architecture. Onef the major goal of an OMF linker is to pack code and
data into a minimum number of ggeents and segment groupBvery

piece of code or data in an OMF obiject is assigned to a segment, and each
sgment in turn can be assigned to a segment group or segment(élass.
group must be small enough to be addressed by a single segment value, a
class can be gmsize, so groups are used for both addressing and storage
management, while classes are just for storage managen@aue can
reference segments and groups by name, and can also reference code with-

3-110 ObjecFiles

in a segment relate the base of the segment or the base of the group.

OMF also contains some support fareday linking, although no OMF
linker | knov of has eer supported it, taking eerlay instructions instead
from a separate direvé file.

OMF records

OMF currently defines at least 40 record types, tooyntarenumerate
here, so we’'ll look at a simple OMF file. (The complete spec is in the In-
tel TIS documents.)

OMF uses seral coding techniques to makecords as short as possible.
All name strings are variable length, stored as a length byte followed by
characters. Anull name (valid in some contexts) is a single zero byte.
Rather than refer to gments, symbols, groups, etc. by name, an OMF
module lists each name once in an LNAMES record and subsequently uses
a index into the list of names to define the names gfremnts, groups, and
symbols. Thdirst name is 1, the second 2, and so forth through the entire
set of names no matterwaonarny LNAMES records themight have tak-

en. (Thissaves a snall amount of space in the not uncommon case that a
sggment and anxternal symbol hae the same name since the definitions
can refer to the same stringlhdexes in the range O through Ox7f are
stored as one bytelndexes from 0x80 through OxTff are stored as tw
bytes, with the high bit in the first byte indicating a two-byte sequence.
Oddly, the lov 7 bits of the first byte are the high 7 bits of the value and
the second byte is thewa bits of the value, the opposite of the matin-

tel order Segments, groups, andkiernal symbols are also referred to by
index, with separate indesequences for eachi-or example, assume a
module lists the names D@RIR, CODE, and [ATA, defining name in-
dexes 1, 2, ad 3. Then the module definesavsegments called CODE
and DATA, referring to names 2 and 3. Since CODE is the firgnsat
defined, it will be segment indd. and DATA will be segment inde2.

The original OMF format was defined for the 16 bit Intel architectbe.

32 bit programs, there arewmeéOMF types defined for the record types
where the address size mattefdl of the 16 bit record types happened to
have even numerical codes, so the corresponding 32 bit record types ha
the odd code one greater than the 16 bit type.

Object Files 3-111

Details of an OMF file

Figure 26 lists the records in a simple OMF file.

Figure 326: Typical OMF recad sequence

THEADR program name

COMENT flags and options

LNAMES list of segment, group, and class names
SEGDEF segment (one record per segment)
GRPDEF group (one record per group)

PUBDEF global symbols

EXTDEF undefined external symbols (one per symbol)
COMDEF common blocks

COMENT end of passl info

LEDATA chunk of code or data (multiple)

LIDATA chunk of repeated data (multiple)

FIXUPP relocations and external ref fixups, each vahg
the LEDATA or LIDATA to which it refers

MODEND end of module

The file starts with a THEADR record that marks the start of the module
and gves the name of the moduke®urce file as a string. (If this module
were part of a libraryit would start with a similar LHEADR record.)

The second record is a badly misnamed COMENT record which contains
configuration information for the lie Each COMENT record contains
some flag bits saying whether to keep the comment when linked, a type
byte, and the commentxdte Somecomment types are indeed comments,
e.g., the compiler version number or a yaght notice, but seral of

them gve essential linker info such as the memory model to usg (tin
through large), the name of a library to search after processing this file,
definitions of weak external symbols, and a grab-bag of other types of data
that vendors shoe-horned into the OMF format.

3-112 ObjecFiles

Next comes a series of LNAMES records that list all of the names used in
this module for segments, groups, classes, aadags. Asnoted abue,

the all the names in all LNAMES are logically considered an array with
the inde of the first name being 1.

After the LNAMES record come SEGDEF records, one for eagimeet
defined in the module. The SEGDEF includes anxrfde the name of

the segment, and the class andrlay if ary it belongs to. Also included

are the sgments atributes including its alignment requirements and rules
for combining it with same-name segments in other modules, and its
length.

Next come GRPDEF records, if yndefining the groups in the module.
Each GRPDEF has the indéor the group name and the indices for the
segments in the group.

PUBDEF records define "public" symbols visible to other modulssch
PUBDEF defines one or more symbols within a single groupgimeset.

The record includes the indef the segment or group and for each sym-
bol, the symbo$ dfset within the segment or group, its name, and a one-
byte compiler-specific type field.

EXTDEF records define undefined external symbols. Each record con-
tains the name of one symbol and a byte ar ¢dvdebugger symbol type.
COMDEF records define common blocks, and are similar to EXTDEF
records except that thelso define a minimum size for the symbol. All of
the EXTDEF and COMDEF symbols in the module are logically an,array
so fixups can refer to them by index.

Next comes an optional specialized COMENT record that marks the end
of pass 1 data. It tells the liakthat it can skip the rest of the file in the
first pass of the linking process.

The rest of the file consists of the actual code and data of the program, in-
termixed with fixup records containing relocation andeenal reference
information. Thereare two kinds of data records LEATA (enumerated)
and LIDATA (iterated). LEIATA simply has the segment indend start-
ing offset, follaved by the data to store therdelDATA also starts with the
segment and starting offset, but then has a possibly nested set of repeated

Object Files 3-113

blocks of data.LIDATA efficiently handles code generated for statements
like this Fortran:
| NTEGER A(20, 20) /400*42/

A single LIDATA can hae a wo- or four-byte block containing 42 and re-
peat it 400 times.

Each LEDATA or LEDATA that needs a fixup must be immediately fol-
lowed by the FIXUPP records. FIXUPP is byr the most complicated
record type.Each fixup requires three items: first the target, the address
being referenced, second the frame, the position in a segment or group rel-
ative to which the address is calculated, and third the location to éé fix

up. Sincet’s very common to refer to a single frame in méxups and
somavhat common to refer to a single target in pnérups, OMF defines

fixup threads two-bit codes used as shorthands for frames or targets, so at
ary point there can be up to four frames and fougets with thread num-

bers defined. Each thread number can be redefined as often as needed.
For example, if a module includes a data group, that group is usually used
as the frame for nearlyery data reference in the module, so defining a
thread number for the base address of that grougs sageat deal of
space. Inpractice a GRPDEF record is almostamably followed by a
FIXUPP record defining a frame thread for that group.

Each FIXUPP record is a sequence of subrecords, with each subrecord ei-
ther defining a thread or a fixuA thread definition subrecord has flag

bits saying whether &' defining a frame or target thread tamget thread
definition contains the thread numpiire kind of reference (segment rela-
tive, group relatve, external relatve), the inde of the base segment, group

or symbol, and optionally a basdsgft. Aframe thread definition includes

the thread numbethe kind of reference (all the kinds for target definition
plus two common special cases, same segment as the location and same
segment as the target.)

Once the threads are defined, a fixup subrecord isvaelyasimple. It
contains the location to fix up, a code specifying the type of fixup (16 bit
offset, 16 bit segment, full gment:ofset, 8 bit relatie, etc.), and the
frame and taget. Theframe and target can either refer to previously de-
fined threads or be specified in place.

3-114 ObjecFiles

After the LEDATA, LIDATA, and FIXUPP records, the end of the module
is marled by a MODEND record, which can optionally specify the entry
point if the module is the main routine in a program.

A real OMF file would contain more record types for local symbols, line
numbers, and other dedpger info, and in a Wdows environment also in-

fo to create the imports and exports sections in a target NE file @he se
mented 16 bit predecessor of PE), but the structure of the moduletdoesn’
change. Theorder of records is quite Kible, particularly if theres no

end of pass 1 magk The only hard and fast rules are that THEADER
and MODEND must come first and last, FIXUPPs must immediately fol-
low the LEDATA and LIDATA to which thg refer, and no intra-module
forward references are aed. In particular it's permissible to emit
records for symbols, segments, and groups asréhdefined, so long as
they precede other records that refer to them.

Summary of OMF

The OMF format is quite complicated compared to the other formats
we've een. Rrt of the complication is due to tricks to compress the data,
part due to the division of each module into snamall records, part due

to incremental features addedeothe years, and part due to the inherent
compleity of segmented program addressinthe consistent record for
mat with typed records is a strong point, since it both permxigngion in

a draightforward way, and permits programs that process OMF files to
skip records thedon’t understand.

Nonetheless, mo that even small desktop computers V& nmegaytes of
RAM and large disks, the OMF division of the object into ynamall
records has become more trouble thawitrth. Thesmall record type of
object module was very common up through the 1970s, butnisohso-
lescent.

Comparison of object formats

We've seen seen different object andxecutable formats in this chapter
ranging from the trivial (.COM) to the sophisticated (ELF and PE) to the
rococo (OMF). Modern object formats such as ELF try to group all of the
data of a single type together to reakeasier for linlers to processThey

Object Files 3-115

also lay out the file with virtual memory considerations in mind, so that
the system loader can map the file into the prograddress space with
as little extra work as possible.

Each object format sins the style of the system for which it was defined.
Unix systems hae hstorically kept their internal interfaces simple and
well-defined, and the a.out and ELF formats reflect that in theirvelati
simplicity and the lack of special case featurdéndows has gone in the
other direction, with process management and user interface intertwined.

Project

Here we define the simple object format used in the project assignments in
this book. Unlike rearly every other object format, this one consists en-
tirely of lines of ASCII tet. This makes it possible to create sample ob-
ject files in a text editoras well as making it easier to check the output
files from the project lindr. Figure 27 sketches the format. Thesent,
symbol, and relocation entries are represented as linestokitd fields
separated by spaces. Each line mayehatra fields at the end which pro-
grams should be prepared to ignore. Numbers are all hexadecimal.

Figure 3-27: Project object format

LINK

nsegs nsyms nrels
-- segments --

-- symbols --
--rels --

-- data --

The first line is the “magic numbgithe wordL| NK.

The second line contains at least three decimal numbers, the number of
seggments in the file, the number of symbol table entries, and the number of
relocation entries. There may be other information after the three numbers
for extended versions of the liak If there are no symbols or relocations,

3-116 ObjecFiles

the respectie rumber is zero.

Next comes the segment definitions. Each segment definition contains the
segment name, the address where the segment logically starts, the length
of the segment in bytes, and a string of code letters describingghe se
ment. Coddetters include R for readable, W for writable, and P for pre-
sent in the object file. (Other letters may be present as wetlypical set

of segments for an a.out ékile would be:

.text 1000 2500 RP

.data 4000 CO0 RWP

.bss 5000 1900 RW

Segyments are numbered in the order their definitions appéharthe first
segment being number 1.

Next comes the symbol table. Each entry is of the form:
nane val ue seg type

The name is the symbol name. The value is thevhtie of the symbol.

Sqj is the segment number relai o which the segment is defined, or 0
for absolute or undefined symbols. The type is a string of letters including
D for defined or U for undefined. Symbols are also numbered in the order
they're listed, starting at 1.

Next come the relocations, one to a line:
| oc seqg ref type ..

Loc is the location to be relocatedgss the segment within which the lo-
cation is found, ref is the gment or symbol number to be relocated there,
and type is an architecture-dependent relocation type. Common types are
A4 for a four-byte absolute address, or R4 for a four-byte velatidress.
Some relocation types mayvsaexra fields after the type.

Fdlowing the relocations comes the object data. The data for egeh se
ment is a single long kestring followed by a neline. (This malkes it
easy to read and write section data in pdgach pair of he digits repre-
sents one byte. Thegment data strings are in the same order as the se
ment table, and there must be segment data for gaelsent’ segment.
The length of the hestring is determined by the the defined length of the

Object Files 3-117

segment; if the sgment is 100 bytes long, the line of segment data is 200
characters, not counting the newline at the end.

Project 3-1:Write a perl program that reads an object files in this format
and stores the contents in a suitable form in perl tables and arrays, then
writes the file back outThe output file need not be identical to the input,
although it should be semantically ecplent. For example, the symbols
need not be written in the same ordelytiwere read, although if tiiee
reordered, the relocation entries must be adjusted to reflectwherader

of the symbol table.

Exercises

1. Would a text object format l&kthe project format be practical™int:
See Fraser and Hanssmaper "A Machine-Independent Linker.")

Storage allocation 4-119

Chapter 4
Storage allocation

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

A linker or loades first major task is storage allocation. Once storage i%
allocated, the linker can proceed to subsequent phases of symbol binding
and code fixups. Most of the symbols defined in a linkable object file are
defined relatie o gorage areas within the file, so the symbols cannot bé&
resolved until the areas’ addresses arevkno *

As is the case with most other aspects of linking, the basic issues-in stbr
age allocation are straightfoand, but the details to handle peculiarities of *
computer architecture and programming language semantics (and the in-
teractions between the two) can get complicated. Most of the job ef stor
age allocation can be handled in argaté and relatiely architecture-in- *
dependent &y, but there are weriably a fev details that require ad hoc *
machine specific hackery *

Segments and addresses

Every object or gecutable file uses a model of the target address space.
Usually the target is the target compwtegplication address spaceajtb
there are cases wheresitbomething else, such as a shared librarize
fundamental issue in a relocating lerkor loader is to ensure that all the
segments in a program are defined andehaldresses, but that addresses
don't overlap where they’re not supposed to.

Each of the linkr’s input files contains a set of segments of various types.
Different kinds of segments are treated in differesgsy Mostcommonly

all segments of a particular type. such @xcetable code, are concatenat-

ed into a single segment in the output file. Sometimes segments are
meiged one on top of anothexs br Fortran common blocks, and in an in-
creasing number of cases, for shared libraries and C++ special features,
the linker itself needs to create some segments and lay them out.

Storage layout is a two-pass process, since the location of egolerge
cant be asigned until the sizes of all segments that logically precede it

4-120 Storagallocation

are known.
Simple storage layout

In a simple It not unrealistic situation, the input to a linker consists of a
set of modules, call them 1Vlhrough , each of which consists of a sin-

gle s@ment starting at location O of length through L, and the taget
address space also starts at zero, Figure 1.

Figure 41: Single segment stage dlocation

bunch of sgments all starting at zero are relocated one af-
ter another

Inputs Ouipeh
0 - S

module | s
LI : ' L2277 | Tiom
b) A
600 0 —— code
‘module | , = frgm ,_
F a8 10 el GO
0 O 1 code |
400 i

ﬁﬂ |7 | €
L,module: s TFOO

The linker or loader»amines each module in turn, allocating storage se-

Storage allocation 4-121

quentially The starting address ofiN‘is the sum of |- through L, and
the length of the linked program is the sum thlhrough L.

Most architectures require that data be aligned ordvwoundaries, or at
least run faster if data is aligned, so linkers generally round qaqhtb a
multiple of the most stringent alignment that the architecture requires, typ-
ically 4 or 8 bytes.

Example 1: Assume a main program called main is to bedimkth three
subroutines called calif, mass, andvgerk. (It allocates venture capital
geographically Thesizes of each routine are (in hex):

name size
main 1017
calif 920
mass 615
nevyork 1390

Assume that storage allocation starts at location 10Q0 dred that the
alignment is four bytes. Then the allocations might be:

name location
main 1000 2016
calif 2018- 2937
mass 2938 2f4dc

newyork 2f50- 42df
Due to alignment, one byte at 2017 and three bytes at 2f4d are wasted, not
enough to worry about.

Multiple segment types

In all but the simplest object formats, there aneerse kinds of sgment, *
and the linker needs to group corresponding segments from all of the input
modules togetherOn a Unix system with text and data segments, the*
linked file needs to lva dl of the text collected togethefollowed by all *
of the data, followed logically by the BS$Even though the BSS doesn’ *
take gace in the output file, it needs tovhapace allocated to res@v *
BSS symbols, and to indicate the size of BSS to allocate when the outgut
file is loaded.) This requires a twovs storage allocation strategy *

4-122 Storagallocation

Now each module I\I/Ihas text size deata size I%) and BSS size F}Fig-
ure 2.

Figure 4-2: Multiple segment stage dlocation *

text, data, and BSS segments being combined separately

Storage allocation 4-123

As it reads each input module, the Bnlallocates space for each of tr}e T *
Di' and BI as though each segment were separately allocated atAdero. *

4-124 Storagellocation

ter reading all of the input files, the linkenn&nows the total size of each *
of the three segmentst '{' Dto ., and Btot' Since the data segment fas *
the text segment, the ﬁak adtds Iot to the address assigned for each of*
the data segments, and since the BSS segment follows both the text &nd
data segments, the linker adds the sumt8{ dand qot to the allocated *

BSS sgments. *
Again, the linker usually needs to round up each allocated size.
Segment and page alignment *

If the text and data segments are loaded into separate memory pages, 4s is
generally the case, the size of the texjnsent has to be rounded up to a *
full page and the data and BSsent locations correspondingly adjust- *
ed. Mary Unix systems use a trick thatvea file space by starting the da- *

ta immediately after the xein the object file, and mapping that page in *
the file into virtual memory twice, once read-only for the text and oncé
copy-on-write for the data. In that case, the data addresses logically stért
exactly one page beyond the end of the,tgo rather than rounding up, *
the data addresses start exactly 4K or wieatthe page size is pend the *
end of the tet. *

Example 2: V€ expand on Example 1 so that each routine hagtadata,
and bss sgment. Theword alignment remains 4 bytes, but the page size
is 0x1000 bytes.

name tet data bss
main 1017 320 50
calif 920 217 100
mass 615 300 840

nevyork 1390 1213 1400
(all numbers hex)

The linker first lays out the text, then the data, then the Mete that the
data section starts on a page boundary at Ox500@hé bss starts imme-
diately after the data, since at run time data and bss are logicallygne se
ment.

name tet data bss

Storage allocation 4-125

main 1000 2016 5000 531f 695c- 69ab
calif 2018-2937 5320-5446 69ac 6aab
mass 2938 2f4c 5448- 5747 6aac 72eb

newyork 2f50-42df 5748-695a 72ec 86eb

Theres wasted space at the end of the page between 42e0 andB890.

bss segment ends in mid-page at 86eb, but typically programs allocate
heap space starting immediately after that.

Common blocks and other special segments

The straightforward segment allocation schemevabaorks nicely for
about 80% of the storage that linkers deal with. The rest is handled with
special case hacks. Here we look at some of the more popular ones.

Common

Common storage is a feature dating back to Fortran | in the 1950s. In the
original Fortran system, each subprogram (main program, function, or
subroutine) had itsven statically declared and allocated scalar and array
variables. Theravas dso a common area with scalars and arrays that all
subprograms could us€€ommon storage pved very useful, and in sub-
sequent versions of Fortran itas generalized from a single common
block (nav known as blank common, as in the name consists of blanks) to
multiple named common blocks, with each subprogram declaring the
blocks that it uses.

For the first 40 years of its existence, Fortran didapport dynamic ster

age allocation, and common blocks were the primary tool that Fortran pro-
grammers used to circumvent that restricti@@tandard Fortran permits
blank common to be declared with different sizes ifietght routines,

with the lagest size taking precedencEortran systems uwmérsally ex-

tend this to allev al common blocks to be declared with different sizes,
again with the largest size taking precedence.

Large Fortran programs often bump up against the memory limits in the
systems in which therun, so in the absence of dynamic memory alloca-
tion, programmers frequently rebuild a package, tweaking the sizes to fit
whatever problem a package is working on. All but one of the subpro-
grams in a package declare each common block as a one-element array

4-126 Storagallocation

One of the subprograms declares the actual size of all the common blocks,
and at startup time puts the sizes in variables (in yet another common
block) that the rest of the package can use. This makes it possible to ad-
just the size of the blocks by changing and recompiling a single routine

that defines them, and then relinking.

As an added complication, starting in the 1960s Fortran added BLOCK
DATA to gecify static initial data alues for all or part of gncommon
block (except for blank common, a restriction rarely enforceddgually

the size of the common block in the BLOCKTA that initializes a block

is taken to be the blockectual size at link time.

To handle common blocks, the liek treats the declaration of a common
block in an input file as a segment, buéertays all of the blocks with the
same name rather than concatenating thegmesgts. Ituses the layest
declared size as thegsaents gze, unless one of the input files has an ini-
tialized version of the ggnent. Insome systems, initialized common is a
separate segment type, while in othessjitst part of the data segment.

Unix linkers hae dways supported common blocks, sinaerethe earli-

est versions of Unix had a Fortran subset comaet Unix versions of C

have traditionally treated uninitialized global variables mucle ldlommon
blocks. Butthe pre-ELF versions of Unix object files only had thd,te
data, and bss segments with no direaywo declare a common blocRs

a ecial case hack, linkers treated a symbol that was flagged as undefined
but nonetheless had a non-zero value as a common block, wittaliie v
being the size of the block. The linker took the largest value encountered
for such symbols as the size of the common bldéd. each block, it de-
fined the symbol in the bss segment of the output file, allocating the re-
guired amount of space after each symbol, Figure 3.

Figure 4-3: Unix common blocks

common at the end of bss

Storage allocation 4-127

G input files output file
common e
blocks %
f |
5 | «data |
| 5 t,
f \{
X" il
. " bss
) > "*

C++ duplicate removal

In some compilation systems, C++ compilers produce a great deal of du-
plicated code due to virtual function tables, templates and extern inline
functions. Thedesign of those features implicitly expects anirmment

in which all of the pieces of a program are processed simultaned\isly
virtual function table (usually abbreviated vtbl) contains the addresses of
all the virtual functions (routines that can heroidden in a subclass) for a
C++ class. Each class withyawirtual functions needs a vtblTemplates

are essentially macros withgairments that are datatypes, and thxgaad

into a distinct routines forvery distinct set of type guments. Whilet is

the programmes’ job to ensure that if there is a reference to normal rou-

4-128 Storagallocation

tines called, saynash(i nt) andhash(char *) , theres exactly
one definition of each kind of hash, a template versidmash(T) auto-
matically creates versions dfash for each data type that is usedyan
where in the program as an argumertiash.

In an ewironment in which each source file is separately compiled, a
straightforvard technique is to place in each object file all of the vtkis, e
panded template routines, and extern inlines used in that file, resulting in a
great deal of duplicated code.

The simplest approach at link time is teeliwith the duplication.The re-
sulting program works correctliut the code bloat can bulk up the object
program to three times or more the size that it should be.

In systems stuck with simple-minded lark, some C++ systemsvea
used an iterate linking approach, separate databases of wieapanded
where, or added pragmas (source code hints to the compiler) that feed
back enough information to the compiler to generate just the cods that’
needed. W cove these in Chapter 11.

Many recent C++ systems Y@ aldressed the problem head-on, either by
making the linker smartgor by integrating the linker with other parts of

the program deslopment system(We dso touch on the latter approach in
chapter 11.) The linker approach has the compiler generate all of the pos-
sibly duplicate code in each object file, with the linker identifying and dis-
carding duplicates.

MS Windows linkers define a COMAX flag for code sections that tells
the linker to discard all but one identically nhamed sectidriee compiler
gives the section the name of the template, suitably mangled to include the
argument types, Figure 4

Figure 44: Windows

IMAGE_COMDAT_SELECT_NODUPLICAES 1 Warn
if multiple identically named sections occur.
IMAGE_COMDAT_SELECT_ANY 2 Link one
identically named section, discard the rest.

Storage allocation 4-129

IMAGE_COMDAT_SELECT_SAME_SIZE

3 Link one identically named section, discard
the rest.Warn if a discarded section igrthe same size.
IMAGE_COMDAT_SELECT_EXACT MACH 4 Link
one identically named section, discard the r&garn if a
discarded section isnidentical in size and contentéNot
implemented.)
IMAGE_COMDAT_SELECT_ASSOCIAIVE 5 Link this
section if another specified section is also linked.

The GNU linker deals with the template problem by defining a "link once"
type of section similar to common blocks. If the Bnkseessegments
with names of the forngnu.linkoncerame it throwsaay al but the first
such segment with identical name&gain, compilers xpand a template

to a .gnu.linkbnce section with the name including the mangled template
name.

This scheme works pretty well, butsithot a panaceaFor one thing, it
doesnt protect against the vtbls angganded templates not actually being
functionally identical. Some lirdes attempt to check that the discarded
seggments are byte-for-byte identical to the one thigpt. Thisis very
conservatie, but can producealse errors if tw files were compiled with
different optimization options or with different versions of the compiler
For another it doesnt discard nearly as much duplicated code as it could.
In most C++ systems, all pointersvieathe same internal representation.
This means that a template instantiated with, agpinter to int type and

the same template instatiated with pointer to float will often generate iden-
tical code gen though the C++ types are fdifent. Somdinkers may at-
tempt to discard link-once sections which contain identical code to another
section, gen when the names ddmjuite match perfectfybut this issue re-
mains unsatisfactorily resolved.

Although weve keen discussing templates up to this point, exactly the
same issues apply tatern inline functions and default constructarpy,
and assignment routines, which can be handled the same way.

4-130 Storagallocation

Initializers and finalizers

Another problem not unique to C+tutbexacerbated by it are initializers
and finalizers.Frequentlyit's easier to write libraries if thecan arrange

to run an initializing routine when the program starts, and a finalizing rou-
tine when the program is about tite C++ allows static ariables. Ifa
variable’s dass has a constructdhat constructor needs to be called at
startup time to initialize the variable, and if it has a destruttterdestruc-

tor needs to be called at exit time. There agous ways to finesse this
without linker support, which we discuss in Chapter 11, but modern link-
ers generally do support this directly.

The usual approach is for each object file to pytstartup code into an
anorymous routine, and to put a pointer to that routine intogmsat
called.init or something similar The linker concatenates all thgit seg-
ments togetherthereby creating a list of pointers to all the startup rou-
tines. Theprograms$ gartup stub need only run down the list and call all
the routines. EXxit time code can be handled in much the sayewvth a
segment calledini.

It turns out that this approach is not altogether satisfy because some
startup code needs to be run earlier than others. The definition of C++
states that applicationdd constructors are run in an unpredictable qrder
but the 1/0 and other system library constructors need to be run before
constructors in C++ applications are calledhe ‘perfect’ approach
would be for each init routine to list its dependencies explicitly and do a
topological sort. The BeOS dynamic linker does approximately that, using
library reference dependencies. (If library A depends on library B, library
B’s initializers probably need to run first.)

A much simpler approximation is to V& veal initialization sgments,

Init and.ctor, so he startup stub first calls thimit routines for library-

level initialization and then thector routines for C++ constructorsThe

same problem occurs at the end of the program, with the corresponding
sgments beingdtor and.fini. One system goes so far as to alline pro-
grammer to assign priority numbers, 0 to 127 for user code and 128-255
for system library code, and the linker sorts the initializer and finalizer
routines by priority before combining them so highest priority initializers

Storage allocation 4-131

run first. This is still not altogether sataftory since constructors can

have ader dependencies on each other that cause hard-to-find bugs, but at
this point C++ makes it the programnserésponsibility to preent those
dependencies.

A variant on this scheme puts the actual initialization code irirtheseg-

ment. Wherthe linker combined them the segment would be in-line code
to do all of the initializationsA few g/stems hee fied that, but i hard

to male it work on computers without direct addressing, since the chunk
of code from each object file needs to be able to address the data for its
own file, usually needing registers that point to tables of address Haga.
anorymous routines set up their addressing the sameaty other rou-

tine does, reducing the addressing problem to ones ihatady solved.

IBM pseudo-registers

IBM mainframe linkers prade an interesting feature calle@xternal
dummy’ sections or ‘pseudo-registers. T he 360 was one of the earlier
mainframe architectures without direct addressing, which means that small
shared data areas argensve © implement. Eachoutine that refers to a
global object needs its own felyte pointer to the object, which is a lot

of overhead if the object was only four bytes to start with. PL/lI programs
need a foubyte pointer to each open file and other global objectsxfor e
ample. (PL/lwas the only high-lgel language to use pseudo-registers, al-
though it didnt provide application programmers with access to thdéim.
used them for pointers to control blocks for open files so application code
could include inline calls to the I/O system.)

A related problem is that OS/360 ditiprovide ary support for what

now called pefprocess or task local storage, and very limited support for
shared libraries. If tevjobs ran the same program, either the progras w
marked reentrant, in which case yhehared the entire program, code and
data, or not reentrant, in which caseytlshared nothing. All programs

were loaded into the same address space, so multiple instances of the same
program had to maktheir arrangements for instance-specific dd&ys-

tem 360s didri’havehardware memory relocation, and although 370s did,

it wasnt until after seeral revisions of the OS/VS operating system that

the system provided per-process address spaces.)

4-132 Storagallocation

Pseudo-rgisters help sokr both of these problems, Figure &ach input

file can declare pseudo-registers, also caligdreal dummy sectiong/A
dummy section in 360 assembler is analogous to a structure declaration.)
Each pseudo-register has a name, length, and alignment. At link time, the
linker collects all of the pseudogisters into one logical segment, taking
the largest size and most restrietessignment for each, and assigns them
all non-overlapping offsets in this logical segment.

But the linler doesrt alocate space for the pseudo-registegnsent. It
merely calculates the size of the segment, and stores it in the pregram’
data at a location maekl by a special CXD, cumula# exernal dummy
relocation item.To refer to a particular pseudogister program code us-

es yet another special XD, external dummglocation type to indicate
where to place the fsiet in the logical segment of one of the pseudysre
ters.

The prograns initialization code dynamically allocates space for the
pseudo-rgisters, using a CXD to kmohow much space is needed, and
cornventionally places the address of thagiom in register 12, which re-
mains unchanged for the duration of the prograkny part of the pro-

gram can get the address of a pseudo-register by adding the contents of
R12 to an XD item for that gister The usual way to do this is with a
load or store instruction, using R12 as the xagjster and and XD item
embedded as the address displacement field in the instruction. (The dis-
placement field is only 12 bits, but the XD itemMesathe high four bits of

the 16-bit halfword zero, meaning base register zero, which produces the
correct result.)

Figure 45: Pseudo-egsters

bunch of chunks of space pointed to by R3}2rious rou-
tines offsetting to them

Storage allocation 4-133

object file

reference to pseudo-register PR, '
_ . linker assigned offset 20

I_register 12

B 20(R12))

The result of all this is that all parts of the programehdrect access to

all the pseudo-registers using load, store, and other RX format instruc-
tions. Ifmultiple instances of a program are agteach instance allocates

a eparate space with a different R12 value.

Although the original motiation for pseudo-registers iswdargely obso-

lete, the idea of prading linker support for efficient access to thread-local
data is a good one, and has appeared in various forms in more modern sys-
tems, notably Widows32. Also,modern RISC machines share the 360’
limited addressing range, and require tables of memory pointers to address
arbitrary memory locations. On mamiISC UNIX systems, a compiler
creates tw data segments in each module, one for regular data and one for
"small" data, static objects b&some threshold size. The linker collects

all of the small data segments togetlaad arranges for program startup

4-134 Storagallocation

code to put the address of the combined small dgtaesg in a reseed
register This permits direct references to small data using based address-
ing relatve that register Note that unlike pseudo-rgisters, the small

data storage is both laid out and allocated by thestirskd theres anly

one copy of the small data per process. Some UNIX systems support
threads, but pethread storage is handled by explicit program code with-
out ary special help from the linker.

Special tables

The last source of lirde-allocated storage is the liekitself. Paticularly
when a program uses shared libraries arlays, the linler creates gp
ments with pointers, symbols, and whateelse data are needed at run-
time to support the libraries ovelays. Oncehese segments are created,
the linker allocates storage for them the same way it does foother
segments.

X86 segmented storage allocation

The peculiar requirements of 8086 and 80286 sort-of-segmented memory
addressing led to a avespecialized &cilities. X860MF obiject files gie

each segment a name and optionally a class. All segments with the same
name are, depending on some flag bits set by the compiler or assembler
combined into one big segment, and all thgnsents in a class are allocat-

ed contiguously in a block. Compilers and assemblers use class names to
mark types of segments such as code and static data, so @recankallo-

cate all the segments of avgn dass togetherSo long as all of the ge

ments in a class are less than 64K totaly tiam be treated as a single ad-
dressing ‘group” using a single segmentgister which saes mnsider-

able time and space.

Figure 6 shows a program linked from three input files, main, able, and
baker Main contains sgments MAINCODE and MAINBTA, able con-
tains ABLECODE, and ABLEBTA, and baker contains &KERCODE,
BAKERDATA, and BAKERLDATA. Each of the code sections in in the
CODE class and the data sections are in tA€ADclass, but the BK-
ERLDATA "large data" section is not assigned to a class. In thedink
program, assuming the CODE sections are a total of 64K or legsathe

be treated as a singlegseent at runtime, using short rather than long call

Storage allocation 4-135

and jump instructions and a single unchanging CS cagleesd rgister.
Likewise, if all the DATA fit in 64K they can be treated as a singleggse
ment using short memory reference instructions and a single unchanging
DS data segmentgister The BAKERLDATA segment is handled at run-
time as a separate segment, with code loadingraesg register (usually

the ES) to refer to it.

Figure 46: X86
CODE class with MAINCODE, ABLECODE, BKER-
CODE
DATA class with MAINDATA, ABLEDATA, BAKERDA-
TA
BAKERLDATA
‘MAIN
| MAINCODE | > | MAINCODE | CODE
MAINDATA | | /ABLECODE |
| BAKERCODE | group
e MSII;DATH DATA
. | BAKERDATA group
| ABLECODE | - 'BAKERLDATA'
| ABLEDATA. |
(L Ak
BAKER
.,B‘A'KERCGDEE(
BAKERDATA|

BAKERLDATAI

4-136 Storagallocation

Real mode and 286 protected mode programs arediakmost identical-

ly. The primary difference is that once the linker creates the linkgd se
ments in a protected mode program, the linker is done, leaving the actual
assignment of memory locations angrsent numbers until the program

is loaded. In real mode, the linker has an extra step that allocategthe se
ments to linear addresses and assigns "paragraph” numbers t@-the se
ments relatie © the beginning of the progranihen at load time, the pro-
gram loader has to fix up all of the paragraph numbers in a real mode pro-
gram or segment numbers in a protected mode program to refer to the ac-
tual location where the program is loaded.

Linker control scripts

Traditionally, linkers offered the user limited controlen the arrangement

of output data. As linkers started to target environments with messy mem-
ory omanizations, such as embedded microprocessors, and multigé tar
ervironments, it became necessary tovpte finer grained controlver

the arrangement both of data in theg&raddress space and in the output
file. Simplelinkers with a fixed set of segments generallyelsvitches to
specify the base address of each segment, for programs to be loaded into
something than the standard applicatiomiremment. (Operatingystem
kernels are the usual application for these switch&aijne linkers hae

huge numbers of command line switches, often witipi@an to continue

the command line logically in a file, due to system limits on the length of
the actual command lineFor example, the Microsoft linker has about
fifty command line switches that can set the characteristics of each section
in the file, the base address of the output, arariaty of other output de-
tails.

Other linkers hee defined a script language to control the &ng autput.

The GNU linker, which also has a long list of command line switches, de-
fines such a language. Figure 7 shows a simple linker script that produces
COFF eecutables for System V Release 3.2 systems such as SCO Unix.

Figure 47: GNU linker control script for COFF»cutable
OUTPUT_FORMAT(" cof f - i 386")

Storage allocation 4-137

SEARCH DI R(/usr/local/lib);
ENTRY(_start)
SECTI ONS
{
.text SIZEOF_HEADERS : {
*(.init)
*(.text)
*(.fini)
etext =
}
.data 0x400000 + (. & OxffcOOfff) : {
*(.data)
edata =

}
.bss SIZEOF(.data) + ADDR(.data)

{

*(. bss)

*(COVVON)

end = .;

}
.stab 0 (NOLOAD) :
{

[.stab]

}
.stabstr 0 (NOLOAD)

{
[.stabstr]

}
}

The first fav lines describe the output format, which must be present in a
table of formats compiled into the liek the place to look for object code
libraries, and the name of the default entry poirstt art in this case.
Then it lists the sections in the output fikn optional value after the sec-
tion name says where the section starts, hencettea&t section starts
immediately after the file header§he . t ext section in the output file
contains the i ni t sections from all of the input files, then theext

4-138 Storagallocation

sections, then thef i ni sections. Théinker defines the symbelt ext

to be the address after théi ni sections. Thethe script sets the origin

of the. dat a section, to start on a 4K page boundary roughly 400000 he
beyond the end of the text, and the section includes tied a sections

from all the input files, with the symbeldat a defined after themThen

the . bss section starts right after the data and includes the inpst
sections as well as yrcommon blocks witrend marking the end of the
bss. (COMMONis a lkeyword in the script language.) After that areotw
sections for symbol table entries collected from the corresponding parts of
the input files, but not loaded at runtime, since only a debugger looks at
those symbols. The linker script language is considerably modiélée
than this simple >xample shows, and is adequate to descniaeything

from simple DOS xecutables to Widows PE eecutables to compie
overlaid arrangements.

Embedded system storage allocation

Allocation in embedded systems is similar to the schemegevaeén so

far, only more complicated due to the complicated address spaces in which
programs must runlinkers for embedded systems provide script lan-
guages that let the programmer define areas of the address space, and to al-
locate particular ggments or object files into those areas, also specifying
the alignment requirements for segments in each area.

Linkers for specialized processorselibSPs hae gecial features to sup-
port the peculiarities of each processbor example, the Motorola 5600X
DSPs hae support for circular bffers that hee © be digned at an ad-

dress that is a power of tvat least as large as thafter. The 56K object

format has a special segment type for thadéets, and the linker auto-
matically allocates them on a correct boundsamyffling segments to min-
imize unused space.

Storage allocation in practice

We end this chapter by alking through the storage allocation for some
popular linkers.

Storage allocation 4-139

Storage allocation in Unix a.out linkers

Allocation in pre-ELF Unix linkers is only slightly more compldnan the
idealized example at the beginning of the chamiace the set of gp
ments known in advance, Figure Bach input file has text, data, and bss
sgments, and perhaps common blocks disguisedxesnal symbols.

The linker collects the sizes of the text, data, and bss from each of the in-
put files, as well as from grobjects taken from libraries. After reading

all of the objects, anunresolhed external symbols with non-zeralues

are taken to be common blocks, and are allocated at the end of bss.

Figure 4-8: a.out linking

picture of text, data, and bss/common fraxpleit and li-
brary objects being combined into three big segments

4-140 Storagallocation

B explicitly linked objects output file
Toxt | £ -
data | - Wl =i
e 3 W S text
| = | |
) : - ik =
| Ha { !

library objects

| *_bss
L >/ . segment

A
il |
1

common

At this point, the linker can assign addresses to all of thgnsmts. The

text segment starts at a fixed location that depends onatietyvof a.out

being created, either location zero (the oldest formats), one page past loca-
tion zero (NMAGIC formats), or one page plus the size of the a.out header

Storage allocation 4-141

(QMAGIC.) Thedata segment starts right after the data segment (old un-
shared a.out), on the next page boundary after teségment (NMA-

IC). In evay format, bss starts immediately after the datarsnt. Wth-

in each segment, the linker allocates the segments from each input file
starting at the next word boundary after the previous segment.

Storage allocation in ELF

ELF linking is somewhat more compl¢han a.out, because the set of in-
put segments can be arbitrarily large, and theehrias to turn the input
seggments (sections in ELF terminology) into loadabignsents (sgments

in ELF terminology) Thelinker also has to create the program header
table needed for the program logd®rd some special sections needed for
dynamic linking, Figure 9.

Figure 49: ELF linking

Adapt figs from pages 2-7 and 2-8 of TIS ELF doc
shaw input sections turning into output segments.

4-142 Storagallocation

. |P‘*-flfz-=‘=\' [l ol :';“ ¥
input files output file
Ltext \ i
|
w st
Bl 17
°
o L
L] 4 -

sections

i
<

sections

Z/%

&,
@
%

Storage allocation 4-143

ELF objects hee the traditional text, data, and bss sectionsy goelled

text, .data, and .bssThey aso often contain .init and .fini, for startup and
exit time code, as well as various odds and endse .rodata and .datal
sections are used in some compilers for read-only data and out-of-line data
literals. (Somealso ha&e rodatal for out-of-line read-only data®n
RISCsystems li& MIPS with limited sized address offsets, .sbss and
.scommon, are "small* bss and common blocks to help group small ob-
jects into one directly addressable area, as we noteg albthe discus-

sion of pseudo-gasters. OnGNU C++ systems, there may also be
linkonce sections to be included into text, rodata, and data segments.

Despite the profusion of section types, the linking process remains about
the same. The linker collects each type of section from the input files to-
gether dong with sections from library objects. The lerkalso notes
which symbols will be resobd at runtime from shared libraries, and cre-
ates .interp, .got, .plt, and symbol table sections to support runtime linking.
(We defer discussion of the details until Chapter 9.) Once that is all done,
the linker allocates space in a wemtional order Unlike aout, ELF ob-

jects are not loaded anywhere near address zero, but are instead loaded in
about the middle of the address space so the stack cardgwa below

the text segment and the heap up from the end of the @afaink the to-

tal address space in use relatiompact. On386 systems, the text base
address is 0x08048000, which permits a reasonalyg stiack bel the

text while still staying abee aldress 0x08000000, permitting most pro-
grams to use a single seconddepage table. (Recall that on the 386,
each seconddel table maps 0x00400000 addresses.) ELF uses the
QMAGIC trick of including the header in the text segment, so the actual
text segment starts after the ELF header and program header table, typical-
ly at file offset 0x100.Then it allocates into the text segment .interp (the
logical link to the dynamic lindgr, which needs to run first), the dynamic
linker symbol table sections, .init, the .text and link-oncd, tend the
read-only data.

Next comes the data segment, which logically starts one page past the end
of the text segment, since at runtime the page is mapped in as both the last
page of text and the first page of data. The linker allocates the various .da-
ta and link-once data, the .got section and on platforms that use it, .sdata

4-144 Storagallocation

small data and the .got global offset table.

Finally come the bss sections, logically right after the data, starting with
.Sbss (if ay, to put it next to .sdata and .got), the bss segments, and com-
mon blocks.

Storage allocation in Windows linkers

Storage allocation for Wdows PE files is somewhat simpler than for ELF
files, because the dynamic linking model for P#lives less support from
the linker at the cost of requiring more support from the combiigure
10.

Figure 410: PE stoage dlocation

adapt from MS web site

library |

Storage allocation 4-145
COFF PE executable
files aadiar]

text | BENE
- ' < . text
o | fixups| ~ 1 |
S | E - | |
5 data | ';
a | |]
w . .. !
ﬁxl_.lps] _H-‘. [data I.
bss P
1
= < e hs_s !
L] — idata
o text '!
© = | fixup.
o | data S NEae,
fixups |
\export |
info |

PE ecutable files are comntionally loaded at 0x400000, which is where
the text starts. The text section included feom the input files, as well

4-146 Storagallocation

as initialize and finalize sectionslext comes the data sections, aligned on

a logical disk block boundary(Disk blocks are usually smaller than mem-
ory pages, 512 or 1K rather than 4K omndéws machines.)Following

that are bss and common, .rdata relocation fixups (for DLL libraries that
often cant be loaded at the expected target address), import and export ta-
bles for dynamic linking, and other sections such as Windows resources.

An unusual section type is .tls, thread local storayéVindows process
can and usually does Y multiple threads of control simultaneously ac-
tive. The .tls data in a PE file is allocated for each thrétmhcludes both

a bdock of data to initialize and an array of functions to call on thread start-
up and shutdown.

Exercises

1. Why does a linker shuffle around segments to put segments of the same
type next to each otherf®/ouldn’t it be easier to lege them in the original
order?

2. When|f ever, does it matter in what order a linker allocates storage for
routines? Irour example, what difference would it negik the linker allo-
cated newyork, mass, calif, main rather than main, calif, masgjone
(We’ll ask this question again later when we discusslays and dynamic
linking, so you can disgard those considerations.)

3. Inmost cases a linker allocates similar sections sequeribalgcam-
ple, the text of calif, mass, and newyork one after anotet it allocates
all common sections with the same name on top of each dfteyr?

4. Isit a good idea to permit common blocks declared ifediht input
files with the same name but different sizes?y\ihwhy not?

5. Inexample 1, assume that the programmer has rewritten the calif rou-
tine so that the object code ismbex 1333 long. Recompute the assigned
sgment locations. In example 2, further assume that the data and bss
sizes for the rewritten calif routine are 975 and 120. Recompute the as-
signed segment locations.

Storage allocation 4-147

Project

Project 4-1: Extend the linker skeleton from project 3-1 to do simple
UNIX-style storage allocation. Assume that the only interestigghsats

are. text,.data, and. bss. In the output file, tet starts at he 1000,

data starts at the next multiple of 1000 after th¢ #nd bss starts on a 4
byte boundary after the data, Your linker needs to write out a partial object
file with the segment definitions for the output filg‘ou need not emit
symbols, relocations, or data at this poind)thin your linker, be sure you

have a dita structure that will let you determine what address eagh se
ment in each input file has been assigned, since you'll need that for project
in subsequent chapters. Use the sample routines in Example 2 to test your
allocator.

Project 4-2:Implement Unix-style common blocks. That is, scan the sym-
bol table for undefined symbols with non-zero values, and add space of ap-
propriate size to the .bssgseent. Dont worry about adjusting the sym-

bol table entries, thatin the next chapter.

Project 4-3:Extend the allocator in 4-3 to handle arbitrary segments in in-
put files, combining all ggnents with identical name#\ reasonable allo-
cation strategy would be to put at 1000 the segments with RRutdsrjb
then starting at the k1000 boundary RWP attributes, then on a 4 bound-
ary RW attributes. Allocatecommon blocks in .bss with attribut®\R

Symbol management 5-149

Chapter 5
Symbol management

$Revision: 2.2 $
$Date; 1999/06/30 01:02:35 %

Symbol management is a lieks key function. Wthout some way to refer *
from one module to anothahere wuldn't be nuch use for a lingr’s ah-
er facilities. *

Binding and name resolution *

Linkers handle a variety of kinds of symbols. All linkers handle symbolic
references from one module to anoth&ach input module includes a *

symbol table. The symbols include: *

. Global symbols defined and perhaps referenced in the module.

. Global symbols referenced but not defined in this module (generat-
ly called externals). *

. Segnent names, which are usually also considered to be global
symbols defined to be at the beginning of thggrsent. *

. Non-global symbols, usually for detpgers and crash dump analy- *

sis. Thesarent really symbols needed for the linking procesg, b *
sometimes theare mixed in with global symbols so the linker has *
to at least skip\er them. Inother cases tlyecan be in a separate *
table in the file, or in a separate debug info file. (Optional)

. Line number information, to tell source language debuggers the
correspondence between source lines and object code. (Optional)

The linker reads all of the symbol tables in the input module, atrdats *
the useful information, which is sometimes all of the incoming info, fre+
guently just whas reeded to link. Then it builds the link-time symbol ta- *
bles and uses that to guide the linking process. Depending on the output
file format, the linlker may place some or all of the symbol information in*
the output file. *

5-150 Symbomanagement

Some formats hee nultiple symbol tables per fileFor example, ELF *
shared libraries can & acne symbol table with just the information need- *
ed for the dynamic linker and a separate, larger table useful foggiely *
and relinking. This isrt’necessarily a bad design; the dynamicdintable *
is usually much smaller than the full table and making it separate ca&n
speed up the dynamic linking process, which happens far more often than
a library is debugged or reliekl. *

Symbol table formats

Linker symbol tables are similar to those in compilers, although usually
simpler snce the kinds of symbols a liak needs to keep are usually less
comple than those in a compileMithin the linker, theres ane symbol
table listing the input files and library modulesgking the per-file infer
mation. Asecond symbol table handles global symbols, the ones that the
linker has to resoly anong input files. A third table may handle intra-
module debgging symbols, although more often than not the linker need
not create a full-fledged symbol table for dgbsymbols, needing only
pass the debugging symbols through from the input to the output file.

Within the linker itself, a symbol table is often kept as an array of table en-
tries, using a hash function to locate entries, or as an array of pointers, in-
dexed by a hash function, with all of the entries that hash together chained
from each headgeFigure 1. To locate a symbol in the table, the lank
computes a hash of the symbol name, uses that hash value modulo the
number of lbickets to select one of the hack udkets
(symhash[h%NBCKET] in the figure where h is the hash), runsvdo

the chain of symbols looking for the symbol.

Traditionally, linkers only supported short names, ranging from eight
charaters on IBM mainframes and early UNIX systems to six on most
DEC systems to asvieas twvo on some justly obscure minicomputers.
Modern linkers support much longer names, both because programmers
use longer names than yhased to (orin the case of Cobol, are no longer
willing to twist the names around to neakhem unique in the first eight
characters), and because compilerahgle’ names by adding extra char
acters to encode type information.

Symbol management 5-151

Older linkers with limited name lengths did a string comparison of each
symbol name in the lookup hash chain untilytheund a match or ran out

of symbols. These days, a program can easily containsynhamg sym-

bols that are identical up the laswfeharacters, as is often the case with
C++ mangled names, which makes the string comparisqgrensve. An

easy fix is to store the full hash value in the symbol table and to do the
string comparison only when the hashes maikpending on the con-
text, if a symbol is not found, the liek may either add it to the chain or
report an error.

Figure 51: Symbol table

Typical symbol table with hashes or hash headers with
chains of symbols
struct sym *symhash[NBUCKET];

struct sym {
struct sym *next;
int fullhash;/* full hash value */
char *symname,

.

Symbol management 5-153

Moduletables

The linker needs to trackvery input module seen during a linking run,
both modules linkedxplicitly and those extracted from libraries. Figure 2
shaws the structure of a simplified version of the module table for a GNU
linker that produces a.out object files. Since most of dyeiréormation

for each a.out file is in the file headtre table just stores a gopf the
header,

Figure 52: Module table

/* Nanme of this file. */

char *fil enane;

/* Nanme to use for the synbol giving address of text start */
char *| ocal _sym nane;

/* Describe the |ayout of the contents of the file */

/* The file's a.out header. */

struct exec header;

/* Ofset in file of debug synbol segnent, or 0 if there is none
i nt synseg_of fset;

/* Describe data fromthe file |oaded into core */

/* Synbol table of the file. */
struct nlist *synbols;

/* Size in bytes of string table. */
int string_size;

/* Pointer to the string table. */
char *strings;

/* Next two used only if ‘relocatable output’ or if needed for */
/* output of undefined reference |ine nunbers. */

*/

5-154 Symbomanagement

/* Text and data relocation info */
struct relocation_info *textrel
struct relocation_info *datarel

/* Relation of this file s segments to the output file */

[* Start of this file’s text seg in the output file core imge. */
int text_start address;
/* Start of this file's data seg in the output file core inage. */
int data_start address;
/* Start of this file s bss seg in the output file core imge. */
int bss_start_ address;
/* Ofset in bytes in the output file synbol table

of the first local synbol for this file. */
int local _synms_offset;

The table also contains pointers to in-memory copies of the symbol table
string table (since in an a.out files, the symbol name strings are in a sepa-
rate table from the symbol table itself), and relocation tables, along with
the computed offsets of the text, data, and bgmseats in the outputlf

the file is a libraryeach library member that is linked has itsromodule

table entry (Details not shown here.)

During the first pass, the liek reads in the symbol table from each file,
generally just coging it verbatim into an in-memoryuffer. In symbol
formats that put the symbol names in a separate string table, the linker also
reads in the symbol names and, for ease of subsequent processing, runs
down the symbol table and turns each name string offset into a pointer to
the in-memory version of the string.

Global symboal table

The linker keeps a global symbol table with an entry ¥eryesymbol ref-
erenced or defined iany input file, Figure 3.Each time the linker reads

an input file, it adds all of the fik'dobal symbols to the symbol table,
keeping a chain of the places where the symbol is defined or referenced.
When the first pass is done/egy global symbol should va exactly one

Symbol management 5-155

definition and zero or more references. (This is a minversomplifica-

tion, since UNIX object files disguise common blocks as undefined sym-
bols with non-zero values, but treaf s$raightfornard special case for the
linker to handle.)

Figure 53: Global symbol table

/* abstracted fromgnu |Id a.out */
struct gl osym
{
/* Pointer to next synbol in this symbol’'s hash bucket. */
struct glosym *|ink;
/* Nanme of this symbol. */
char *narme;
/* Value of this synbol as a gl obal synmbol. */
| ong val ue;
/* Chain of external 'nlist’s in files for this synmbol, both defs
and refs. */
struct nlist *refs;
/* Nonzero neans definitions of this synbol as commobn have been seen
and the value here is the |argest size specified by any of them */
i nt nmax_common_si ze;
/* Nonzero nmeans a definition of this global symbol is known to exist.
Li brary nenbers should not be |oaded on its account. */
char defi ned;
/* Nonzero neans a reference to this global symbol has been seen
inafile that is surely being | oaded.
A value higher than 1 is the n_type code for the synbol’s
definition. */
char referenced;
/* 1 neans that this synbol has nultiple definitions. 2 neans
that it has multiple definitions, and sone of them are set
el ements, one of which has been printed out already. */
unsi gned char mul tiply_defined;

}

5-156 Symbomanagement

As the symbols in each file are added to the global symbol table, tee link
links each entry from the file to its corresponding global symbol table en-
try, Figure 4. Relocation items generally refer to symbols byxndehe
modules ovn symbol table, so for eaclternal reference, the linker has
to be able to tell that, forxample, symbol 15 in module A is named
fruit, while symbol 12 in module B is also namiedui t , that is, its

the same symbolEach module has its own set of indices and needs its
own vector of pointers.

Figure 54: Resolving a symbol from a file to the global
symbol table

Each module entry points to vector of symbols from input
file, each of which is set to point to global symbol table en-

try.

Symbol management 5-157

linker symbol table
module Eman

Ll turned into
symbol table, !
indexed by list of pointers

entry number Into symbol
i " tabe

Symbol resolution

During the second pass of linking, the linker resolves symbol references as
it creates the output fileThe details of resolution interact with relocation
(Chapter 7), since in most object formats, relocation entries identify the
program references to the symbol. In the simplest case, in which the link-
er is creating an output file with absolute addresses (such as data refer
ences in Unix linkers) the address of the symbol simply replaces the sym-
bol reference. If the symbol is resolved to address 20486, the linker re-
places the reference with 20486.

5-158 Symbomanagement

Real situations are more comypleFor one thing, there are maways that

a ymbol might be referred to, in a data pointaran nstruction, or een
synthesized from multiple instructionsor another the output of the link-

er is itself frequently relocatablélhis means that if, sag ymbol is re-
solved to offset 426 in the data section, the output file has to contain a re-
locatable reference to data+426 where the symbol reference was.

The output file will usually hae a gmbol table of its own, so the liek
needs to create awevector of inde&es of the symbols to be used in the
output file, then map symbol numbers in outgoing relocation entries to
those ne indices.

Special symbols

Many systems use aWespecial symbols defined by the linker itselinix
systems all require that the linker defeteext , edat a, and end as the

end of the text, data, and bss segments, resggctiThe system sbrk()
routine usegnd as the address of the beginning of the runtime heap, so it
can be allocated contiguously with the existing data and bss.

For programs with constructor and destructor routines,ynhiakers create
tables of pointers to the routines from each input file, with @tickeated
symbol likk ~ CTOR LI ST__ that the language startup stub uses to
find the list and call all the routines.

Name mangling

The names used in object file symbol tables and in linking are often not
the same names used in the source programs from which the object files
were compiled. There are three reasons for th@dang name collisions,
name oerloading, and type checkinglhe process of turning the source
program names into the object file names is caltie mangling This
section discusses mangling typically done to names im&ahR, and C++
programs.

Simple C and Fortran name mangling

In older object formats (before maybe 1970), compilers used names from
the source program directly as the names in the object file, perhaps trun-
cating long names to a name length limit. Thisrked reasonably well,

Symbol management 5-159

but caused problems due to collisions with names reseby compilers
and libraries. For example, Fortran programs that do formatted 1/0 im-
plicitly call routines in the library to do their reads and writes. Other rou-
tines handle arithmetic errors, compheithmetic, and eerything else in a
programming language thattoo complicated to be generated as in-line
code.

The names of all of these routines are in effect reserved names, and part of
the programming folklore was to kwaovhat names not to use. As a-par
ticularly egregious example, this Fortran program would for quiteva fe
years crash an OS/360 system:

CALL MAIN

END

Why? TheOS/360 programming ceantion is that eery routine includ-

ing the main program has a name, and the name of the main program is
MAIN. When a Fortran main program starts, it calls the operating system
to catch a variety of arithmetic error traps, and each trap catch call allocat-
ed some space in a system table. But this program called itself velsursi
over and over agan, each time establishing another nested set of trap calls,
the system table ran out of space, and the system crashed. OS/390 is a lot
more rolust than its predecessors were 30 years ago, but theegserv
name problem remainslt’'s even worse in mixed language programs,
since code in all languages has Yoid using ay hame used by gmof the
language runtime libraries in use.

One approach to the resedvname problem was to use something other
than procedure calls to call the runtime libra@n the PDP-6 and -10, for
example, the interface to the Fortran I/O package was through a variety of
system call instruction that trapped back to the program rather than to the
operating system. This was aetrick, but it was quite specific to the
PDP-6/10 architecture and didrscale well, since there as no way for
mixed language code to share the trap, res ivpractical to link the mini-
mum necessary part of the 1/0 package because tleer@oveasy way to

tell which traps the input modules in a program used.

5-160 Symbomanagement

The approach taken on UNIX systems wasanglethe names of C and
Fortran procedures so thevouldn't inadwertently collide with names of
library and other routinesC procedure names were decorated with a lead-
ing underscore, so thakti n became_nmai n. Fortran names were further
mangled with both a leading and trailing underscore sccthlat became
cal c. (This particular approach made it possible to call C routines
whose names ended with an underscore fronrd&n, which made it pos-
sible to write Fortran libraries in C.) The only significant disadage of

this scheme is that it shrank the C name space from the 8 characters per
mitted by the object format to 7 characters for C and six characters for
Fortran. Atthe time, the Brtran-66 standard only required six character
names, so it wasnmuch of an imposition.

On other systems, compiler designers took an opposite okt assem-
blers and linkers permit characters in symbols that are forbidden in C and
C++ identifiers such as . and $. Rather than mangling names from C or
Fortran programs, the runtime libraries use names with forbidden charac-
ters that cart’ collide with application program names. The choice of
name mangling vs. collision-proof library names is one @&ldper con-
venience. Atthe time UNIX was reritten in C in about 1974, its authors
already had xensve assembler language libraries, and it was easier to
mangle the names of weC and C compatible routines than to go back and
fix all the existing codeNow, twenty years latethe assembler code has

all been rewritten fig imes and UNIX C compilers, particularly ones that
create COFF and ELF object files, no longer prepend the underscore.

C++ type encoding: types and scopes

Another use for mangled names is to encode scope and type information,
which makes it possible to use existing linkers to link programs in C++,
Ada, and other languages thav&aore compl& naming rules than do C,
Cobol, or Fortran.

In a C++ program, the programmer can define yrfamctions and ari-
able with the same name but different scopes and, for functigusnant
types. Asingle program may ka a dobal variableV and a static member
of a classC. : V. C++ permits function nameverloading, with seeral
functions having the same name bufat#nt arguments, such &§i nt

Symbol management 5-161

x) andf (fl oat x). Class definitions can include functions, including
overloaded names, andi@n functions that redefine built-in operators, that
is, a class can contain a function whose name isf@ctef> or ary other
built-in operator.

C++ was initially implemented as a translator called cfront that produced
C code and used an existing lerkso its author used name mangling to
produce names that can sneak through the C compiler into tee ik

the linker had to do with them was its usual job of matching identically
named defined and undefined global names. Since then, nearly all C++
compilers generate object code or at least assembler code dibectly
name mangling remains the standaraywo handle werloaded names.
Modern linkers no know enough about name mangling to demangle
names reported in error messagas, ttherwise lege mangled names
alone.

The influential Annotated C++ Reference Manual described the name
mangling scheme that cfront used, which with minariations has be-
come a de-facto standar@éVe cescribe it here.

Data variable names outside of C++ classestdgmt’mangled at allAn

array called oo has a mangled namefobo. Function names not associ-

ated with classes are mangled to encode the types of the arguments by ap-
pending__F and a string of letters that represent the argument types and
type modifiers listed in Figure 5. For example, a function
func(float, int, unsigned char) becomedunc__ Ffi Uc.

Class names are considered types, and are encoded as the length of the
class name follwed by the name, such d4®ai r. Classses can contain
names of internal classes to multipleds; these "qualified" names are
encoded as Q, a digit indicating the number @l and the encoded
class names, so First::Second:: Third becomes

@B5Fi rst 6Second5Thi rd. This means that a function that ¢sktwo

class aguments f (Pair, First::Second:: Third) becomes

f __F4Pai r B5Fi r st 6Second5Thi r d.

Figure 55: Type lettes in CG++ mangled names

5-162 Symbomanagement

Type Letter
void v
char C
short S
int

long

float

double

long double
varargs
unsigned
const

volatile

signed

pointer
reference
array of lengtm
function
pointer to nth member KB

D0 0w<O0c|® o™~

>
5

Tm

Class member functions are encoded as the function namenter-
scores, the encoded class name, then F and themants, so
cl::fn(void) becomed n__2cl Fv. All of the operators hee four
or five character encoded names as well, such ad for * and__aor
for | =. Special functions including constructodestructoy new, and
delete hge encodings as well _ct, dt, nw,and __dl. A con-
structor for class Pair taking ¢w character pointer guments
Pai r (char *, char*) becomes ct__4Pai r FPcPc.

Finally, snce mangled names can be so long, there arattartcut encod-
ings for functions with multiple arguments of the same type. The Tode
means "same type as the nth argument"Nmudmeans "n arguments the
same type as the mthgament. Afunctionsegnent (Pair, Pair)
would besegnent __ F4Pai r T1 and a functiort r apezoi d(Pai r,
Pair, Pair, Pair) wouldbetrapezoi d__F4Pai r N31.

Symbol management 5-163

Name mangling does the job of giving unique namesviepoyepossible

C++ object at the cost of tremendously long and (lacking linker and de-
bugger support) unreadable names in error messages and listings.
Nonetheless, C++ has an intrinsic problem that it has a potentially huge
namespace. Anscheme for representing the names of C++ objects has to
be nearly as verbose as nhame mangling, and mangled namegedbeha
advantage of being readable by at least some humans.

Early users of mangled names often found that althougbkrbnk theory
supported long names, in practice the long namestdibnk very well,

and performance was dreadful when linking programs that containgd man
long names that were identical up to the last ¢baracters. &rtunately,
symbol table algorithms are a well-understood subject, andone can
expect linkers to handle long names without trouble.

Link-timetype checking

Although mangled names only became popular with theradof C++,

the idea of linker type checking has been around for a long tihfest
encountered it in the Dartmouth PL/I linker in about 1974.) The idea of
linker type checking is quite straightfaavd. Mostlanguages he proce-
dures with declared argument types, and if the caller dogsss the num-

ber and type of arguments that the callee expectsait’ eror, often a
hard-to-diagnose error if the caller and callee are in separately compiled
files. For linker type checking, each defined or undefined global symbol
has associated with it a string representing tgaraent and return types,
similar to the mangled C++ argument types. When thestimksolves a
symbol, it compares the type strings for the reference and definition of the
symbol, and reports an error if hdon’t match. Anice property of this
scheme is that the linker need not understand the type encoding at all, just
whether the strings are the same or not.

Even in an ewironment with C++ mangled names, this type checking
would still be useful, since not all C++ type information is encoded into a
mangled name. The types that functions return, and types of global data
could profitably be checked by a scheme ltks one.

5-164 Symbomanagement

Weak external and other kinds of symbols

Up to this point, we/e mnsidered all linker global symbols to work the
same vay, and each mention of a name to be either a definition or a refer
ence to a symbolMany object formats can qualify a reference as weak or
strong. Astrong reference must be resaly while a weak reference may
be resolved if therg’a cefinition, but its mot an error if it5 not. Linker
processing of weak symbols is muchelikat for strong symbols xeept
that at the end of the first pass an undefined reference to anenigor.
Generally the linker defines undefined weak symbols to be ze@ua v
that application code can checkVeak symbols are primarily useful in
connection with libraries, so we revisit them in Chapter 6.

Maintaining debugging information

Modern compilers all support source languageudglmg. Thatmeans

that the programmer can depthe object code referring to source pro-
gram function andariable names, and set breakpoints and single step the
program. Compilersupport this by putting information in the object file
that provides a mapping from source file line numbers to object code ad-
dresses, and also describes all of the functicarsahes, types, and struc-
tures used in the program.

UNIX compilers hae wo somewhat different debug information formats,
stab (short for symbol table) that are used primarily in a.out, CaieF
non-System V ELF files, andWARF that was defined for System V ELF
files. Microsofthas defined their own formats for their Codes debug-
ger, with CV4 being the most recent.

Line number information

All symbolic deluggers need to be able to map between program address-
es and source line numbers. This lets users set breakpoints by line number
with the delbigger placing the breakpoint at the appropriate place in the
code, and also lets the debugger relate the program addresses in call stack
tracebacks and error reports back to source lines.

Line number information is simplexecpt with optimizing compilers that
can mee mde around so that the sequence of code in the object file
doesnt match the sequence of source lines.

Symbol management 5-165

For each line in the source file for which the compiler generatgcade,

the compiler emits a line number entry with the line number and the be-
ginning of the code. If a program address lies betweenlite number
entries, the delgger reports it as being the lower of the time numbers.

The line numbers need to be scoped by file name, both source file name
and include file nameSome formats do this by creating a list of files and
putting a file inde in each line number entryOthers intersperse "ge
include" and "end include" items in the list of line numbers, implicitly
maintaining a stack of line numbers.

When compiler optimization makes the generated code from a single state-
ment discontiguous, some object formats (notablyARF) let the com-

piler map each byte of object code back to a source line, using a lot of
space in the process, while others just emit approximate locations.

Symbol and variable information

Compilers also hae o emit the names, types, and locations of each pro-
gram\ariable. Thalehug symbol information is somdat more compbe

than mangled names are, because it needs to encode not just the type
names, but for structure types the definitions of the types so thggteb

can correctly format all of the subfields in a structure.

The symbol information is an implicit or explicit tree. At the togelen

each file is a list of typesaviables, and functions defined at the tolle

and within each of those are the fields of structures, variables defined with-
in functions, and so forthWithin functions, the tree includes ‘the
block" and "end block™ magks referring to line numbers, so the agier

can tell what variables are in scope at each point in the program.

The trickiest part of the symbol information is the location information.
The location of a static variable dodstiiange, but a local variable within

a a outine may be static, on the stack, in giser or in gotimized code,
moved from place to place in different parts of the routine. On most archi-
tectures, the standard calling sequence for routines maintains a chain of
saved gack and frame pointers for each nested routine, with the local stack
variables in each routine allocated at knowfsets from the frame pointer

In leaf routines or routines that allocate no local stack variables, a common
optimization is to skip setting the frame pointdihe debugger needs to

5-166 Symbomanagement

know about this in order both to interpret call stack tracebacks correctly
and to find local variables in a routine with no frame pointdeview
does this with a specific list of routines with no frame pointer.

Practical issues

For the most part, the linker just passes through debug information unin-
terpreted, perhaps relocatinggseent-relatie aldresses on the ay
through.

One thing that linkers are starting to do is detecting and removing dupli-
cated debug informationin C and particularly C++, programs usually
have a &t of header files that define types and declare functions, and each
source file includes the headers that define all of the types and functions
that file might use.

Compilers pass through the depinformation for gerything in all of the
header files that each source file includes. This means that if a particular
header file is included by 20 source files that are compiled aretllitmk
gether the linker will receve 2 copies of the debug information for that
file. Althoughdeluggers hee reve had aly trouble disrgarding the du-
plicated information, header files, particularly in C++, can be large which
means that the amount of duplicated header info can be substantial.

ers can safely discard the duplicated material, and increasingly do so, both
to speed the linker and debugger and te space. Insome cases, com-
pilers put the debug information directly into files or databases to be read
by the debgger bypassing the linkr, so he linker need only add or up-
date information about the rehai locations of the segments contried

by each source file, andyadata such as jump tables created by theelink
itself.

When the debug information is stored in an object file, sometimes the de-
bug information is intermixed with the ligt symbols in one big symbol
table, while sometimes the tware separateUnix systems added dedp
information to the compilers a little at a timeepthe years, so it all ended

up in one huge symbol tabl®©ther formats including Microso§’ECOFF

tend to separate liek symbols from debug symbols and both from line
numbers.

Symbol management 5-167

Sometimes the resulting depinformation goes into the output file, some-
times into a separate debfile, sometimes both. The advantage of putting

all of the debug information into the output file is simplicity in théd
process, since all of the information used to debug the program is present
in one place. The most obvious disadvantage is that it makesxthe e
ecutable file enormousAlso if the debug information is separated ous, it’
easy to build a finalersion of a program, then ship theeeutable but not

the debug files. This keeps the size of the shipped program aiad dis-
courages casualverse engineering, but the \a#opers still hae the de-

bug files if needed to debug errors found in the shipping projgbitlX
systems ha a 'strip” command that remes the debugging symbols
from an object file but doedrthange the code at allhe deelopers leep

the unstripped file and ship the strippedsion. Een though the twfiles

are diferent, the running code is the same and the debugger can use the
symbols from the unstripped file to debug a core dump made from the
stripped version.

Exercises

1. Writea C++ program with a lot of functions whose mangled names dif-
fer only in the last f& characters. Sebow long thg take to wmpile.
Change them so the mangled names$ediin the first fev characters.
Time a compile and link agn. Doyou need a v linker?

2. Investigate the debug symbol format that yoawdite linker uses.
(Some on-line resources are listed in the bibiograpWrite a program to
dump the debugging symbols from an object file and seenach of the
source program you can reconstruct from it.

Proj ect

Project 5-1: Extend the linker to handle symbol name resolutibtake

the linker read the symbol tables from each file and create a global symbol
table that subsequent parts of the linker can &seh symbol in the glob-

al symbol table needs to include, along with the name, whether the symbol
is defined, and which module defines it. Be sure to check for undefined
and multiply defined symbols.

5-168 Symbomanagement

Project 5-2: Add symbol value resolution to the lek Snce most sym-
bols are defined relag o segments in linler input files, the value of each
symbol has to be adjusted to account for the address to which each se
ment is relocatedFor example, if a symbol is defined as location 42 with-
in a file’s text segment, and the ggnent is relocated to 3710, the symbol
becomes 3752.

Project 5-3:Finish the vork from project 4-2; handle Unix-style common
blocks. Assigrocation values to each common block.

Libraries 6-169

Chapter 6
Libraries

Every modern linkr handles libraries, collections of object files that are*

included as needed in a linked program. In this chapter wer t@di- *
tional statically linked libraries, leaving the more comdeared libraries *
to Chapters 9 and 10. *
Purpose of libraries *

In the 1940s and early 1950s, programming shops had actual code librarfes
containing reels of tape or later decks of cards that a programoudd w *
visit and select routines to load with his program. Once loaders and link-
ers started to resavsymbolic references, it became possible to automatée
the process by selecting routines from the library that resaherwise *
undefined symbols. *

A library file is fundamentally no more than a collection of object files*
usually with some added directory information to mélfaster to search. *
As alays, the details are more complicated than the basic idea, so we
work them out in this chapteM/e use the term file to refer to a separate *
object file, and module to refer to an object file included in a library *

Library formats

The simplest library formats are just sequences of object modDlese-
guential media lik magnetic or paper tape, thesdittle point in adding a
directory since the linker has to read through the whole libraywa

and skipping wer library members is no slower than reading themGm.

disks, though, a directory can speed up library searching considerably and
is nov a gandard facility.

Using the operating system

0S/360 and its descendants including MVSvple partitioned data
sets(PDS), that contain named members, each of which can be treated as a
sequential file. The system provides features for giving multiple aliases to
a dngle memberfor treating multiple PDS as a single logical PDS for the
duration of a program, for enumerating the names in a logical PDS, and of
course for reading or writing the members. Member names are eight char

6-170 Libraries

acters which probably not coincidentally is the length of an external sym-
bol in a linker. (MVS introduces an extended PDS or PDSE which has
some support for names up to 1024 characters, for the benefit of C, C++,
and Cobol programmers.)

A linker library is merely a PDS where each member is an object file
named by its entry point. Object files that define multiple global symbols
have an dias for each global symbol manually created when the library is
built. The linker searches the logical PDS specified as the library for
members whose names match undefined symlfaisadvantage of this
scheme is that theseho dject library update program needed, since the
standard file maintenance utilities for PDS suffice.

Although I've reve seen a linker do so, a linker on a Unix-Eks/stem
could handle libraries the same way; the library would be a direthary
members object files within the directpnyith each file name being a
global symbol defined in the file. (UNIX permits multiple names for a sin-
gle file.)

Unix and Windows Archive files

UNIX linker libraries use artarchive” f ormat which can actually be used
for collections of ap types of files, although in practicesitarely used for
arything else. Libraries consist of an anaghieadeyfollowed by alternat-
ing file headers and obiject files. The earliest aesshimd no symbol di-
rectories, just a set of object files, but later versions hadus sorts of di-
rectories, settling down to one used for about a decade in B&bns
(text archive headers and a directory called. SYMDEF) and the current
version used with COFF or ELF libraries (text akehheaders with anxe
tension for long file names, directory callejlin System V.4, later er-
sions of BSD, and LinuxWindowvs ECOFF libraries use the same arehi
format as COFF libraries, but the directoaghough also called, has a
different format.

Unix archives

All modern Unix systems use minoanations of the same aretiformat,
Figure 1. The format uses onlyxtecharacters in the arckd headers,
which means that an areki d text files is itself a text file (a quality that

Libraries 6-171

has turned out in practice to be useless.) Eachvarctarts with the
“magic’ eight character string <ar ch>\ n, where\ n is a nev line.
Each archie member is preceded by a 60 byte header containing:

The name of the membgadded to 16 characters as described be-
low.

The modification date, as a decimal number of seconds since the
beginning of 1970.

The user and group IDs as decimal numbers.
The UNIX file mode as an octal number.

The size of the file in bytes as a decimal numlbiethe file size is
odd, the file§ cmontents are padded with a newline character to
malke the total lengthen, although the pad character tstount-

ed in the size field.

The two characters neerse quote and newline, to nmeathe header

a line of text and provide a simple check that the header is indeed a
header.

Each member header contains the modification time, user and
group IDs and file mode, although linkers ignore them.

char
char
char
char
char
char
char

Figure 6-1: Unix archive format

File header:
I <arch>\n
Member header:

nane[16]; /* nenber nane */
nodtine[12]; /* nodification tine */
uid[6]; /* user ID*/

gid[6]; /* group ID */

node[8]; /* octal file node */
size[10]; /* menber size */

eol[2]; /* reverese quote, newine */

6-172 Libraries

Member names that are 15 characters or less arevéulldy enough
spaces to pad the name to 16 characters, or in COFF or ELFearchi
slash followed by enough spaces to pad the total to 16 charagens.

and Wndows both use slashes to separate components in filenafres.)
version of this archie format used with a.out files didrsupport member
names longer than 16 characters, reflecting pre-BSD Unix file system that
limited file names to 14 characters per componégome BSD archies
actually did hae a povision for longer file names, but since linkers didn’
handle the longer names correctipbody used them.)COFF ELF and
Windows archwes dore names longer than 16 characters in an\achi
member called / . This member contains the long names separated by a
slash, newline pair on Unix or a null character omdgvs. Thename

field of the header for member with a long name contains a slashedllo

by the decimal offset in the/ member of the name string. Inikdows
archves, the// member must be the third member of the asehiln

Unix archves the member need not exist if there are no long names, b
follows the symbol directory if it does.

Although the symbol directory formatsueavaried somewhat, tiyeare all
functionally the same, mapping names to member positions so linkers can
directly more o and read the members theeed to use.

The a.out archies dore the directory in a member called. SYMDEF

which has to be the first member in the arehFigure 2. The member
starts with a wrd containing the size in bytes of the symbol table that fol-
lows it, so the number of entries in the table is 1/8 of #leevin that
word. Following the symbol table is a word containing the size of the
string table, and the string table, each string Yadio by a null byte Each
symbol table entry contains a zero-based offset into the string table of the
symbol’s nrame, and the file position of the header of the member that de-
fines the symbol.The symbols table entries are eemtionally in the or

der of the members in the file.

Figure 6-2: SYMDEF directory format

int tablesize; /* size in bytes of follow ng table */
struct syntable {

Libraries 6-173

int symbol; /* offset in string table */
int nenber; /* nenber pointer */

} syntable [];
int stringsize; /* size of string table */
char strings[]; /* null term nated strings */

COFF and ELF arciies use the otherwise impossible naméor the sym-

bol directory rather than . SYMDEF and use a somewhat simpler-for
mat, Figure 3.The first four byte value is the number of symbdisllow-

ing that is an array of file fslets of archie members, and a set of null ter
minated strings. The first offset points to the member that defines the
symbol named by the first string, and so forth. COFF eeshisually use

a big-endian byte order for the symbol tablgarelless of the nate hyte

order of the architecture.

Figure 6-3: COFF / ELF directory format

int nsynbols; /* nunmber of synbols */
int menber[]; /* nenber offsets */
char strings[]; /* null term nated strings */

Microsoft ECOFF archies add a second symbol directory membdégure
4, confusingly also callef that follows the first one.

Figure 6-4: ECOFF second symbol directory

int nmenbers; /* count of nenber offsets */

int members[]; /* nenber offsets */

i nt nsynbol s; /* nunber of synbols */

ushort symdx[]; /* pointers to menber offsets */

char strings[]; /* synbol nanes, in al phabetical order */

6-174 Libraries

The ECOFF directory consists of a count of member entries followed by
an array of member offsets, one per arehirember Following that is a
count of symbols, an array of two-byte member offset pointerswiedo

by the null terminated symbols in alphabetical ardBEre member d$et
pointers contain the one-based ixde the member offset table of the
member that defines the corresponding symbBot.example, to locate the
member corresponding to the fifth symbol, consult the fifth entry in the
pointer array which contains the ind| the members array of thefgdét

of the defining memberin theory the sorted symbols alldaster search-
ing, but in practice the speedup is not likely to bgdasince linkers typi-
cally scan the entire table looking for symbols to load, anyway.

Extension to 64 bits

Even if an archie contains objects for a 64 bit architecture, thenas
need to change the arehiformat for ELF or ECOFF unless the ak&hi
grows greater than 4GBNonetheless some 64 bit architecturegehe df-
ferent symbol directory format with a tfent member name such as
| SYMB4/ .

Intel OMF libraries

The final library format we look at is that used for Intel OMF libraries.
Again, a library is a set of object files with a directory of symbblslike
the Unix libraries, the directory is at the end of the file, Figure 5.

Figure 6-5: OMF libraries

LIBHED record

first object module (file)

second object module (file) ...
LIBNAM module names record
LIBLOC module locations record
LIBDIC symbol directory

Libraries 6-175

LIBHED record
first object module (file)

second object module (file)

LIBNAM module
names record

LIBLOC module
locations record

6-176 Libraries

The library starts with a LIBDIC record that contains the filsaifof the
LIBNAM record in a (block,déet) format used by Intal'ISIS operating
system. Thé.IBNAM simply contains a list of module names, each name
preceded by a count byte indicating the length of the name. The LIBLOC
record contains a parallel list of (block,offset) file locations where each
module starts.The LIBDIC contains a list of groups of counted strings
with the names defined in each module, each group followed by a null
byte to separate it from the subsequent group.

Although this format is a little clunk it contains the necessary informa-
tion and does the job.

Creating libraries

Each archie format has itswn technique for creating librarie®epend- *
ing on hav much support the operating system provides for the \achi *
format, library creation can wolve anything from standard system file *
management programs to library-specific tools.

At one end of the spectrum, IBM MVS libraries are created by the stari-
dard IEBCOPY utility that creates partitioned data sétsthe middle, *
Unix libraries are created by thar’ command that combines files into *
archves. For a.out archies, a separate program called ranlib added the
symbol directory reading the symbols from each membaeating the *
__. SYMDEF member and splicing it into the file. In principle ranlib *
could hae aeated the symbol directory as a real file, then called ar to irn
sert it in the archve, but in practice ranlib manipulated the axehdrectly. *
For COFF and ELF archies, the function of ranlib has med into ar *
which creates the sybol directory ifyaaf the members appear to be ob- *
ject modules, although ar still can create arehof nron-objects. *

At the other end of the spectrum, OMF avekiand Windows ECOFF *
archves ae created by specialized librarian programs, since those formats
have reve been used for anything other than object code libraries.

One minor issue for library creation is the order of object files, particularly
for the ancient formats that didmave a symbol directory Pre-ranlib

Libraries 6-177

Unix systems contained a pair of programs called lorder and tsort to help
create archies. Lordertook as its input a set of object files (not libraries),
and produced a dependgricst of what files refered to symbols in what
other files. (This is not hard to do; lorder was and still is typically imple-
mented as a shell script that extracts the symbols using a symbol listing
utility, does a little text processing on the symbols, then uses standard sort
and join utilities to create its output.) Tsort did a topological sort on the
output of lorderproducing a sorted list of files so each symbol is defined
after all the references to it, allowing a single sequential pesshe files

to resole dl undefined references. The output of lorder was used to con-
trol ar.

Although the symbol directories in modern librarieswaltbe linking pro-
cess to work mgerdless of the order of the objects within a librangst li-
braries are still created with lorder and tsort to speed up the linking pro-
cess.

Searching libraries

After a library is created, the liek has to be able to search fitibrary *
search generally happens during the first linker pass, after all of the indi-
vidual input files hee keen read. If the library or libraries e s/mbol *
directories, the linker reads in the directomyd checks each symbol in *
turn against the lirde’s symbol table. If the symbol is used but undefined, *
the linker includes that symbslfile from the library It's ot enough to *
mark the file for later loading; the liak has to process the symbols in the *
seggments in the library file just l&kthose in an explicitly linked fileThe *
s@gments go in the segment table, and the symbols, both defined and untle-
fined are entered into the global symbol tabités quite common for one *

library routine to refer to symbols in another library routine, f@neple, *
a higher level 1/0 routine like pri nt f might refer to a lower el put c *
orwrit e routine. *

Library symbol resolution is an intenadi process. Afterthe linker has *
made a passver the symbols in the directarif it i ncluded aw files from *
the library during that pass, it should reainother pass to resavany *
symbols required by the included files, until it makes a complete pass o *
the directory and finds nothing else to include. Not all linkers do this*

6-178 Libraries

mary just male a sngle sequential passve& the directory and miss gn *
backwards dependencies from a file to another file earlier in the library
Tools like tsort and lorder can minimize the difficulty due to single-pass*
linkers, but it5 not uncommon for programmers to explcitly list the same*
library several times on the linker command line to force multiple passe$
and resole dl the symbols. *

Unix linkers and manWindows linkers tak an ntermixed list of object *
files and libraries on the command line or in a control file, and process
each in orderso hat the programmer can control the order in which ob-*
jects are loaded and libraries are searched. Although in principle this of-
fers a great deal of flexibility and the ability to interposegbei versions *
of library routines by listing the prite versions before the libraryewr *
sions, in practice the ordered searchvjgles little extra utility Program- *
mers ivariably list all of their object files, then p@pplication-specific li- *
braries, then system libraries for math functions, netvecilities and the *
like, and finally the standard system libraries.

When programmers use multiple librariess itftten necessary to list li- *
braries more than once when there are circular dependencies among*li-
braries. Thats, if a routine in library A depends on a routine in library B, *
but another routine in library B depends on a routine in library A, neither
searching A followed by B or B foleed by A will find all of the required *
routines. Theproblem becomesven worse when the dependencies in- *
volve three or more librariesTelling the linker to search AB AorBAB, *
or sometimesven A B C D A B C D is inelggant but solves the problem. *
Since there are rarely ymuplicated symbols among the libraries, if the *
linker simply searched them all as a group as BMainframe linlers *
and AlX linker do, programmers would be well s=atv *

The primary &ception to this rule is that applications sometimes define
private versions of a fe routines, notablyral | oc andfree, for heap *
storage management, andmw to use them rather than the standard system
versions. er that case, a lirdt flag specifically sayingdon’t look for *
these symbols in the libraryould in most cases be preferable to getting*
the effect by putting the pdte malloc in the search order in front of the *
public one. *

Libraries 6-179

Performance issues

The primary performance issue related to libraries used to be the time
spent scanning libraries sequentiall@nce symbol directories became
standard, reading an input file from a library became insignificantheslo
than reading a separate input file, and so long as libraries are topologically
sorted, the linker rarely needs to reakore than one pasv@ the symbol
directory.

Library searches can still be wlaf a library has a lot of tywnmembers. A
typical Unix system library hasver 600 members.Paticularly in the
now-common case that all of the library members are combined at runtime
into a single shared library yamay, it'd probably be faster to create a sin-
gle object file that defines all of the symbols in the library and link using
that rather than searching a librarWe examine this in more detail in
Chapter 9.

Weak external symbols

The simple definition-reference model used for symbol resolution and li-
brary member selection turns out to be insufficiently flexible forynagn
plications. r example, most C programs call routines in pine nt f
family to format data for output. Printf can format all sorts of data, includ-
ing floating point, which means thatyaprogram that uses printf will get
the floating point libraries linked inven if the program doeshactually

use floating point.

For mary years, PDP-11 Unix programs had to trick the linkerviaica
linking the floating libraries in ingeronly programs. The C compiler
emitted a reference to the special symbbt used in ary routine that
used floating point code. The C library was arranged as in Figure 6, taking
adwantage of thedkct that the linker searched the library sequentidfly

the program used floating point, the reference to fltusmddicause the

real floating point routines to be linked, including the real version of fcvt,
the floating output routine. Then when the 1/0O module was linked to de-
fine printf, there was already a version of fcvt that satisfyed the reference
in the I/O module. In programs that ditinise floating point, the real
floating point routines wuldn’t be loaded, since thereouldn’t be any un-
defined symbols tlyeresolhed, and the reference to fcvt in the I/O module

6-180 Libraries

would be resolved by the stub floating routines that ¥otlee 1/0O routines
in the library.

Figure 6-6: Unix classic C library

Real floating point module, define fltused and fcvt
I/O module, defines printf, refers to fcvt
Stub floating routines, define stub fcvt

While this trick works, using it for more than one ordwymbols would
rapidly become unwieldyend its correct operation critically depends on
the order of the modules in the libraggmething thas easy to get wrong
when the librang rebuilt.

The solution to this dilemma is weakternal symbols, external symbols
that do not cause library members to be loaded. If a definition for the
symbol is &ailable, either in anlicitly linked file or due to a normal
external causing a library member to be linked, a weak external is edsolv
like a rormal external reference. But if no definition igitable, the weak
external is left undefined and infeft resolved to zero, which is not con-
sidered to be an erroin the case abe, the 1/O module would maka
weak reference to fcvt, the real floating point module wouldviottee 1/0O
module in the libraryand no stub routines would be necessddpw if
theres a eference to fltused, the floating point routines are linked and de-
fine fcvt. If not, the reference to fcvt remains unresdlv Thisno longer

is dependent on library ordend will work even if the library makes mul-
tiple resolution passeve the library.

ELF adds yet another kind of weak symbol, a weak definition as well as a
weak reference A weak definition defines a global symbol if no normal
definition is aailable. If a normal definition is @ailable, the weak defini-

tion is ignored. Weak definitions are infrequently usedtlran be useful

to define error stubs without putting the stubs in separate modules.

Libraries 6-181

Exercises

What should a linker do if tav modules in different libraries define the
same symbol? Is it an error?

Library symbol directories generally include only defined global symbols.
Would it be useful to include undefined global symbols as well?

When sorting object files using lorder and tsorg fssible that tsort
won't be ale to come up with a total order for the files. When will this
happen, and is it a problem?

Some library formats put the directory at the front of the library while oth-
ers put it at the end. What practical difference does it make?

Describe some other situations where wedkraals and weak definitions
are useful.

Project

This part of the project adds library searching to theelinkVe’ll experi-
ment with two different library formats. The first is the IBM-8kdrectory
format suggested early in the chaptArlibrary is a directoryeach mem-
ber is a file in the directorgach file having names for each of thgert-
ed files in the directorylf you're using a system that doessupport
Unix-style multiple namesake it. Give each file a single name (choose
one of the exported symbols). Then mmakfie named MAP that contains
lines of the form:

nane symsym sym. ..

where name is the fie'’rame and sym are the rest of the exported sym-
bols.

The second library format is a single fil€he library starts with a single
line:
LI BRARY nnnn pppppp

where nnnn is the number of modules in the library and pppppp isfthe of
set in the file where the library directory stafllowing that line are the
library members, one after anothéit the end of the file, starting atfeét

6-182 Libraries

pppppp is the library directgryhich consists of lines, one per module, in
the format:
pppppp 11111 syml synmR2 syn8 ...

where pppppp is the position in the file where the module starts, Il is the
length of the module, and the symi are the symbols defined in this module.

Project 6-1: Write a librarian that creates a directory-format library from a
set of object files. Be sure to do something reasonable with duplicate sym-
bols. Optionallyextend the librarian so it can @lan «isting library and

add, replace, or delete modules in place.

Project 6-2: Extend the linker to handle directory-format librarié&hen

the linker encounters a library in its list of input files, search the library
and include each module in the library that defines an undefined symbol.
Be sure you correctly handle library modules that depend on symbols de-
fined in other library members.

Project 6-3: Write a librarian that creates a directory-format library from a
set of object files. Note that you canbrrectly write the LIBRAR line

at the front of the file until you kmothe sizes of all of the moduleRea-
sonable approaches include writing a dummy library line, then seeking
back and rewriting line in place with the correct values, collecting the
sizes of the input files and computing the sizesuffiebng the entire file

in main memory Optionally, extend the librarian to update ariging li-

brary, and note that is a bt harder than updating a directory format li-
brary.

Project 6-4. Extend the linker to handle file-format libraries. When the
linker encounters a library in its list of input files, search the library and
include each module in the library that defines an undefined symbol.
You'll have o modify your routines that read object files so thay tten

read an object modules from the middle of a library.

Relocation 7-183

Chapter 7
Relocation

$Revision: 2.2 $
$Date; 1999/06/3001:02:35 %

Once a linker has scanned all of the input files to determine segment sizes,
symbol definitions and symbol references, figured out which library modt
ules to include, and decided where in the output address space all of the
segments will go, the ne stage is the heart of the linking process, reloca*
tion. We use relocation to refer both to the process of adjusting prograrh
addresses to account for non-zero segment origins, and the process of*re-
solving references toxgernal symbols, since the tmare frequently han- *
dled together *

The linker’s first pass lays out the positions of the various segments arfd
collects the sgment-relatie values of all global symbols in the program. *
Once the linker determines the position of each segment, it potentialty
needs to fix up all storage addresses to reflect théauations of the gp *
ments. Ommost architectures, addresses in data are absolute, while thaose
embedded in instructions may be absolute or velafThe linker needs to *
fixup accordinglyas we’ll discuss later *

The first pass also creates the global symbol table as described in Chapter
5. Thelinker also resolves stored references to global symbols to the syrh-
bols’ addresses. *

Har dwar e and software relocation

Since nearly all modern computersveaardware relocation, one might
wonder wly a linker or loader still does software relocation. (This ques-
tion confused me when programming a PDP-6 in the late 1960s, and the
situation has only gotten more complicated since th&hg answer has
partly to do with performance, and partly with binding time.

Hardware relocation allows an operating system te gach process a
separate address space that starts at a fixed known address, whesh mak
program loading easier and peats buggy programs in one address space
from damaging programs in other address spaSefiware linker or load-

7-184 Relocation

er relocation combines input files into one large file shegady to be
loaded into the address space provided by hardware relocation, frequently
with no load-time fixing up at all.

On a machine li& a 86 or 286 with seeral thousand segments, ibuld
indeed be possible to load one routine or global datum per segment, com-
pletely doing aay with software relocation. Each routine or datuimud
start at location zero in its segment, and all global references would be
handled as intesggment references looked up in the systesmgment ta-
bles and bound at runtim&Jnfortunately x86 sgment lookups areery
slow, and a program that did a segment lookup faarg inter-module call
or global data refrence would ke fslower than one linked caantionally.

Equally importantly dthough runtime binding can be useful (a topic we
cover in Chapter 10), most programs are bettdrawbiding it. For relia-
bility reasons, program files are best bound together and addresses fixed at
link time, so thg hold still during debugging and remain consistent after
shipping. Library'bit creep” is a chronic ancewy hard to debug source of
program errors when a program runs usingecgiht versions of libraries
than its authors anticipated. (MSiMlows applications are prone to this
problem due to the large number of shared librarieg ke, with difer-

ent versions of libraries often shipped withrious applications all loaded
on the same computgrEven without the werhead of 286 style genents,
dynamic linking tends to be far slower than static linking, and there’
point in paying for it where & not needed.

Link time and load timerelocation

Marny systems perform both link time and load time relocatiénlinker *
combines a set of input file into a single output file ready to be loaded at
specific address. If when the program is loaded, storage at that addr&ss
isn't available, the loader has to relocate the loaded program to reflect the
actual load addressOn some systems including MS-DOS and MVS, *
evay program is linked as though it will be loaded at location zero. Thé
actual address is chosen fronaitable storage and the program isvays *
relocated as & loaded. Orothers, notably MS Wdows, programs are *
linked to be loaded at a & address which is generallyagable, and no *
load-time relocation is needegoept in the unusual case that the standard

Relocation 7-185

address is already in use by something else. (Current versionaddAMy *
in practice neer do load-time relocation ofxecutable programs, although
they do relocate DLL shared librariesSimilarly, Unix systems neer relo-

cate ELF programs although theo relocate ELF shared libraries.) *

*

*

Load-time relocation is quite simple compared to link-time relocatfdn.

link time, different addresses need to be relocatddrdiit amounts de- *
pending on the size and locations of thgnsents. Atload time, on the *
other hand, the entire program isanably treated as a single biggseent *
for relocation purposes, and the loader needs only to adjust program &d-
dresses by the difference between the nominal and actual load addresses.

Symbol and segment relocation

The linker’s first pass lays out the positions of the various segments and
collects the sgment-relatre values of all global symbols in the program.
Once the linker determines the position of each segment, it needs to adjust
the stored addresses.

. Data addresses and absolute program address references within a
segment need to be adjusteBor example, if a pointer refers to lo-
cation 100, but the segment base is relocated to 1000, the pointer
needs to be adjusted to location 1100.

. Inter-sgment program references need to be adjusted as Aell.
solute address references need to be adjusted to reflecttipene
sition of the target address’ segment, while redasddresses need
to reflect the positions of both the targegrsent and the genent
in which the reference lies.

. References to global symbolsvesain be esohed. Ifan instruction
calls a routinedet onat e, and det onat e is at ofset 500 in a
segment that starts at 1000, the address in that instruction has to be
adjusted to refer to location 1500.
The requirements of relocation and symbol resolution are slightly
different. For relocation, the number of basauwes is fairly small,
the number of segments in an input file, but the object format has
to permit relocation of references toyasdress in ay segment.
For symbol resolution, the number of symbols as greaterbut in

7-186 Relocation

most cases the only action the linker needs te wath the symbol
is to plug the symbdd'value into a word in the program.

Many linkers unify segment and symbol relocation by treating eagh se
ment as a pseudo-symbol whose value is the base ofdheese This
makes sgment-relatre relocations a special case of symbol-rgatnes.

Even in linkers that unify the tevkinds of relocation, there is still one im-
portant difference between thedawinds: a symbol referenceviolves two
addends, the base address of the segment in which the symbol resides and
the offset of the symbol within thatgraent. Soméinkers precompute all

the symbol addresses before starting the relocation phase, adding-the se
ment base to the symbol value in the symbol table. Others look up the
seggment base do the addition as each item is relocated. In most cases,
theres no @mpelling reason to do it one way or the othiera few link-

ers, notably those for real-mode x86 code, a single location can be ad-
dressed relate o sveaal different sgments, so the linker can only deter
mine the address to use for a symbol in the comtean individual refer

ence using a specified segment.

Symbol lookups

Object formats imariably treat each filg’ &t of symbols as an arragnd
internally refer to the symbols using a small intetfer inde in that array.
This causes minor complications for the &nkas nmentioned in Chapter 5,
since each input file will he dfferent indees, as will the output if the
output is relinkable. The most straightforward way to handle this is to
keep an array of pointers for each input file, pointing to entries in the glob-
al symbol table.

Basic relocation techniques

Each relocatable object file contains a relocation table, a list of places in
each segment in the file that need to be relocalée. linker reads in the *
contents of the ggnent, applies the relocation items, then disposes of th&
segment, usually by writing it to the output file. Usually but natagis, *
relocation is a one-time operation and the resulting filet tentelocated *
acain. Someobject formats, notably the IBM 360, are relinkable aeelk *
all the relocation data in the output filén the case of the 360, the output *

Relocation 7-187

file needs to be relocated when loaded, so it has to keep all the relocatfon
information agway.) With Unix linkers, a linker option makes the output *
relinkable, and in some cases, notably shared libraries, the outpysal *
has relocation information since libraries need to be relocated when loaded
as well. *

In the simplest case, Figure 1, the relocation information for a segment is
just a list of places in the gment that need to be relocated. As thedmk
processes the gment, it adds the base position of the segment tcetlie v

at each location identified by a relocation entiyis handles direct ad-
dressing and pointer values in memory for a single segment.

Figure 7-1: Smple relocation entry

address | address | address | ...

Real programs on modern computers are sdgraemore complicated, due
to multiple segments and addressing modHEse classic Unix a.out fer
mat, Figure 2, is about the simplest that handles these issues.

Figure 7-2: a.out relocation entry

int address /* offset in text or data segnent */
unsigned int r_symbolnum: 24, [/* ordinal nunber of add synbol */

r _ pcrel : 1, /* 1 if value should be pc-relative */
r length : 2, [/* log base 2 of value’'s width */
r_extern: 1, /[/* 1 if need to add symbol to value */

Each object file has tweets of relocation entries, one for th&tteggment

and one for the datagment. (Thebss segment is defined to be all zero,
so theres mothing to relocate there.) Each relocation entry contains a bit
r _ext ern to specify whether this is ag®ent-relatre a symbol-rela-

7-188 Relocation

tive entry. If the bit is clearit's gment relatve and r _synbol numis
actually a code for the gment,N_TEXT (4), N_DATA (6), orN_BSS (8).
Thepc_rel ati ve bit specifies whether the reference is absolute or rela-
tive © the current location (“program counter”.)

The exact details of each relocation depend on the type and segments in-
volved. Inthe discussion belg TR, DR, and BR are the relocated bases
of the text, data, and bss segments, resmhcti

For a pointer or direct address within the same segment, the linker adds
TR or DR to the stored value already in the segment.

For a pointer or direct address from one segment to anotherlinker

adds the relocated base of the target segment, TR, DR, or BR to the stored
vaue. Sincea.out input files already k& the target addresses in each-se
ment relocated to the tentati egment positions in the mefile, this is all

that's necessary For example, assume that in the input file, the text starts
at 0 and data at 2000, and a pointer in the text segment points to offset 100
in the data sgment. Inthe input file, the stored pointer will V&the \alue

2200. Ifthe final relocated address of the data segment in the output turns
out to be 15000, then DR will be 13000, and thedinkill add 13000 to

the existing 2200 producing a final stored value of 15200.

Some architectures Y& dfferent sizes of addresseBoth the IBM 360
and Intel 386 ha oth 16 and 32 bit addresses, and the linkeve lgan-
erally supported relocation items of both sizes. In both casespito he
programmer who uses 16 bit addresses toemale that the addresses will
fit in the 16 bit fields; the linker doesrdo any more than verify that the
address fits.

Instruction relocation

Relocating addresses in instructions is somewhat trickier that relocating
pointers in data due to the profusion of often quirkstruction formats.

The a.out format described al@ohas only two relocation formats, abso-
lute and pc-relate, but most computer architectures require a longer list
of relocation formats to handle all the instruction formats.

Relocation 7-189

X86 instruction relocation

Despite the compleinstruction encodings on the x86, from the ér&
point of view the architecture is easy to handle because there are anly tw
kinds of addresses the linker has to handle, direct and poxeel@tie ig-

nore segmentation here, as do most 32 bitling Dataeference instruc-
tions can contain the 32 bit address of thgawhich the linker can relo-
cate the same asyaather 32 bit data address, adding the relocated base of
the segment in which the target resides.

Call and jump instructions use reletiaddressing, so the value in the in-
struction is the difference between the target address and the address of the
instruction itself. For calls and jumps within the same segment, no reloca-
tion is required since the rebai positions of addreses within a singlegse

ment neer changes. Br intersegment jumps the linker needs to add the
relocation for the target segment and subtract that of the instriscsamp’

ment. for a jump from the text to the data segment, kamneple, the relo-

cation value to apply would be DR-TR.

SPARC instruction relocation

Few architectures hae instruction encodings as liekfriendly as the x86.

The SPARC, for xample, has no direct addressing, four different branch
formats, and some specialized instructions used to synthesize a 32 bit ad-
dress, with indiidual instructions only containing part of an addreBse

linker needs to handle all of this.

Unlike the x86, none of the 3IRC instruction formats he room for a 32

bit address in the instruction itseff.his means that in the input files, the
target address of an instruction with a relocatable memory referende can’
be stored in the instruction itselinstead, SPARC relocation entries, Fig-
ure 3, hae an extra fieldr _addend which contains the 32 bit value to
which the reference is mad&ince SPARC relocation carbe described

as simply as x86, theavious type bits are replaced by at ype field that
contains a code that describes the format of the relocation. Also, rather
than dedicate a bit to distinguish between segment and symbol relocations,
each input file defines symbalg ext, . dat a, and . bss, that are de-
fined as the lnnings of their respee Egnents, and segment reloca-
tions refer to those symbols.

7-190 Relocation

Figure 7-3: SPARC relocation entry

int r_address; /* offset of of data to relocate */

int r_index: 24, /* synmbol table index of synbol */
r type:8; [/* relocation type*/

int r_addend; /* datum addend*/

The SPARC relocations fall into three gides: absolute addresses for
pointers in data, relat addresses ofarious sizes for branches and calls,

and the special SETHI absolute address hack. Absolute addresses are re-
located almost the same as on the x86, thestiakids TR, DR, or BR to

the stored &lue. Inthis case the addend in the relocation entryt re@lly
needed, since thesetoom for a full address in the stored value, but the
linker adds the addend to the stored value anyway for congistenc

For branches, the stored offset value is generally zero, with the addend be-
ing the offset to the target, the difference between the target address and
the address of the storedlwve. Thdinker adds the appropriate relocation
value to the addend to get the relocated netadildress. Theit shifts the
relative address right tw hits, since SPARC relat& aldresses are stored
without the lav bits, checks to makaure that the shiftedalue will fit in

the number of bits\ailable (16, 19, 22, or 30 depending on format),
masks the shifted address to that number of bits and adds it into the in-
struction. Thel6 bit format stores 14 \obits in the lav bits of the vord,

but the 15th and 16th bits are in bit positions 20 and ®”ie linker does

the appropriate shifting and masking to store those bits without modifying
the intervening bits.

The special SETHI hack synthesizes a 32 bit address with a SETHI in-
struction, which takes a 22 bialwe from the instruction and places it in

the 22 high bits of a gester followed by an OR immediate to the same
register which provides thewn 10 hts of the address. The linker handles
this with two gecialized relocation modes, one of which puts the 22 high
bits of the relocated address (the addend plus the appropriate relocated
seggment base) in thewn 22 hts of the stored value, and a second mode

Relocation 7-191

which puts the lv 10 hits of the relocated address in the/ [0 hits of the
stored alue. Unlike the branch modes ab® these relocation modes do

not check that each value fits in the stored bits, since in both cases the
stored bits don’represent the entire value.

Relocation on other architectures usesiations on the SPARC tech-
niques, with a different relocation type for each instruction format that can
address memory.

ECOFF segment relocation

Microsoft's COFF object format is an extendeersion of COFF which is
descended from a.out, scsitot surprising that W32 relocation bears a

lot of similarities to a.out relocation. Each section in a COFF object file
can hae a Ist of relocation entries similar to a.out entries, Figuré4e-
culiarity of COFF relocation entries is thatee on 32 bt machines,
theyre 10 bytes long, which means that on machines that require aligned
data, the linker cahjust load the entire relocation table into a memory ar
ray with a single read,ub rather has to read and unpack entries one at a
time. (COFFis old enough that saving owbytes per entry probably ap-
peared wrthwhile.) Ineach entrythe address is the\VR (relative virtual
address) of the stored data, the indethe segment or symbol index, and
the type is a machine specific relocation typer each section of the in-
put file, the symbol table contains an entry with a nane. ltkext , o
sgment relocations use the inxdef the symbol corresponding to the-tar
get section.

Figure 7-4: MS COFF relocation entry
int address; /* offset of of data to relocate */
int index; /* symbol index */
short type; /* relocation type */

On the x86, ECOFF relocations work muctlelikey do in aout. AnIM-
AGE_REL 1386_DIR32 is a 32 bit direct address or stored poiutel-

7-192 Relocation

AGE_REL 1386_DIR32NB is 32 bit direct address or stored pointer rela-
tive o the base of the progam, and an IMAGE_REL 1386 _REL32 is a pc-
relatve 3 hit address.A few aher relocation types support speciahnw
dows features, mentioned later.

ECOFF supports seral RISC processors including the MIPS, Alpha, and
Paver PC. These processors all present the same relocation issues the
SFARC does, branches with limited addressing and multi-instruction se-
guences to synthesize a direct addrdsS€OFF has relocation types to
handle each of those situations, along with theveaional full-word re-
locations.

MIPS, for example, has a jump instruction that contains a 26 bit address
which is shifted tw bits to the left and placed in the 28Mdits of the
program counterlearing the high four bits unchanged.he relocation

type IMAGE_REL_MIPS_JMRDDR relocates a branch target address.
Since theres no pace in the relocation item for the target address, the
stored instruction already contains the unrelocategetaaddress.To do

the relocation, the linker has to reconstruct the unrelocated target address
by extracting the M 26 hts of the stored instruction, shifting and mask-
ing, then add the relocated segment base for the target segment, then undo
the shifting and masking to reconstruct the instructionthe process, the
linker also has to check that thegeir address is reachable from the in-
struction.

MIPS also has an eqaient of the SETHI trick. MIPS instructions can
contain 16 bit literal alues. © load an arbitrary 32 bit value one uses a
LUI (load upper immediate) instruction to place the high half of an imme-
diate value in the high 16 bits of agigter followed by an ORI (OR im-
mediate) to place thewo16 hts in the rgister The relocation types IM-
AGE_REL_MIPS_REFHI and IMAGE_REL_MIPS_REFLO support this
trick, telling the linler to relocate the high orvohalf, respectiely, of the
target value in the relocated instruction. REFHI presents a problem
though. Imaginehat the target address before relocation ¥s(004.23456,

so the stored instruction would contain 0012, the high half of the unrelo-
cated alue. Nav imagine that the relocation value is 1EO0Othe final
value will be 123456 plus 1E000 which is 141456, so the staakct wvill

be 0014. But wit — to do this calculation, the linker needs the falue

Relocation 7-193

00123456, but only the 0012 is stored in the instruction. Where does it
find the lav half with 3456? ECOFF5 answer is that the next relocation
item after the REFHI is IMGE_REL_MIPS_RIR, in which the indg
contains the M half of the target for a preceding REFHThis is af
guably a better approach than using an extra addend field in each reloca-
tion item, since the PAIR item only occurs after REFHI, rather thest-w

ing space inery item. The disadvantage is that the order of relocation
items nav becomes important, while it wasioefore.

ELF relocation

ELF relocation is similar to a.out and COFF relocation. ELF does ratio-
nalize the issue of relocation items with addends and those witheurg ha

two kinds of relocation sections, SHT_REL without and SHT_RELA
with. In practice, all of the relocation sections in a single file are of the
same type, depending on the target architecture. If the architecture has
room for all the addends in the object code like x86 does, it uses REL,

if not it uses RELA.But in principle a compiler could ga sme space on
architectures that need addends by putting all the relocations with zero ad-
dends, e.g., procedure references, in a SHT_REL section and the rest in a
SHT_RELA.

ELF also adds some extra relocation types to handle dynamic linking and
position independent code, that we discuss in Chapter 8.

OMF relocation

OMF relocation is conceptually the same as the scheme® \de2ady
looked at, although the details are quite compl8inceOMF was origi-
nally designed for use on microcomputers with limited memory and stor
age, the format permits relocation todgikace without having to load an
entire segment into memon®OMF intermixes LIDATA or LEDATA data
records with FIXUPP relocation records, with each FIXUPP referring to
the preceding data. Hence, the linker can read affdrba data record,
then read a following FIXURRpply the relocations, and write out the re-
located data.FIXUPPs refer to relocatiorithreads’, two-bit codes that
indirectly refer to a frame, an OMF reloctation base. The linker has to
track the four acte frames, updating them as FIXUPP records redefine
them, and using them as FIXUPP records refer to them.

7-194 Relocation

Relinkable and relocatable output for mats

A few formats are relinkable, which means that the output file has a sym-
bol table and relocation information so it can be used as an input file in a
subsequent linkMany formats are relocatable, which means that the out-
put file has relocation information for load-time relocation.

For relinkable files, the linker needs to create a table of output relocation
entries from the input relocation entries. Some entries can be passed
through verbatim, some modified, and some discarded. Entriesgor se
ment-relatve fixups in formats that dontombine segments can generally

be passed through unmodified other than adjusting the segmert inde
since the final link will handle the relocation. In formats that do combine
seggments, the items’dfset needs to be adjusteBor example, in a linkd

a.out file, an incoming text gment has a genent-relatie relocation at
offset 400, but that segment is combined with other text segments so the
code from that segment is at location 3500. Then the relocation item is
modified to refer to location 3900 rather than 400.

Entries for symbol resolution can be passed through unmodified, changed
to segment relocations, or discarded. If atemal symbol remains unde-
fined, the linler passes through the relocation item, possibly adjusting the
offset and symbol indeto reflect combined segments and the order of
symbols in the output filse’symbol table. If the symbol is resolved, what
the linker does depends on the details of the symbol referdénite ref-
erence is a pc-relag ae within the same segment, the linker can discard
the relocation entrysince the relatie positions of the reference and the
target won’'t move If the reference is absolute or intEgment, the relo-
cation item turns into a segment-relatme.

For output formats that are relocatablet mot relinkable, the linker dis-
cards all relocation items other than segment-k&dixups.

Other relocation for mats

Although the most common format for relocation items is an array of fix-
ups, there are aveother possibilities, including chained references and
bitmaps. Mosformats also hae sgmnents that need to be treated special-
ly by the linker.

Relocation 7-195

Chained references

For external symbol references, one surprisingljedive format is a

linked list of references, with the links in the object code itsEiie sym-

bol table entry points to one reference, the word at that location points to a
subsequent reference, and so forth to the final reference which has a stop
value such as zero or -1. This works on architectures where address refer
ences are a full word, or at least enough bits werdbe maximum size of

an object file sgment. (SRRC branches, for example,Jea 22 hit off-

set which, since jnstructions are aligned on doyte boundaries, is
enough to ceer a 27 byte section, which is a reasonable limit on a single
file segment.)

This trick does not handle symbol references with offsets, which is usually
an acceptable limitation for code references but a problem for data. In C,
for example, one can write static initializers which point into the middle of
arrays:

extern int a[];

static int *ap = &[3];

On a 32 bit machine, the contentsapf area plus 12. A way around this
problem is either to use this technique just for code pointers, or else to use
the link list for the common case of references with risetfand some-
thing else for references with offsets.

Bit maps

On architectures l& the PDP-11, Z8000, and some DSPs that use abso-
lute addressing, code segments can end up with a lot of segment reloca-
tions since most memory reference instructions contain an address that
needs to be relocated. Rather than making a list of locations to fix up, it
can be more efficient to store fixups as a bit map, with one bivéoy e

word in a segment, the bit being set if the location needs to be fixed up.
On 16 bit architectures, a bit mapves ace if more than 1/16 of the
words in a segment need relocation; on a 32 bit architecture if more than
1/32 of the words need relocation.

7-196 Relocation

Special segments
Marny object formats define special segment formats that require special
relocation processing.

. Windows objects hee thread local storage (TLS), a speciafjse
ment containing global variables that is replicated for each thread
started within a process.

. IBM 360 objects hae "pseudorgisters”, similar to thread local
storage, an area with named subchunks referred to frdereatit
input files.

. Mary RISC architectures define "small" segments that are collect-

ed together into one area, with a register set at program startup to
point to that area allowing direct addressing fromvérere in the
program.

In each of these cases, the linker needs a special relocation type or
two to handle special segments.

For Windows thread local storage, the details of the relocation typalg) v
by architecture.For the x86, IMAGE_REL 1386 _SECREL fixups store
the target symbd’ dfset from the beginning of itsgment. Thidixup is
generally an instruction with an indeegster that is set at runtime to
point to the current threasTLS, so the SECREL provides the offset with-

in the TLS. For the MIPS and other RISC processors, there are both SE-
CREL fixups to store a 32 bit value as well as SECRELLO and SECREL-
HI (the latter followed by a PAIR, as with REFHI) to generate section-rel-
ative addresses.

For IBM pseudoregisters, the object format adde telocation types.

One is a PR pseudoregister reference, which stores the offset of the pseu-
doregistertypically into two bytes in a load or store instruction. The other

is CXD, the total size of the pseudgigers used in a program. Thzlwe

is used by runtime startup code to determing hmuch storage to allocate

for a set of pseudoregisters.

For small data sgments, object formats define a relocation type such as
GPREL (global pointer relocation) for MIPS or LITERAL for Alpha
which stores the offset of the target date in the small data @healinker

Relocation 7-197

defines a symbol likk_GP as the base of the small data area, so that run-
time startup code can load a pointer to the area into a fixed register.

Relocation special cases

Many object formats hee "weak" external symbols which are treated as
normal global symbols if some input file happens to define them, or zero
otherwise. (Se€hapter 5 for details.)These usually require no special
effort in the relocation process, since the symbol is either a normal defined
global, or else is zro. Eithemway, references are resolveddilny ather
symbol.

Some older object formats permitted much more comm@kcation than

the formats we/e dscussed hereln the IBM 360 format, for xaample,

each relocation item can either add or subtract the address to which it
refers, and multiple relocation items can modify the same location, permit-
ting references l&A- B where either or both of A and B are external sym-
bols.

Some older linkers permitted arbitrarily complelocations, with elabo-
rate r@erse polish strings representing link-time expressions to be re-
solved and stored into program memorklthough these schemes had
great gpressve power, it turned out to be power thataant very useful,

and modern linkers ha retreated to references with optional offsets.

Exercises

Why does a SPARC linkr check for addressverflow when relocating
branch addresses, but not when doing the high amddots of the ad-
dresses in a SETHI sequence?

In the MIPS example, a REFHI relocation item needs aviolig PAIR
item, but a REFLO doesn’ Why not?

References to symbols that are pseudo-registers and thread local storage
are resolved as offsets from the start of the segment, while normal symbol
references are resolved as absolute addresses. Why?

We said that a.out and COFF relocation doekahdle references kkA-B
where A and B are both global symbofSan you come up with a way to

7-198 Relocation

fake it?
Project

Recall that relocations are in this format:
| oc seg ref type ...

where loc is the location to be relocatedy sethe segment &' in, ref is
the segment or symbol to which the relocation refers, and type is the relo-
cation type.For concreteness, we define these relocation types:

. A4 Absolute reference. The four bytes at loc are an absolute refer
ence to segment ref.

. R4 Relatve reference. Thdour bytes at loc are a reledi refer-
ence to segment ref. That is, the bytes at loc contain teeedite
between the address after loc (loc+4) and the target address. (This
is the x86 relatie jump instruction format.)

. AS4 Absolute symbol reference. The four bytes at loc are an abso-
lute reference to symbol ref, with the addend being the value al-
ready stored at loc. (The addend is usually zero.)

. RS4 Relatve symbol reference.The four bytes at loc are a relai
reference to symbol ref, with the addend being the value already
stored at loc. (The addend is usually zero.)

. U2 Upper half reference. The tnbytes at loc are the most signifi-
cant two bytes of a reference to symbol ref.

. L2 Lower half reference. The twbytes at loc are the least signifi-
cant two bytes of a reference to symbol ref.

Project 7-1. Make the linker handle these relocation typdster the link-

er has created its symbol table and assigned the addresses of all gf the se
ments and symbols, process the relocation items in each inpuiKédgp

in mind that the relocations are defined tfeetfthe actual byte values of
the object data, not the hespresentation. ou're writing your linker in

perl, it's probably easiest to coat each sgment of object data to a bina-

ry string using the perl pack function, do the relocations theveddoack

to hex using unpack.

Relocation 7-199

Project 7-2: Which endian-ness did you assume when you handled your
relocations in project 7-1? Modify your linker to assume the other enndi-
an-ness instead.

Loading and werlays 8-201

Chapter 8
Loading and overlays

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

Loading is the process of bringing a program into main memory so it can
run. Inthis chapter we look at the loading process, concentrating on load-
ing programs that va dready been linkd. Maly systems usedo have *
linking loaders that combined the linking and loading process, but those
have row practically disappeared, with the only one | Wnof on aurrent *
hardware being on MVS and the dynamic linkers Nvebver in chapter *
10. Linkingloaders weren’all that different from plain linkers, with the *
primary and obvious di#rence being that the output was left in memory
rather than placed in a file.

Basic loading

We uched on most of the basics of loading in Chapter 3, in thextafte
object file design. Loading is a little different depending on whether a
program is loaded by mapping into a process address space via the virtual
memory system or just read in using normal I/O calls.

On most modern systems, each program is loaded into a fresh address
space, which means that all programs are loaded at a known fixed address,
and can be linked for that address. In that case, loading is pretty simple:

. Read enough header information from the object file to find out
how much address space is needed.

. Allocate that address space, in separate segments if the object for
mat has separate segments.

. Read the program into the segments in the address space.

. Zero out ag bss space at the end of the program if the virtual

memory system doedrdo so aitomatically.

. Create a stack segment if the architecture needs one.

8-202 Loadingand werlays

. Set up ai runtime information such as prograngaments or en-
vironment variables.

. Start the program.
If the program isnt’ mapped through the virtual memory system,
reading in the object file just means reading in the file with normal
"read" system callsOn systems which support shared read-only
code sgments, the system needs to check whether thdready
a opy of the code sgment loaded in and use that rather than mak-
ing another cop

On systems that do memory mapping, the process is slightly more compli-
cated. Thesystem loader has to create the segments, then arrange to map
the file pages into the segments with appropriate permissions, read-only
(RO) or copy-on-write (C®/). In some cases, the same page is double
mapped at the end of one segment and the beginning of the ek, R
one and C® in the otherin formats like compact Unix a.out.The data
seggment is generally contiguous with the bss segment, so the loader has to
zero out the part of the last page after the end of the data (since the disk
version usually has symbols or something else there), and allocate enough
zero pages following the data toveothe bss segment.

Basic loading, with relocation

A few g/stems still do load time relocation faxeeutables, and mgndo
load time relocation of shared libraries. Someg MS-DOS, lack usable
hardware relocation. Others, BkMVS, hare hardware relocation but are
descended from systems that didmveit. Somehave hardware reloca-
tion but can load multiplexecutable programs and shared libraries into
the same address space, so linkerstcannt on having specific addresses
available.

As discussed in Chapter 7, load-time relocatiorarssimpler than link-

time relocation, because the entire program is relocated as a unit. If, for
example, the program is linked as though it would be loaded at location
zero, but is indct loaded at location 15000, all of the places in the pro-
gram that require fixups will get 15000 addédter reading the program

into memorythe loader consults the relocation items in the object file and
fixes up the memory locations to which the items point.

Loading and wverlays 8-203

Load-time relocation can present a performance problem, because code
loaded at different virtual addresses tarsually be shared between ad-
dress spaces, since the fixups for each address spacdeaendifOneap-

proach, used by MVS, and to some extent bgdaivs and AlX is to cre-

ate a shared memory area present in multiple address spaces and load oft-
used programs into that. (MVS calls this this link pack ar&aiy has the
problem that different processes dayet separate copies of writable data,

so the application has to be written to allocate all of its writable storage

explicitly.
Position-independent code

One popular solution to the dilemma of loading the same program at dif-
ferent addresses is position independent code (PTG¢. idea is simple,
separate the code from the data and generate codedhatchange re-
gadless of the address at whichsitbaded. Thatvay the code can be
shared among all processes, with only data pages bewajeptd each
process.

This is a surprisingly old idea. TSS/360 used it in 1966, and It den’
lieve it was original there. (TSS was notoriouslyggy, but | can report
from personal experience that the PIC features really worked.)

On modern architectures,gthot difficult to generate PICxecutable code.

Jumps and branches are generally either PCrelatirelatve o a kase
register set at runtime, so no load-time relocation is required for them.
The problem is with data addressinghe code cam’contain ay direct

data addresses, since thoseuld be relocatable andowldn't be RC.

The usual solution is to create a table of data addresses in a data page and
keep a pointer to that table in agrster so e code can use inds ad-
dressing relatie © that register to pick up the data. This works at the cost

of an extra indirection for each data reference, but thdik’'the question

of how to get the initial data address into the register

TSS/360 position independent code

TSS took a brute-force approackvery routine had te addresses, the
address of the code, known as the V-con (short for V style address con-
stant, which een non-PIC code needed) and the address of the data,

8-204 Loadingand werlays

known as the R-conThe standard OS/360 calling sequence requires that
the caller provide an 18awd register sz aea pointed to by register 13.
TSS extended the wa aea to 19 words and required that the caller place
callees R-con into that 19th word before making the call, Figur&each
routine had in its data gment the V-cons and R-cons for all of the rou-
tines that it called, and stored the appropriate R-con into the outgemg sa
area before each call. The main routine in a programveetaiavearea
from the operating system which provided the initial R-con.

Figure 81: TSS style two-address proceelaall

TSS style with R-con in the eaaea

Cal l er:

- copy Rcon into
save area

- load V-con into R15

- Call via R15

Cal | ee:

- load R con from save area
- addresses of sub-procedures
in data area

Loading and wverlays 8-205

: R13
Caller: -~ |
- copy R-¢on into e
savearea s’ ' register save
- load V-con into R15. | aredfof ‘T"anee
- Call'viaR15

Callee: ,i
- load R-con from save area . " Recon L72{R13]
- addresses of sub-procedures

in data area

This scheme wrked, but is poorly suited for modern systenfisr one
thing, copying the R-cons made the calling sequend&yb For anotherit
made procedure pointersdwvords, which didrt matter in the 1960sub
IS an issue n@ since in programs written in C, all pointersvhao be he
same size. (The C standard doesmandate it, but far too muckxisting
C code assumes it to do anything else.)

8-206 Loadingand werlays

Per-routine pointer tables

A simple modification used in some Unix systems is to treat the address of
a procedures data as the address of the procedure, and to place a pointer
to the procedure’mde at that address, Figure Po call a procedure, the
caller loads the data address into an agreed data poigitgerehen loads

the code address from the location pointed to by the data pointer into a
scratch register and calls the routine. This is easy to implement, and has
adequate if not fabulous performance.

Figure 82: Code via data pointers

[ROMP style data table with code pointer at thgitweing.]
Caller:
- Load pointer table
address into RP
- Load code address from
O(RP) into RC

- Call via RC

Cal | ee:

- RP points to pointer
tabl e

- Tabl e has addresses of
poi nter tables for
sub- procedur es

Loading and werlays 8-207

(-
a4 Per-procedure 7~

(ranps. RP - pointer table
- Load pointer table T }_

address info RP _[func: | -func: | codeaddress
- Load code address L _ other

from O(RP) into RC pointers
- Call via RC REET
Callee:: .
- RP. points to pointer,

table

- Table has addresses of
pointer tables for
sub-procedures

Table of Contents

IBM’s AIX uses a more sophisticatedrsion of this scheme. AIX pro-
grams group routines intmoduleswith a module typically being the ob-

ject code generated from a single C or C++ source file or a group of relat-
ed source files. The data segment of each module contains a table of con-

8-208 Loadingand werlays

tents (TOC), which contains the combined pointer tables for all of the rou-
tines in the module as well as some of the small static data for the routines.
Register 2 alvays contains the address of TOC for the current module,
permitting direct access to the static data in the TOC, and indirect address-
ing of code and data to which the TOC contains pointers. Calls within a
single module are a single "call" instruction, since the caller and callee
share the sameOC. Intermodule calls hee © switch TOCs before the

call and switch back afterwards.

Compilers generate all calls as a call instruction, followed by a placehold-
er no-op instruction, which is correct for intra-module calls. When the
linker encounters an intenodule call, it generates a routine called a glob-
al linkage orglink at the end of the modutetext segnent. Theglink
saves the callers TOC on the stack, loads the caledOC and address
from pointers in the the callerTOC, then jumps to the routing.he link-

er redirects each inter-module call to the glink for the called routine, and
patches the following no-op to a load instruction that restores @@ T
from the stack. Procedure pointers are pointers to a TOC/codeapair
calls through a pointer use a generic glink routine that usesQReahd
code address the pointer points to.

This scheme makes intra-module calls as fast as possitikr-module

calls returns are slowed somewhat by the detour through the glink routine,
but the slavdown is small compared to some of the altexestwe’ll see

in a moment.

ELF position independent code

Unix System V Release 4 (SVR4) introduced a PIC scheme similar to the
TOC scheme for its ELF shared libraries. The SVR4 schemevisump-
versally used by systems that use Elxieceitables, Figure 3lt has the ad-
vantage of returning to the normal a@ntion that the address of a proce-
dure is the address of the code for the procedugaxdiess of whether

one is calling PIC code, found in shared ELF libraries, or non-PIC code,
found in regular ELF »xecutables, at the cost of somewhat morerpar

tine overhead than the TOC scheme’s.

Loading and wverlays 8-209

Its designers noticed that an ELkeeutable consists of a group of code
pages followed by a group of data pages, agdrdéess of where in the
address space the program is loaded, the offset from the code to the data
doesnt change. Saf the code can load itsan address into a gester the

data will be at a known distance from that address, and references to data
in the prograns ovn data segment can use efficient based addressing with
fixed offsets.

The linker creates a global offset table (GOT) containing pointers to all of
the global data that thexezutable file addresses. (Each shared library has
its own G, and if the main program were compiled with PIC, which it
normally isn't, it would hge a GOT & well.) Sincethe linker creates the
GOT, there is only one pointer per ELKkeeutable for each datumgard-

less of hav mary routines in thexecutable refer to it.

If a procedure needs to refer to global or static datayp’'to he proce-
dure itself to load up the address of theTGOhe details &ry by architec-
ture, but the 386 code is typical:
call .L2;; push PCin on the stack
.L2:
popl %bx ;; PCinto register EBX
addl $ _GL.OBAL_OFFSET_TABLE +[.-.L2],%bx;; adjust ebx to GOT address

It consists of a call instruction to the immediately following location,
which has the effect of pushing the PC on the stack but not jumping, then
a pop to get the seed PC in a egster and an add immediate of thefelif

ence between the address theTGOd address the target of the call. In an
object file generated by a compjléreres a pecial R_386_GOTPC relo-
cation item for the operand of the addl instructidntells the linker to
substitute in the offset from the current instruction to the base address of
the GA, and also serves as a flag to the éinko build a GO@ in the out-

put file. In the output file, ther®no elocation needed for the instruction
since the distance from the addl to theTd©fixed.

Figure 83: PIC code and data with fixed offsets

picture of code page swing constant offset to dataven

8-210 Loadingand werlays

though loaded at different addresses irfed#nt address

spaces.
: L _,. Load address unknown
- XX0000 © at |ink time
+'Code | - ;--x-xnmg "o gall 1.2
R ¢ : , || L2: | popr&bx 7
it L [| add $FFO, $bx
- !
| fixed distance from
L b . ,;_ﬁ,i,L XX1000 code to GOT
data . GOT

segment

Once the GO regster is loaded, code can reference local static data using
the GO regster as a basegister snce the distance from a static datum

in the prograns data segment to the QQs fixed at ink tine. Addresses

of global data arebhbound until the program is loaded (see Chapter 10),
so to reference global data, code has to load a pointer to the data from the
GOT and then deference the pointéfhis extra memory reference nesk
programs somewhat ster, dthough it's a st that most programmers are
willing to pay for the cowenience of dynamically linked librariesSpeed
critical code can use static shared libraries (Chapter 9) or no shared li-
braries at all.

Loading and werlays 8-211

To support PIC, ELF defines a handful of special relocation types for code
that uses the GDin addition R_386_GOTPC or its eqalent. Theexact
types are architecture-specific, but the x86 is typical:

. R 386 _@G0T32: The relatve location of the slot in the GO
where the linkr has placed a pointer to thevai symbol. Used
for indirectly referenced global data.

. R 386_GOTOFF: The distance from the base of the TG the
given symbol or address. Used to address static datavelatthe
GOlT.

. R 386_RELATI VE: Used to mark data addresses in a PIC shared
library that need to be relocated at load time.

For example, consider this scrap of C code:
static int a; /* static variable */
extern int b; /* global variable */

a =1, b= 2;

Variablea is allocated in the bss segment of the object file, which means it
is at a knavn fixed distance from the GO Object code can reference this
variable directly using the ebx as a base register and a-@latve dfset:

novl $1, a@OTOFF(%ebx) ;; R 386_GOTOFF reference to variable "a"

Variableb is global, and its location may not be krountil runtime if it
turns out to be in a different ELF library axeeutable. Inthis case, the
object code references a pointebtahich the linker creates in the GO

novl b@3O0T(%ebx), %eax;; R 386 _GOT32 ref to address of variable "b"
novl $2, (%eax)

Note that the compiler only creates the R_386_GOT32 reference, and it’
up to the linker to collect all such references andardiks for them in
the G{.

Finally, ELF shared libraries contain R_386_RELATIVE relocation entries
that the runtime loadgpart of the dynamic linker we examine in Chapter
10, uses to do loadtime relocaio8ince the text in shared libraries is in-

8-212 Loadingand werlays

variably PIC, theres no elocation entries for the code, but data tée’
PIC, so there is a relocation entry faely pointer in the data genent.
(Actually, you can build a shared library with non-PIC code, in which case
there will be relocation entries for the text as well, although almost no-
body does that since it makes the text non-sharable.)

PIC costs and benefits

The advantages of PIC are straighforward; it makes it possible to load
code without haing to do load-time relocation, and to share memory
pages of code among processemedhough thg don’t al have the same
address space allocated. The possible desstdges are shkalowns at

load time, in procedure calls, in function prolog and epilog, amedath
slower code.

At load time, although the codegseent of a PIC file needrbe relocated,
the data segment does. Indarlibraries, the TOC or GDcan be ery
large and it can taka bng time to resol dl the entries. This is as much

a problem with dynamic linking, which we’ll address in Chapter 10, as
with PIC. Handling R_386_RELATIVE items or the eepéent to relo-
cate GO pointers to data in the sameeeutable is fairly fast, but the
problem is that manGOT entries point to data in othexecutables and
require a symbol table lookup to resolve.

Calls in ELF eecutables are usually dynamically linkedge calls within
the same librarywhich adds significantverhead. V¢ revsit this in Chap-
ter 10.

Function prolog and epilogs in ELF files are quitevsi@hey haveto sare

and restore the GDregster, ebx in the x86, and the dummy call and pop

to get the program counter into ajister are quite sl From a perfor

mance viewpoint, the TOC approach used in AlX wins here, since each
procedure can assume that its TOC register is already set at procedure en-

try.

Finally, PIC code is bigger and si@r than non-PIC. The sh@own
varies greatly by architectures. On RISC systems with plentygi$tess
and no direct addressing, the loss of orgaster to be the TOC or GO
pointer isnt significant, and lacking direct addressingytimeed a constant

Loading and wverlays 8-213

pool of some sort gwvay. The worst case is on the x8&.only has six
registers, so losing one of them to be theT@®inter can mak wde sig-
nificantly worse. Sinceéhe x86 does he drect addressing, a reference to
external data that would be a simple MOr ADD instruction in non-PIC
code turns into a load of the address fo#d by the MQ® or ADD, which
both adds anxtra memory reference and uses yet another precigiss re
ter for the temporary pointer.

Paticularly on x86 systems, the performance loss in PIC code is signifi-
cant in speed-critical tasks, enough so that some systems retreat to a sort-
of-PIC approach for shared librarie®8Ve'll rewvisit this issue in the e

two chapters.

Bootstrap loading

The discussions of loading up to this poinvdal presumed that therg’
already an operating system or at least a program loader resident in the
computer to load the program of intere3te chain of programs being
loaded by other programs has to start sehese, so the obvious question

is haw is the first program loaded into the computer?

In modern computers, the first program the computer runs after adrardw
reset ivariably is stored in a ROM known as tbe bootstrap ROM. as in
"pulling ones =If up by the bootstrapsWhen the CPU is powered on or
reset, it sets its registers to a known st&de. x86 systems, forxample,

the reset sequence jumps to the address 16 bytesg theldop of the sys-
tem’s address space. The bootstrap ROM occupies the top 64K of the ad-
dress space andJ®1 code then starts up the comput&n IBM-compati-

ble x86 systems, the booOM code reads the first block of the flgpp
disk into memoryor if that fails the first block of the first hard disk, into
memory location zero and jumps to location zefthe program in block

zero in turn loads a slightly larger operating system boot program from a
known place on the disk into memognd jumps to that program which in
turn loads in the operating system and starts it. (There cavebemere
steps, e.g., a boot manager that decides from which disk partition to read
the operating system boot program, but the sequence of increasingly capa-
ble loaders remains.)

8-214 Loadingand werlays

Why not just load the operating system directly? Because you filaan
operating system loader into 512 bytes. The fingtl loader typically is

only able to load a single-segment program from a file witheal fname

in the top-leel directory of the boot disk.The operating system loader
contains more sophisticated code that can read and interpret a configura-
tion file, uncompress a compressed operating syskegutable, address
large amounts of memory (on an x86 the loader usually runs in real mode
which means that &’ tricky to address more than 1MB of memagryThe

full operating system can turn on the virtual memory system, loads the
drivers it needs, and then proceed to run uses-jgograms.

Marny Unix systems use a similar bootstrap process to getnusee pro-
grams running. The kernel creates a process, then stuffg ktttan pro-

gram, only a fer dozen bytes long, into that process. The finogram
executes a system call that runs /etc/init, the user mode initialization pro-
gram that in turn runs configuration files and starts the daemons and login
programs that a running system needs.

None of this matters much to the applicatiovelgrogrammeybut it be-

comes more interesting if youawt to write programs that run on the bare
hardware of the machine, since then you need to arrange to intercept the
bootstrap sequence somewhere and run your program rather than the usual
operating systemSome systems makhis quite easy (just stick the name

of your program in ATOEXEC.BAT and reboot \ihdows 95, for @am-

ple), others mak it nearly impossible. It also presents opportunities for
customized systemsk-or example, a single-application system could be
built over a Unix kernel by naming the application /etc/init.

Tree dructured overlays

We dose this chapter with a description of tree-structureetlays, a
widely used scheme in the days before virtual memory to fit programs into
memories smaller than the progran®verlays are another technique that
dates back to before 1960, and are still in use in some memory-constrained
environments. Seeral MS-DOS linkers in the 1980 supported them in a
form nearly identical to that used 25 years earlier on mainframe comput-
ers. Althoughoverlays are nw little used on corentional architectures,

the techniques that linkers use to create and man&geays remain inter

Loading and wverlays 8-215

esting. Alsothe intersggment call tricks desloped for werlays point the

way to dynamic linking. In environments l&kDSPs with constrained pro-
gram address spacesjeday techniques can be a good way to squeeze
programs in, especially sinceveslay managers tend to be smaillhe
0S/360 eerlay manager is only about 500 bytes, and | once wrote one for

a gaphics processor with a 512 word address space that used only a dozen
words or so.

Overlaid programs glide the code into a tree of segments, such as the one
in Figure 4.

Figure 84: A typical overlay tree
ROOT calls Aand D.A calls B and C, D calls E and F.

8-216

Loadingand werlays

The programmer manually assigns object files orviddal object code
sgments to verlay s@gments. Siblingseggments in the werlay tree share

Loading and werlays 8-217

the same memoryln the example, segments A and D share the same
memory B and C share the same memoagd E and F share the same
memory The sequence of gments that lead to a specific segment is
called a path, so the path for E includes the root, D, and E.

When the program starts, the system loads the root segment which con-
tains the entry point of the prograrkach time a routine makes a o

ward" intersggment call, the werlay manager ensures that the path to the
call target is loadedFor example, if the root calls a routine in segment A,
the orerlay manager loads section A ifgthot already loaded. If a routine

in A calls a routine in B the manager has to ensure that B is loaded, and if
a routine in the root calls a routine in B, the manager ensures that both A
and B are loadedUpwards calls dot’require ag linker help, since the
entire path from the root is already loaded.

Calls across the tree are knowneaslusivecalls and are usually consid-
ered to be an error sincesit'ot possible to returnOverlay linkers let the
programmer forcexelusive alls for situations where the called routine is
known not to return.

Defining overlays

Overlay linkers createdverlaid executables from ordinary input object
files. Theobjects dort contain ai overlay instructions, Intstead, the pro-
grammer specifies theverlay structure with a command language that the
linker reads and interprets. Figure 5 shows the samedayp structure as
before, with the names of the routines loaded into each segment.

Figure 85: A typical overlay tree

ROOT oontains rob and rick

calls A with aaron and andy and D.

A calls B (bill and betty) and C (chris), D (dick, dot) calls E
(edgar) and F (fran).

8-218 Loadingand werlays

' ROOT It

main()"
T Fobl ek

\
A D /
| “aaron() andy() 1 ¢ dick() dot()
e 1] e
L bill() =] E |F V
‘betty() ‘chris() N o
| . edgar() = fran()

L em—

Figure 6 shass the linker commands that one mightegio the IBM 360
linker to create this structure. Spacing doeswdtter so we've indented
the commands to shothe tree structure OVERLAY commands define
the beginning of each segment; commands with the saer&y name

Loading and wverlays 8-219

define segments thav@lay each other Hence the first WERLAY AD
defines segment A, and the second defingeiseD. Overlay sgments
are defined in a depth first left to right trealkv INCLUDE commands
name logical files for the linker to read.

Figure 86: Linker commands

I NCLUDE ROB
I NCLUDE RI CK
OVERLAY AD
| NCLUDE AARCN, ANDY
OVERLAY BC
I NCLUDE BI LL, BETTY
OVERLAY BC
I NCLUDE CHRI S
OVERLAY AD
I NCLUDE DI CK, DOT
OVERLAY EF
I NCLUDE EDGAR
OVERLAY EF
| NCLUDE FRAN

It's up to he programmer to lay outverlays to be space fedcent. The
storage allocated for each segment is the maximum lengthyaffahe
s@gments that occypthe same space-or example, assume that the file
lengths in decimal are as follows.

Name Size

rob 500
rick 1500
aaron 3000
andy 1000
bill 1000

betty 1000

8-220 Loadingand werlays

chris 3000
dick 3000
dot 4000
edgar 2000
fran 3000

The storage allocation, looks éikHgure 7. Each segment starts immedi-
ately after the precedingg®ent in the path, and the total program size is
the length of the longest path. This program is fairly well balanced, with
the longest path being 11500 and the shortest being 8000. Juggling the
overlay structure to find one that is as compact as possible while still being
valid (no exclusive alls) and reasonably fefient is a black art requiring
considerable trial and erroSnce the werlays are defined entirely in the
linker, each trial requires a relink but no recompilation.

Figure 87: Overlay stoage hyout

0 rob

500 rick

2000 aaron 2000 dick

5000 andy 5000 dot

6000 bill 6000 chris

7000 betty 9000 ---- 9000 edgar 9000 fran
8000 ---- 11000 ---- 12000 ----

Implementation of overlays

The implementation of werlays is surprisingly simple. Once the letk
determines the layout of thegseents, relocates the code in eaajnsent
appropriately based on the memory location of trggm&mt. Thelinker

needs to create a segment table which goes in the oesg and, in
each segment, glue code for each routine that is thettaf a davnward

call from that segment.

Loading and werlays 8-221

The segment table, Figure 8, lists eacinsent, a flag to note if the e
ment is loaded, the gments path. andinformation needed to load the
segment from disk.

Figure 8-8: Idealized segment table

struct segtab {
struct segtab *path;// preceding segnent in path
bool ean ispresent;// true if this segment is |oaded
int menoffset; // relative | oad address
int diskoffset; // location in executable
int size; // segnent size

} segtab[];

The linker interposes the glue code in front of eactwrdeard call so the
overlay manager can ensure that the requirggineat(s) are loadedSeg-
ments can use glue code in highemldut not laver level routines. r
example, if routines in the root call aaron, dick, and béiiy root needs
glue code for each of those three symbols. If segment A contains calls to
bill, betty, and chris, A needs glue code for bill and chris, but can use the
glue for betty already present in the root. Allawvard calls (which are

to global symbols) are resolved to glue code, Figure 9, rather than to the
actual routine.The glue code has tovaaany egsters it changes, since it
has to be transparent to the calling and called routine, then jump into the
overlay managerproviding the address of the real routine and an indica-
tion of which segment that address is ihere we use a pointdmt an in-

dex into the segtab array would work as well.

Figure 89: Idealized glue code for x86

glue’ betty: call |oad overlay
.long betty // address of real routine
.long segtab+N // address of segnent B's segtab

8-222 Loadingand werlays

At runtime, the system loads in the roogmsent and starts it. At each
downward call, the glue code calls the#eday manager The manager
checks the target gments datus. Ifthe sgment is present, the manager
just jumps to the real routindf the segment is not present, the manager
loads the target segment ang anloaded preceding gments in the path,
marks ag conflicting sgments as not present, marks the newly loaded
segments as present, and jumps.

Overlay fine points

As always, details ma& degant tree structuredverlays messier than tiie
might be.

Data

We've been talking about structuring codeedays, without ag consider-

ation of where the data goetdividual routines may h& pivate data
loaded into the ggnents with the routines, butyadata that has to be re-
membered from one call to thexteneeds to be promoted high enough in
the tree that it wn't get unloaded and reloaded, which would losg an
changes made. In practice, it means that most global data usually ends up
in the root. When &trtran programs areverlaid, overlay linkers can posi-

tion common blocks appropriately to be used as communication areas.
For example, if dick calls eday and fran, and the latter aviboth refer to a
common block, that block has to reside in segment D to be a communica-
tion area.

Duplicated code

Frequently the werall structure of anwerlaid program can be impved

by duplicating code. In ourxample, imagine that chris and edgar both
call a routine called ggewhich is 500 bytes longA single copy of greg
would hare © go in the root, increasing the total loaded size of the pro-
gram, since placing it anywhere else in the tree would require a forbidden
exclusive all from either chris or edg On the other hand, if both ge
ments C and E include copies of greg, therall loaded size of the pro-
gram doesrt'increase, since the end of segment C would grom 9000

Loading and wverlays 8-223

to 9500 and of E from 11000 to 11500, both still smaller than the 12000
bytes that F requires.

Multiple regons

Frequentlya programs alling structure doeshimap very well to a single
tree. Owerlay systems handle multiple codgioms, with a separatever-
lay tree in each geon. Callsbetween regions wkys go through glue
code. ThdBM linker supports up to four regions, although in nxperi-
ence | neer found a use for more than two.

Overlay summary

Even though werlays hae keen rendered largely obsolete by virtual mem-
ory, they remain of historical interest because were the first significant use
of link-time code generation and modificatiohhey require a great deal

of manual programmer avk to design and specify thevalay structure,
generally with a lot of trial and error “digital oagni”, but they were a

very effectve way to squeeze a large program into limited memory.

Overlays originated the important technique of "wrapping" call instruc-
tions in the linker to turn a simple procedure call into one that did more
work, in this case, loading the requirededay. Linkers hae used wrap-
ping in a variety of \wys. Themost important is dynamic linking, which
we cover in chapter 10, to link to a called routine in a library that may not
have keen loaded yet. Wrapping is also useful for testing andgighg,

to insert checking or validation code in front of a suspect routine without
changing or recompiling the source file.

Exercises

Compile some small C routines with PIC and non-PIC cddiev much
slower is the PIC code than non-PIC? Is it enough slower to be warth ha
ing non-PIC versions of libraries for programmers in a hurry?

In the werlay example, assume that dick and dot each call both edgar and
fran, but dick and dot don¢all each other Restructure thewerlay so that

dick and dot share the same space, and adjust the structure so that the call
tree still works. Hav much space does theaslaid program ta& now?

8-224 Loadingand werlays

In the overlay segment table, theseho eplicit marking of conflicting
sgments. Wherhe werlay manager loads agment and the genent’s

path, hev does the manager determine what segments to mark as not pre-
sent?

In an overlaid program with no xxlusive alls, is it possible that a series
of calls could end up jumping to unloaded codgwary? Inthe example
above, what happens if rob calls bill, which calls aaron, which calls chris,
then the routines all returnflow hard would it be for the linker overlay
manager to detect or pent that problem?

Project

Project 8-1:Add a feature to the lirde to "wrap" routines. Create a liek
switch
-W nane

that wraps the gen routine. Changell references in the program to the
named routine to be referencesmoap _nane. (Be sure not to miss in-
ternal references within the segment in which the name is defined.)
Change the name of the routinerteal _nane. This lets the program-
mer write a wrapper routine calleat ap _nane that can call the original
routine ag eal _nane.

Project 8-2:Starting the linker skeleton from chapter 3, write a tool that
modifies an object file to wrap a name. That is, referencaan® turn

into external references tor ap_nane, and the existing routine is re-
namedr eal _name. Why would one want to use such a program rather
than building the feature into the lek (Hint: consider the case where
you're not the author or maintainer of the linker.)

Project 8-3: Add support to the linkr to produce »ecutables with posi-
tion-independent code &\&ld a fev new four-byte relocation types:

| oc seg ref GA4

|l oc seg ref GP4

loc seg ref GR4

| oc seg ref ER4

The types are:

Loading and wverlays 8-225

. GA4: (GOT address) At location loc, store the distance to th@ GO

. GP4: (GOT pointer) Put a pointer to symbol ref in the G@nd at
location loc, store the Glrelative dfset of that pointer.

. GR4: (GOT relative) Location loc contains an address igreent
ref. Replacdahat with the offset from the beginning of the G®
that address.

. ER4: (Executable relate) Location loc contains an address rela-
tive © the beginning of thexecutable. Theef field is ignored.

In your linker’s first pass, look for GP4 relocation entries, build aTGO
segment with all the required pointers, and allocate thd G&ment just
before the data and BSSgseents. Inthe second pass, handle the GA4,
GP4, and GR4 entries. In the output file, create ER4 relocation entries for
ary data that wuld hare o be elocated if the output file were loaded at
other than its nominal address. This would include anything marked by an
A4 or AS4 relocation entry in the input. (Hint: Doforget the GQ@.)

Shared libraries 9-227

Chapter 9
Shared libraries

$Revision: 2.3 $
$Date; 1999/06/15 03:30:36 $

Program libraries date back to the earliest days of computing, since pro-
grammers quickly realized that theould sae a bt of time and dbrt by *
reusing chunks of program cod&Vith the adent of compilers for lan- *
guages like Fortran and COBOL, libraries became an gné part of pro- *
gramming. Compiledanguages use libraries explictly when a program*
calls a standard procedure such as sqrt(), andugee libraries implicitly — *
for 1/0O, corversions, sorting, and mgrother functions too compteto ex- *
press as in-line code. As languagesehgptten more compie libraries *
have gtten correspondingly more compleWhen| wrote a Fortran 77 *
compiler twenty years ago, the runtime librargsnalready more evk *
than the compiler itself, and a Fortran 77 library is far simpler than one fdr
C++. *

The gravth of language libraries means not only that all programs includ&
library code, bt that most programs include a lot of the same library code®
Every C program, for example, uses the system call liprearly all use *
the standard 1/O library routines such as printf, andymae other popu- *
lar libraries for math, networking, and other common functiomhis *
means that in a typical Unix system with a thousand compiled programns,
theres dose to a thousand copies of printf. If all those programs could
share a single cgpof the library routines theuse, the savings in disk *
space would be substantiglOn a Unix system without shared libraries, *
theres five © ten m@abytes of copies of printf alonejven more impor *
tant, if running programs could share a single in-memory obghe li- *
braries, the main memory savings could be very significant, bethgsa *
memory and improving paging behavior *

All shared library schemes work essentially the sarag vt link time, *
the linker searches through libraries as usual to find modules thateesol¥
otherwise undefined external symboBut rather than copying the con- *
tents of the module into the output file, the énknakes a note of what li- *
brary the module came from, and puts a list of the libraries inxhe e*

9-228 Sharetibraries

ecutable. Whenhe program is loaded, startup code finds those librarie$
and maps them into the progranaidress space before the program starts;}
Figure 1. Standard operating system file mapping semantics automatically
share pages that are mapped read-only oy-oapwrite. Thestartup code *
that does the mapping may be in the operating systemxebetable, ina *
special dynamic linker mapped into the process’ address space, or some
combination of the three.

Figure 9-1: Program with shared libraries

Picture of gecutable, shared libraries

main excutable, app librarg library

files from different places

arrows shw refs from main to app, mainto C, app to C

Shared libraries 9-229

mydir/myprog Sl e
Ishlibflibc

executable i

program /€ runtime

library
I

lappl/lib/applib
/ i
|| application
library

In this chapterwe look at static linked shared libraries, that is, libraries
where program and data addresses in libraries are bourectdables at

link time. In the next chapter we look at the considerably more cample
dynamic linked libraries. Although dynamic linking is more flexible and
more "modern”, i8 dso a lot slower than static linking because a great
deal of work that would otherwise Veleen done once at link time is re-
done each time a dynamically linked program starts. Also, dynamically
linked programs usually use extigiie” code to call routines in shared li-

9-230 Sharetibraries

braries. Theglue usually contains geral jumps, which can sl down
calls considerably On systems that support both static and dynamic
shared libraries, unless programs need tkteaeflexibility of dynamic
linking, they’re faster and smaller with static linked libraries.

Binding time

Shared libraries raise binding time issues thattdauply to cowentional-
ly linked programs.A program that uses a shared library depends wn ha
ing that shared libraryvailable when the program is rur©ne kind of er
ror occurs when the required libraries atgmésent. Thers not much to
be done in that case other than printing a cryptic error message&ignd e

ing.

A much more interesting problem occurs when the library is preseant, b
the library has changed since the program wagdinkna conventionally

linked program, symbols are bound to addresses and library code is bound
to the eecutable at link time, so the library the programswinked with is

the one it uses gardless of subsequent changes to the libranth static
shared libraries, symbols are still bound to addresses at link time, but li-
brary code isrt’ bound to the wecutable until run time.(With dynamic
shared libraries, they’re both delayed until runtime.)

A static linked share library canthange very much without breaking the
programs that it is bound tdSince the addresses of routines and data in
the library are bound into the programyashanges in the addresses to
which the program is bound will causevbe.

A static shared library can sometimes be updated without breaking the
programs that use it, if the updates can be made in a way thatewe

ary addresses in the library that programs dependTdms permits "minor
version" updates, typically for small bug éis. Lager changes unaid-

ably change program addresses, which means that a system either needs
multiple versions of the librayyor forces programmers to relink all their
programs each time the library changéspractice, the solution isvari-

ably multiple versions, since disk space is cheap and trackimg elery
executable that might he used a shared library is rarely possible.

Shared libraries 9-231

Shared libraries in practice

In the rest of this chapter we concentrate on the static shared libraries pro-
vided in UNIX System V Release 3.2 (COFF format), older Linux systems
(a.out format), and the BSD/OS detive o 4.4BSD (a.out and ELF fer
mats.) Allthree work nearly the same, but some of the differences are in-
structve. The SVR3.2 implementation required changes in the linker to
support searching shared libraries, axigesve gerating system support

to do the runtime startup required. The Linux implemention required one
small tweak to the linkr and added a single system call to assist in library
mapping. TheBSD/OS implementation made no changes at all to the
linker or operating system, using a shell script to provide the necessary ar
guments to the linker and a modified version of the standard C library
startup routine to map in the libraries.

Address space management

The most dificult aspect of shared libraries is address space management.
Each shared library occupies a fixed piece of address space in each pro-
gram in which it is usedDifferent libraries hee © use non-gerlapping
addresses if tlyecan be used in the same program. Althoughpt'ssible

to check mechanically that libraries dbaverlap, assigning address space

to libraries is a black art. On the one hand, you want teleane slop in
between them so if a weversion of one library grows a little, itom’t

bump into the next library up. On the other hand, gdike to put your
popular libraries as close together as possible to minimize the number of
page tables needed. (Recall that on an x86, for example stlaesxond

level table for each 4MB block of address spacevadti a pocess.)

Theres invaiably a master table of shared library address space on each
system, with libraries starting some place in the address spacedy

from applications.Linux’s dart at h& 60000000, BSD/OS at a0000000.
Commercial vendors subdivide the address space further betesédarv
supplied libraries and user and third-party libraries which start at
a0800000 in BSD/OS, for example.

Generally both the code and data addresses for each librarypéioilg
defined, with the data area starting on a page boundary a page abietw
the end of the codeThis makes it possible to create minor version up-

9-232 Sharetibraries

dates, since the updates frequently dohange the data layout, but just
add or change code.

Each indvidual shared library exports symbols, both code and data, and
usually also imports symbols if the library depends on other librafks.
though it would werk if one just linked routines together into a shared li-
brary in haphazard ordereal libraries use some discipline in assigning
addresses to makt easier or at kast possible, to update a library without
changing the addresses of exported symbBt®. code addresses, rather
than eporting the actual address of each routine, the library contains a
table of jump instructions which jump to all of the routines, with the ad-
dresses of the jump instructiongperted as the addresses of the routines.
All jump instruction are the same size, so the addresses in the jump table
are easy to compute andmwt change from version to version so long as
no entries are added or deleted in the middle of the t&hte. extra jump

per routine is an insignificant sWdown, kut since the actual routine ad-
dresses are not visible,me&ersions of the library will be compatibleen

if routines in the n@ version arert’al the same sizes and addresses as in
the old version.

For exported data, the situation is more difficult, since tisene esy way

to add a leel of indirection like the one for code addresses. In practice it
turns out that>gorted data tends to be tables of known sizes that change
rarely such as the array d@¥l LE structures for the C standard 1/O library

or single word values l&ker r no (the error code from the most recent
system call) oit znane (pointers to tw grings giving the name of the
current time zone.With some manual effort, the programmer who creates
the shared library can collect the exported data at the front of the data sec-
tion in front of aly anorymous data that are part of individual routines,
making it less likely that exported addresses will change from erston

to the next.

Structur e of shared libraries

The shared library is arxecutable format file that contains all of the Ii-
brary code and data, ready to be mapped in, Figure 2.

Shared libraries 9-233

Figure 9-2: Structue of ypical shared library

File headera.out, COFFor BELF header
(Initialization routine, not avays present)
Jump table

Code

Global data

Private data

Some shared libraries start with a small bootstrap routine used to map in
the rest of the libraryAfter that comes the jump table, aligned on a page
boundary if its not the first thing in the libraryThe exported address of
each public routine in the library is the jump table entfgllowing the

jump table is the rest of thextesection (the jump table is considered to be
text, since its executable code), then theq@orted data and ate data.

The bss segment logically follows the data, but as ynoHimer executable

file, isn't actually present in the file.

Creating shared libraries

A UNIX shared library actually consists ofdwelated files, the shared li-
brary itself and a stub library for the linker to ugelibrary creation utili-
ty takes as input a normal library in anahiformat and some files of con-
trol information and uses them to create create tloefites. Thestub li-
brary contains no code or data at all (other than possibly daiotstrap
routine) but contains symbol definitions for programsduohkvith the li-
brary to use.

Creating the shared librarymolves these basic steps, which we discuss in
greater detail below:

. Determine at what address the librargode and data will be load-
ed.
. Scan through the input library to find all of the exported code sym-

bols. (Oneof the control files may be a list of some of symbols not
to export, if thg’'re just used for inter-routine communication with-
in the library.)

9-234 Sharetibraries

. Make up te jump table with an entry for each exported code sym-
bol.
. If theres an nitialization or loader routine at the beginning of the

library, compile or assemble that.

. Create the shared library: Run the linker and linkrghing to-
gether into one bigxecutable format file.

. Create the stub library: Extract the necessary symbols from the
newly created shared libraryeconcile those symbols with the
symbols from the input librayycreate a stub routine for each li-
brary routine, then compile or assemble the stubs and combine
them into the stub libraryln COFF libraries, thers’dso a little
initialization code placed in the stub library to be linked into each
executable.

Creating the jump table

The easiest ay to create the jump table is to write an assembler source
file full of jump instructions, Figure 3, and assemble it. Each jump in-
struction needs to be labelled in a systematic way so that the addresses can
later be extracted for the stub library.

A minor complication occurs on architectureslike x86 that hae dffer-

ent sizes of jump instructiond-or libraries containing less than 64K of
code, short 3 byte jumps are adequdater libraries larger than that,
longer 5 byte jumps are necessakixed sizes of jumps ardn/ery satis-
factory, both because it makes the table addresses harder to compute and
because it mads it far harder to makthe jump table compatible in future
builds of the library The simplest solution is to maldl of the jumps the
largest size.Alternatively, make dl of the jumps short, and for routines
that are too farwaay for short jumps, generate anonymous long jump in-
structions at the end of the table to which short instructions can jump.
(That's wsually more trouble than &'worth, since jump tables are rarely
more than a f@ hundred entries in the first place.)

Figure 9-3: Jump table

Shared libraries 9-235

start on a page boundary
.align 8; align on 8-byte boundary for variable |ength insns
JUWP read: jnmp _read
.align 8
JUMP wite: jnmp _wite

_read: ... code for read()

_wite: ... code for wite()

Creating the shared library

Once the jump table and, if needed, the loader routine are created, creating
the shared library is easylust run the linker with suitable switches to
make the code and data start at the right places, and link together the boot-
strap, the jump tables, and all of the routines from the input librEms

both assigns addresses t@rgthing in the library and creates the shared
library file.

One minor complication wrolves interlibrary references. If you're creat-

ing, say a ared math library that uses routines from the shared C library
the references ka o be nade correctly Assuming that the library whose
routines are needed has already been built when the linker buildsathe ne
library, it needs only to search the old libraygub library just like any

normal executable that refers to the old libraryhis will get all of the ref-
erences correct. The only remaining issue is that there needs to be some
way to ensure that anprograms that use the wdibrary also link to the

old library. Suitable design of the mestub library can ensure that.

Creating the stub library

Creating the stub library is one of the trickier parts of the shared library
process. Br each routine in the real librampe stub library needs to con-
tain a corresponding entry that defines both tkgoded and imported
global symbols.

9-236 Sharetibraries

The data global symbols are whesethe linker put them in the shared li-
brary image, and the most reasonable way to get their values is to create
the shared library with a symbol table and extract the symbols from that
symbol table.For code global symbols, the entry points are all in the jump
table, so it gqually easy todract the symbols from the shared library or
compute the addresses from the base address of the jump table and each
symbol’s position in the table.

Unlike a rormal library module, a module in the stub library contains no
code nor data, but just has symbol definitions. The symbuésthde db-
fined as absolute numbers rather than relocatable, since the shared library
has already had all of its relocation donkhe library creation program
extracts each routine from the input libraand from that routine gets the
defined and undefined globals, as well as the typ& ¢redata) of each
global. Itthen writes the stub routine, usually as a little assembler pro-
gram, defining each text global as the address of the jump tablesantry
data or bss global as the actual address in the shared, ld@n@ryach un-
defined global as undefinetlvhen it has a complete set of stub sources, it
assembles them all and combines them into a normal librarywarchi

COFF stub libraries use a fifent, more primitie design. Thg're single
object files with two named sectionsThe. | i b section contains all of the
relocation information pointing at the shared libraryd the. i ni t sec-
tion contains initialization code that is lied into each client program,
typically to initialize variables in the shared library.

Linux shared libraries are simpler still, an a.out file containing the symbol
definitions with "set gctor" symbols described in more detail belmr
use at program link time.

Shared libraries v@ rames assigned that are mechanicallyvedrfrom
the original library adding a version numbeif the original library vas
called/ I'i b/ l'i bc. a, the usual name for the C libragnd the current
library wversion is 4.0, the stub library might be
/lib/libc_s.4.0.0.a and the shared Ilibrary image
/shlib/libc_s.4.0.0. (The extra zero allows for minor version up-
dates.) Oncehe libraries are mad into the appropriate directories
they're ready to use.

Shared libraries 9-237

Version naming

Any shared library system needs a way to handle multiple versions of li-
braries. Wherma library is updated, the meversion may or may not be ad-
dress-compatible and call-compatible with previoessions. Unixsys-
tems address this issue with the multi-numbension names mentioned
above.

The first number changes each time w necompatible version of the li-
brary is releasedA program linked with a 4.x.x library canise a 3.x.X

nor a 5.x.x. The second number is the minersion. OnSun systems,
each &ecutable requires a minor version at least as great as the one with
which the &ecutable was lingd. Ifit were linked with 4.2.x, forxample,

it would run with a 4.3.x library but not a 4.1.QQther systems treat the
second component as an extension of the the first component, ge an e
ecutable linked with a 4.2.x library will only run with a 4.2.x libraijhe

third component is umersally treated as a patchvée Executables prefer

the highest\ailable patch leel, but ary patch level will do.

Different systems ta&kdightly different approaches to finding the appro-
priate libraries at runtime. Sun systemwéia firly comple runtime
loader that looks at all of the file names in the library directory and picks
the best one. Linux systems use symbolic linksvimdathe search pro-
cess. Ifthe latest version of the libc.so library is version 4.2.2, the li-
brarys name islibc_s.4.2.2, but the library is also linked to

i bc_s. 4. 2 so the loader need only open the shorter name and the cor
rect version is selected.

Most systems permit shared libraries to reside in multiple directofies.
ervironment variable such a€D LI BRARY_PATH can werride the path

built into the eecutable, permitting deslopers to substitute libraryev-

sions in their puate directories for delgging or performance testing.
(Programs that use the "set user ID" feature to run as other than the current
user hae t ignore LD LI BRARY_PATH to prevent a malicious user

from substituting a trojan horse library.)

9-238 Sharetibraries

Linking with shared libraries

Linking with static shared libraries is far simpler than creating the li-
braries, because the process of creating the stub libraries has already done
nearly all the hard work to makhe linker resole program addresses to

the appropriate places in the libraries. The only hard part is arranging for
the necessary shared libraries to be mapped in when the program starts.

Each format provides a trick to let the linker create a list of libraries that
startup code can use to map in the libraries. COFF libraries use a brute
force approach; ad hoc code in the éinkreates a section in the COFF file
with the names of the libraries. The Linux linker had a somewhat less
brute force approach that created a special symbol type called a&€set v
tor". Setvectors are treated l&k normal global symbols, except that if
there are multiple definitions, the definitions are all put in an array named
by the symbol. Each shared library stub defines a set vector symbol
____SHARED LI BRARI ES__ that is the address of a structure containing
the name, version, and load address of the librahe linker creates an
array of pointers to each of those structures and calls iISHARED LI -

BRARI ES __ so the runtime startup code can useTiie BSD/OS shaed
library scheme uses no linkr tricks at all. Rather, the shell script
wrapper used to create a shared executable runs down the list of li-
braries passed as arguments to the command or used implicitly (the C
library), extracts the file names and load addesses for those libraries
from a list in a system file, writes a little assembler soce file contain-

ing an array of structures containing library names and load addess-

es, assembles that file, and includes the object file in the list ofgar
ments to the linker.

In each case, the references from the program code to the library addresses
are resolved automatically from the addresses in the stub library.

Running with shared libraries

Starting a program that uses shared librarieslves three steps: loading
the executable, mapping the libraries, and doing library-specific initializa-
tion. Ineach case, the programeeutable is loaded into memory by the
system in the usualay. After that, the different schemesveige. The
System V.3 kernel had extensions to handle COFF shared lixenyta-

Shared libraries 9-239

bles and the kernel internally looked at the list of libraries and mapped
them in before starting the program. The disadages of this scheme
were ‘kernel bloat”, adding more code to the nonglalg kernel, and in-
flexibility, since it didnt permit ary flexibility or upgradability in future
versions. (SystenV.4 scrapped the whole scheme and went to ELF dy-
namic shared libraries which we address in the next chapter.)

Linux added a single uselib() system call that took the file name and ad-
dress of a library and mapped it into the program address space. The start-
up routine bound into thexecutable ran down the list of libraries, doing a
uselib() on each.

The BSD/OS scheme uses the standard mmap() system call that maps
pages of a file into the address space and a bootstrap routine thagds link
into each shared library as the first thing in the libraiye startup routine

in the eecutable runs den the table of shared libraries, and for each one
opens the file, maps the first page of the file to the load address, and then
calls the bootstrap routine which is at a fixed location near thiarbeg

of that page following thexecutable file headerThe bootstrap routine

then maps the rest of the text segment, the data segment, and maps fresh
address space for the bss segment, then returns.

Once the segments are all mapped, teasigen some library-specific ini-
tialization to do, for example, putting a pointer to the systevir@mment
strings in the global ariable envi r on specified by standard CThe
COFF implementation collects the initialization code from theni t
seggments in the program file, and runs it from the program startup code.
Depending on the library it may or may not call routines in the shared li-
brary The Linux implemention doesndo ay library initialization and
documents the problem thaanables defined in both the program and the
library dont work very well.

In the BSD/OS implementation, the bootstrap routine for the C library re-
ceives a winter to the table of shared libraries and maps in all of the other
libraries, minimizing the amount of code that has to be linked intgiddi

ual eecutables. Recentersions of BSD use ELF formaixecutables.
The ELF header hasiant er p section containing the name of an "inter
preter" program to use when running the fig&SD uses the shared C Ii-

9-240 Sharetibraries

brary as the interpretewhich means that the kernel maps in the shared C
library before the program starts, saving therleead of some system
calls. Thelibrary bootstrap routine does the same initializations, maps the
rest of the libraries, and, via a pointealls the main routine in the pro-
gram.

The malloc hack, and other shared library problems

Although static shared libraries Jea excellent performance, their long-
term maintenance is difficult and error-prone, as this anecdote illustrates.

In a static librarydl intra-library calls are permanently bound, and it
possible to substitute a pate version of a routine by redefining the rou-
tine in a program that uses the libraRor the most part, thatot a prob-
lem since fer programs redefine standard library routines tilkad() or
strcnp(), or even if they do it’'s not a major problem if the program us-
es a pwate version ofst r cnp() while routines in the library call the
standard version.

But a lot of programs define theiwn versions ofmal | oc() and
free(), the routines that allocate heap storage, and multgigions of
those routines in a program dowork. Thestandardst r dup() routine,

for example, returns a pointer to a string allocated by malloc, which the
application can free when no longer need#dhe library allocated the
string one version of malloc, but the application freed that string with a
different version of free, chaos would ensue.

To permit applications to provide their owrengions of malloc and free,

the System V.3 shared C library uses an ugly hack, Figure 4. The s/stem’
maintainers redefined malloc and free as indirect calls through pointers
bound into the data part of the shared library that we’llraallll oc_ptr
andfree_ptr.

extern void *(*malloc_ptr)(size_t);

extern void (*free_ptr)(void *);

#define malloc(s) (*malloc_ptr)(s)

#define free(s) (*free_ptr)(s)

Shared libraries 9-241

Figure 9-4: The malloc hack

picture of program, shared C library.
malloc pointer and init code
indirect calls from library code

shared

program library

"I | call |

| ;a:unc{) malloc() |

\ Il malloc()

malloc() Ay

AT I & |
| R I\Q' H gk

* pointer to malloc

Then thg recompiled the entire C librargnd added these lines (or the as-
sembler eqwialent) to the. i ni t section of the stub librango hey are
included in gery program that uses the shared library.

#undef mal | oc

#undef free

mal | oc_ptr = &mal |l oc;
free ptr = &free;

9-242 Sharetibraries

Since the stub library is bound into the application, not the shared Jibrary
its references to malloc and free are resolat the time each program is
linked. Iftheres a pivate version of malloc and free, it puts pointers to
them in the pointers, otherwise it will use the standard librargion. Ei-

ther way, the library and the application use the same version of malloc
and free.

Although the implementation of this trick made maintenance of the library
harder and doesrt’ scale to more than aviehand-chosen names, the idea
that intra-library calls can be made through pointers that are resolved at
program runtime is a good one, so long asaitomated and doedrre-

quire fragile manual source code tweak¥e'll find out hev the automat-

ed version works in the next chapter.

Name conflicts in global data remain a problem with static shared li-
braries. Considethe small program in Figure 5. If you compile and link
it with any of the shared libraries we described in this chapterill print

a datus code of zero rather than the correct error code. sTheatause

int errno;

defines a n& instance of errno which igrbound to the one in the shared
library. If you uncomment thext er n, the program works, becausemno
it's an undefined global reference which the linker binds to the errno in the
shared library As we’ll see, dynamic linking solves this problem as well,
at some cost in performance.

Figure 95: Address conflict example

#i ncl ude <stdi o. h>

/* extern */
int errno;

mai n()

{
unl i nk("/non-existent-file");
printf("Status was %\ n", errno);

Shared libraries 9-243

Finally, even the jump table in Unix shared libraries has been known to
cause compatibility problems. From the point ofwigf routines outside

a dared librarythe address of eaclxmorted routine in the library is the
address of the jump table entrut from the point of vier of routines
within the library the address of that routine may be the jump table,entry
or may be the real entry point to which the table entry jumps. Theee ha
been cases where a library routine compared an address passedjas an ar
ment to see if it were one of the other routines in the libnaryrder to do
some special case processing.

An obvious but less than totallyfe€tive lution is to bind the address of
the routine to the jump table entry while building the shared libsarge

that ensures that all symbolic references to routines within the library are
resoled to the table entryBut if two routines are within the same object
file, the reference in the object file is usually a re¢ateference to the
routines address in the text genent. (Sincat’s in the same object file,
the routines aldress is known and other than this peculiar case, share’
reason to maka ymbolic reference back into the same object filkl)
though it would be possible to scan relocatabie teferences for alues

that match eported symbol addresses, the most practical solution to this
problem is ‘don’t do that”, don’t write code that depends on recognizing
the address of a library routine.

Windows DLLs hae a smilar problem, since within each EXE or DLL,

the addresses of imported routines are considered to be the addresses of
the stub routines that makndirect jumps to the real address of the rou-
tine. Again, the most practical solution to the problem is “dalo that”

Exercises

If you look in a /shlib directory on a Unix system with shared libraries,
you'll usually see three or four versions of each library with names lik
libc_s.2.0.1andlibc_s.3.0.0. Why not just hae the most re-
cent one?

9-244 Sharetibraries

In a stub librarywhy is it important to include all of the undefined globals
for each routine,\&n if the undefined global refers to another routine in
the shared library?

What difference would it makif a dub library were a single large«e
ecutable with all of the librarg’symbols as in COFF or Linux, or an actu-
al library with separate modules?

Project

WEe'll extend the linker to support static shared librari@is involves
several subprojects, first to create the shared libraries, and then tadink e
ectables with the shared libraries.

A shared library in our system is merely an object file which isbin&t a
given address. Therean be no relocations and no unresdlgymbol ref-
erences, although references to other shared libraries are OK. Stub li-
braries are normal directory-format or file-format libraries, with each entry
in the library containing thexported (absolute) and imported symbols for
the corresponding library member but no text or d&ach stub library

has to tell the linkr the name of the corresponding shared libréryou

use directory format stub libraries, a file called "LIBRARAME" con-

tains lines of tet. Thefirst line is the name of the corresponding shared
library, and the rest of the lines are the names of other shared libraries up-
on which this one depends. (The spacevgrs name collisions with
symbols.) Ifyou use file format libraries, the initial line of the library has
extra fields:

LI BRARY nnnn pppppp fffff ggggg hhhhh ...

where ffff i s the name of the shared library and the subsequent fields are
the names of gnother shared libraries on which it depends.

Project 9-1: Make the linker produce static shared libraries and stub li-
braries from regular directory or file format librariel$.you haven't a-
ready done so, yoll'have 1o add a linker flag to set the base address at
which the linker allocates the@ments. Thenput is a regular libraryand
stub libraries for an other shared libraries on which this one depends.
The output is anxecutable format shared library containing thgreents

of all of the members of the input libragnd a stub library with a stub

Shared libraries 9-245

member corresponding to each member of the input library.

Project 9-2:Extend the linker to createxecutables using static shared li-
braries. ProjecB-1 already has most of the work of searching stub li-
braries symbol resolution, since thaymhat an xecutable refers to sym-
bols in a shared library is the same as tlay what one shared library
refers to anotherThe linker needs to put the names of the required li-
braries in the output file, so that the runtime loader knows what to load.
Have the linker create a segment calleldi b that contains the names of
the shared libraries as strings with a null byte separating the strings and
two null bytes at the end. Create a symb&HARED LI BRARI ES that
refers to the beginning of thd i b section to which code in the startup
routine can refer.

Dynamic Linking and Loading 10-247

Chapter 10
Dynamic Linking and Loading

$Revision: 2.3%
$Date; 1999/06/15 03:30:36 $

Dynamic linking defers much of the linking process until a program starts
running. Itprovides a variety of benefits that are hard to get otherwise:

. Dynamically linked shared libraries are easier to create than statfc
linked shared libraries. *

. Dynamically linked shared libraries are easier to update than statit
linked shared libraries. *

. The semantics of dynamically linked shared libraries can be much
closer to those of unshared libraries.

. Dynamic linking permits a program to load and unload routines at
runtine, a facility that can otherwise be very difficult tove. *

There are a fe disadwantages, of course. The runtime performance cost¥
of dynamic linking are substantial compared to those of static linking*
since a large part of the linking process has to be redengtane a pro- *
gram runs.Every dynamically linked symbol used in a program has to be&
looked up in a symbol table and resadv (Wndows DLLs mitigate this *
cost somewhat, as we describe eloDynamic libraries are also lger *
than static libraries, since the dynamic oneshainclude symbol tables. *

Beyond issues of call compatibilitya dironic source of problems is
changes in library semantic&ince dynamic shared libraries are so easy
to update compared to unshared or static shared librariessa#y to
change libraries that are in use by existing programs, which means that the
behaior of those programs changese though "nothing has changed".
This is a frequent source of problems on Microsoitdvs, where pro-
grams use a lot of shared libraries, libraries go through a logrsfons,

and library version control is not very sophisticatétiost programs ship

with copies of all of the libraries tiiause, and installers often will inad-
vertently install an olderersion of a shared library on top of a newer one,
breaking programs that are expecting features found in the newer one.

10-248 Dynamid.inking and Loading

WEell-behared gpplications pop up a arning before installing an older li-
brary over a rewer one, buten 0, programs that depend on semantics of
older libraries hee been known to break when newer versions replace the
older ones.

ELF dynamic linking

Sun Microsystems’ SunOS introduced dynamic shared libraries to UNIX
in the late 1980sUNIX System V Release 4, which Sun cosdeped,
introduced the ELF object format and adapted the Sun scheme to ELF
ELF was clearly an imprx@ment wer the preious object formats, and by
the late 1990s it had become the standard for UNIX and UNEdi&-

tems including Linux and BSD dedtives.

Contents of an ELF file

As mentioned in Chapter 3, an ELF file can bevei@ as a set akctions,
interpreted by the lirde, or a £t of segments, interpreted by the program
loader ELF programs and shared librariesvbahe same general struc-
ture, but with different sets of segments and sections.

ELF shared libraries can be loaded at atidress, so theinvaiably use
position independent code (PIC) so that thet pages of the file need not

be relocated and can be shared among multiple processes. As described in
Chapter 8, ELF linkers support PIC code with a Globdksé&fTable

(GQOT) in each shared library that contains pointers to all of the static data
referenced in the program, Figure The dynamic linker resolves and re-
locates all of the pointers in the GOThis can be a performance issug b

in practice the GO is small except in very large libraries; a commonly
used version of the standard C library has only 180 entries in thief@O

over 350K of code.

Since the GO is in the same loadable ELF file as the code that references
it, and the relatie addresses within a file darchange rgardless of where

the program is loaded, the code can locate th€ @it a relatve aldress,

load the address of the G@nto a rgister and then load pointers from the
GOT wheneer it needs to address static data.library need not hee a
GOT if it references no static data, but in practice all libraries do.

text

data

Dynamic Linking and Loading 10-249

To support dynamic linking, each ELF shared libary and exebhutable
that uses shared libraries has a Procedure Linkalgie TPO). ThePLT
adds a leel of indirection for function calls analogous to that provided by
the GO for data. The PL also permits "lazy eduation”, that is, not re-
solving procedure addresses untilytine called for the first timeSince
the PO tends to hee a bt more entries than the GQove 600 in the C
library mentioned aba@), and most of the routines will v& be alled in
ary given program, that can both speed startup ane sansiderable time
overall.

Figure 10-1: PLT and GOT

picture of program with PLT
picture of library with PT and GOT

program library
call >
. . text
PLET ' [— !
| eLT
GOT cmt

data

10-250 Dynamid.inking and Loading

We dscuss the details of the Pbelow.

An ELF dynamically linked file contains all of the linker information that
the runtime linker will need to relocate the file and resahy undefined
symbols. The dynsymsection, the dynamic symbol table, contains all

of the files imported and xported symbols.The. dynstr and. hash
sections contain the name strings for the symbol, and a hash table the run-
time linker can use to look up symbols quickly.

The final extra piece of an ELF dynamically linked file is EIMNAM C
seggment (also marked as thelynam c section) which runtime dynamic
linker uses to find the information about the file the linker nekdsload-

ed as part of the datagseent, but is pointed to from the ELF file header
so the runtime dynamic linker can find it. Th¥ MAMIC section is a list

of tagged values and pointerSome entry types occur just in programs,
some just in libraries, some in both.

. NEEDED: the name of a library this file need&lways in pro-
grams, sometimes in libraries when one library is dependend on
anotheycan occur more than once.)

. SONAME: "shared object name", the name of the file the linker us-
es. (Libraries.)

. SYMTAB, STRTAB, HASH, SYMENT STRSZ,: point to the
symbol table, associated string and hash tables, size of a symbol
table entrysize of string table. (Both.)

. PLTGOT: points to the G@, or on sme architectures to the PL
(Both.)

. REL, RELSZ, and RELENT or RELA, RELASZ, and RELAENT
pointer to, number of, and size of relocation entriREL entries
don't contain addends, RELA entries do. (Both.)

. JVMPREL, PLTRELSZ, and PLTREL: pointer to, size, and format
(REL or RELA) of relocation table for data referred to by th&.PL
(Both.)

Dynamic Linking and Loading 10-251

. INIT and FINI: pointer to initializer and finalizer routines to be
called at program startup and finish. (Optional but usual in both.)

. A few other obscure types not often used.
An entire ELF shared library might look ékHgure 2. First come
the read-only parts, including the symbol tableT,Réxt, and read-
only data, then the read-write parts includingutar data, GO,
and the dynamic section. The bss logically fekothe last read-
write section, but as\abys isnt present in the file.

Figure 10-2: An ELF shared library

(Lots of pointer arrows here)

read-only pages:
.hash

.dynsym

.dynstr

plt

text

.rodata

read-write pages:
.data

.got

.dynamic

.bss

10-252 Dynamid.inking and Loading

,header
hash ~)
. &
read-only - -dynsym -
dynstr .
-plt .
- _calls
text -
' .rodata
read-write r.' '.data
< got
| WL
dynamic |

bss

Dynamic Linking and Loading 10-253

An ELF program looks much the same, but in the read-only segment has
init and fini routines, and an INTERP section near the front of the file to
specify the name of the dynamic linker (usually. so). Thedata sg-

ment has no GQ snce program files aretvelocated at runtime.

Loading a dynamically linked program

Loading a dynamically linked ELF program is a lengbut straightfor
ward process.

Starting the dynamic linker

When the operating system runs the program, it maps in treflgés as
normal, lt notes that there’an NTERPRETER section in thexe
ecutable. Thepecified interpreter is the dynamic laikd.so, which is it-
self in ELF shared library formatRather than starting the program, the
system maps the dynamic linker into a \w@ment part of the address
space as well and starts Id.so, passing on the staalxdiary vector of
information needed by the linkehe vector includes:

. AT _PHDR, A _PHENT and AT_PHNUM: The address of the
program header for the program file, the size of each entry in the
headerand the number of entries. This structure describes the se
ments in the loaded file. If the system hasmapped the program
into memory there may instead be a AEXECFD entry that con-
tains the file descriptor on which the program file is open.

. AT_ENTRY: starting address of the program, to which the dynam-
ic linker jumps after it has finished initialization.

. AT _BASE: The address at which the dynamic linker was loaded

At this point, bootstrap code at thegb®ing of Id.so finds its own GO

the first entry in which points to theYDNAMIC segment in the Id.so file.
From the dynamic segment, the linker can find its own relocation entries,
relocate pointers in its own data segment, and reswlde references to
the routines needed to loadeg/thing else. (The Linux Id.so names all of
the essential routines with names starting widlh _ and special-case code

10-254 Dynamid.inking and Loading

looks for symbols that start with the string and resolves them.)

The linker then initializes a chain of symbol tables with pointers to the
programs symbol table and the lirde’s avn symbol table.Conceptually,

the program file and all of the libraries loaded into a process share a single
symbol table. But rather than build a merged symbol table at runtime, the
linker keeps a lingd list of the symbol tables in each file. each file con-
tains a hash table to speed symbol lookup, with a set of hash headers and a
hash chain for each headdthe linker can search for a symbol quickly by
computing the symbd’hash value once, then running through apprpriate
hash chain in each of the symbol tables in the list.

Finding the libraries

Once the linkr's own initializations are done, it finds the names of the li-
braries required by the program. The progsambogram header has a
pointer to the "dynamic" segment in the file that contains dynamic linking
information. Thatsegment contains a pointedT_STRITAB, to the files
string table, and entries DT_NEEDED each of which contains thetan

the string table of the name of a required library.

For each library the linker finds the librarg’ BLF shared library file,
which is in itself a fairly compbe process. Thelibrary name in a
DT_NEEDED entry is something kklibXt.s0.6 (the Xt toolkit, \ersion
6.) Thelibrary file might in in ag of seveal library directories, and might
not evzen havethe same file nameOn my system, the actual name of that
library is /usr/X11R6/lib/libXt.s0.6.0, with thé0’’ at the end being a mi-
nor version number.

The linker looks in these places to find the library:

. If the dynamic segment contains an entry called DRTRR it's a
colon-separated list of directories to search for libraries. This entry
is added by a command line switch ovieonment variable to the
regular (not dynamic) linker at the time a program is ik It's
mostly used for subsystemsdikhtabases that load a collection of
programs and supporting libraries into a single directory.

Dynamic Linking and Loading 10-255

. If theres an evironment symbol LD_LIBRAR _PATH, it's treat-
ed as a colon-separated list of directories in which the linker looks
for the library This lets a deeloper build a ne version of a li-
brary, put it in the LD_LIBRARY_PATH and use it with risting
linked programs either to test theankeorary, or equally well to in-
strument the behavior of the program. (It skips this step if the pro-
gram is set-uid, for security reasons.)

. The linker looks in the library cache fileet ¢/ | d. so. conf
which contains a list of library names and patlifsthe library
name is present, it uses the corresponding péttis is the usual
way that most libraries are foundThe file name at the end of the
path need not bexactly the same as the library name, see the sec-
tion on library versions, belo)

. If all else fails, it looks in the default directory /usr/lib, and if the
library’s gill not found, displays an error message and exits.

Once its found the file containing the librarthe dynamic linker opens

the file, and reads the ELF header to find the program header which in turn
points to the files ssgments including the dynamic gment. Thelinker
allocates space for the librasytext and data segments and maps them in,
along with zeroed pages for the bss. From the libsadynamic sgment,

it adds the libraryg symbol table to the chain of symbol tables, and if the
library requires further libraries not already loaded, adgshaw libraries

to the list to be loaded.

When this process terminates, all of the librariaehmen mapped in, and
the loader has a logical global symbol table consisting of the union of all
of the symbol tables of the program and the mapped library.

Shared library initialization

Now the loader revisits each library and handles the libsasfbcation
entries, filling in the librang GOT and performing ay relocations needed
in the librarys data sgment. Load-timeelocations on an x86 include:

. R 386 _GLOB_[AT, used to initialize a GDentry to the address
of a symbol defined in another library.

10-256 Dynamid.inking and Loading

. R _386_32, a non-GDreference to a symbol defined in another li-
brary, generally a pointer in static data.

. R _386_RELAIVE, for relocatable data references, typically a
pointer to a string or other locally defined static data.

. R _386_JMP_SLQ@, used to initialize GO entries for the PL, de-
scribed later.

If a library has ani ni t section, the loader calls it to do library-specific
initializations, such as C++ static constructors, and.dn ni section is
noted to be run atxé time. (It doesrt do the init for the main program,
since thas handled in the program’'ovn startup code.) When this pass is
done, all of the libraries are fully loaded and readyxecate, and the
loader calls the programéntry point to start the program.

Lazy procedure linkage with the PLT

Programs that use shared libraries generally contain calls to a lot of func-
tions. Ina sngle run of the program mgnof the functions are wer
called, in error routines or other parts of the program thattareed. Fur
thermore, each shared library also contains calls to functions in other li-
braries, gen fewer of which will be &ecuted in a gien program run since
mary of them are in routines that the programenealls either directly or
indirectly.

To geed program startup, dynamically linked ELF programs use lazy
binding of procedure addresses. That is, the address of a procedure isn’
bound until the first time the procedure is called.

ELF supports lazy binding via the Procedure Linkageld, or PIL. Each
dynamically bound program and shared library has B Rith the PIT
containing an entry for each non-local routine called from the program or
library, Figure 3. Note that the HLin PIC code is itself PIC, so it can be
part of the read-only text segment.

Figure 10-3: PLT structure in x86 code

Special first entry

Dynamic Linking and Loading 10-257

PLTO: pushl GOT+4
j mp * GOT+8

Regular entries, non-PIC code:
PLTn: j np*GOT+m

push #rel oc_of f set

j mp PLTO

Regular entries, PIC code:
PLTn: j np* GOT+n(%&bx)
push #rel oc_of f set
j mp PLTO

All calls within the program or library to a particular routine are adjusted
when the program or library isilli to be calls to the routing'entry in the
PLT. The first time the program or library calls a routine, thd@ Bhtry
calls the runtime linker to res@vhe actual address of the routingfter

that, the PT entry jumps directly to the actual address, so after the first
call, the cost of using the PLis a sngle ectra indirect jump at a procedure
call, and nothing at a return.

The first entry in the PL, which we call PLTO, is special code to call the
dynamic linler. At load time, the dynamic linker automatically places tw
vaues in the GO@. At GOT+4 (the second word of the GOT) it puts a
code that identifies the particular librangt GOT+8, it puts the address
of the dynamic linkes symbol resolution routine.

The rest of the entries in the Blwhich we call PLTn, each start with an
indirect jump through a GDentry. Each PO entry has a corresponding
GOT entry which is initially set to point to the push instruction in th@ PL
entry that follows the jmp(In a PIC file this requires a loadtime reloca-
tion, but not anpensve gymbol lookup.) Falowing the jump is a push
instruction which pushes a relocation offset, tHsedfin the files reloca-
tion table of a special relocation entry of tyre386_JMP_SLOT. The
relocation entrys ymbol reference points to the symbol in the $ilg/m-
bol table, and its address points to theTG#try.

10-258 Dynamid.inking and Loading

This compact but rather baroque arragement means that the first time the
program or library calls a HLentry, the first jump in the PLentry in ef-

fect does nothing, since the G@ntry through which it jumps points back
into the PO entry. Then the push instruction pushes the offsslue
which indirectly identifies both the symbol to resolnd the GQ entry

into which to resolg it, and jumps to PLO. Theinstructions in PTO

push another code that identifies which program or library it is, and then
jumps into stub code in the dynamic linker with the tdentifying codes

at the top of the stack. Note that thiasna jump, rather than a call, &bo

the two identifying words just pushed is the return address back to the rou-
tine that called into the AL

Now the stub code sas dl the registers and calls an internal routine in
the dynamic linker to do the resolution. theotidentifying words stifce

to find the librarys symbol table and the routire'entry in that symbol
table. Thedynamic linker looks up the symbol value using the concatenat-
ed runtime symbol table, and stores the rousiagdress into the GDen-

try. Then the stub code restores thgisters, pops the twvords that the
PLT pushed, and jumpsfa the routine.The GO entry having been up-
dated, subsequent calls to thaffRintry jump directly to the routine itself
without entering the dynamic linker.

Other peculiarities of dynamic linking

The ELF linker and dynamic linker ¥ a bt of obscure code to handle
special cases and try and keep the runtime semantics as similar as possible
to whose of unshared libraries.

Static initializations

If a program has an external reference to a gloheahble defined in a
shared librarythe linker has to create in the program aycop the \ari-
able, since program data addresse® ltabe lound at link time, Figure 4.
This poses no problem for the code in the shared libsarge the code
can refer to theariable via a GO pointer which the dynamic linker can
fix up, but there is a problem if the library initializes tlzgiable. D deal
with this problem, the linker puts an entry in the progsamlocation
table (which otherwise just containsR 386 _JMP_SLOT,
R 386_G.0B _DAT, R 386_32, and R_386_RELATI VE entries) of

Dynamic Linking and Loading 10-259

type R_386_COPY that points to the place in the program where the cop
of the variable is defined, and tells the dynamicdmto coy the initial
value of that word of data from the shared library.

Figure 10-4: Global data initialization
Main program:
extern int token;

Routine in shared library:
int token = 42;

Although this feature is essential for certain kinds of code, it oc@rs v
rarely in practice.This is a band-aid, since it only works for singlerad
data. Theinitializers that do occur arevedys pointers to procedures or
other data, so the band-aid suffices.

Library versions

Dynamic libraries are generally named with major and miresions
numbers, lilkel i bc. so. 1. 1 but programs should be bound only to ma-
jor version numbers l&l i bc. so. 1 since minor versions are supposed
to be upward compatible.

To keep program loading reasonably fast, the system manager maintains a
cache file containing the full pathname most recent version of each library
which is updated by a configuration program whena rew library is in-
stalled.

To wupport this design, each dynamically linked library caveha ‘true
name" called th6€ONAME assigned at library creation tim&or exam-
ple, the library calledli bc.so.1.1 would hase a ©NAME of
l'ibc.so.1. (The SONAME defaults to the librag/mame.) Wherthe
linker builds a program that uses shared libraries, it lists the SONAMEs of
the libraries it used rather than the actual names of the librafies.

10-260 Dynamid.inking and Loading

cache creation program scans all of the directories that contain shared li-
braries, finds all of the shared librariestracts the SONAME from each
one, and where there are multiple libraries with the sameASAHA\ dis-

cards all but the highest version numbé&hen it writes the cache file with
SONAMEs and full pathnames so at runtime the dynamic linker can
quickly find the current version of each library.

Dynamic loading at runtime

Although the ELF dynamic lirde is usually called implcitly at program
load time and from PLentries, programs can also call it explicitly using
dl open() to load a shared library amdl syn{) to find the address of a
symbol, usually a procedure to call. Thos® nautines are actually sim-
ple wrappers that call back into the dynamic énkWhen the dynamic
linker loads a library vidl open() , it does the same relocation and sym-
bol resolution it does on grother library so he dynamically loaded pro-
gram can without anspecial arrangements call back to routines already
loaded and refer to global data in the running program.

This permits users to add extra functionality to programs without access to
the source code of the programs and withowheéhaving to stop and
restart the programs (useful when the program is somethimrg alik
database or a web sery Mainframeoperating systems t@ povided
access to “at routines” like this since at least the early 1960s, albeit with-
out such a carenient interfice, and it long been a way to add greakfle
bility to packaged applications. It also provides a way for programs-to e
tend themselves; theseno eason a program couldntrite a routine in C

or C++, run the compiler and liekto create a shared libratigen dynam-
ically load and run the mecode. (Mainframesort programs hee linked
and loaded custom inner loop code for each sort job for decades.)

Microsoft Dynamic Link Libraries

Microsoft Windows also preides shared libraries, called dynamic-link li-
braries or DLLs in a fashion similar to but somewhat simpler than ELF
shared libraries. The design of DLLs changed substantially between the
16 bit Windows 3.1 and the 32 bit Wdows NT and 95.This discussion
addresses only the more modern Win32 libraries. DLLs import procedure
addresses using a Rlike ssheme. Althougtihe design of DLLs wuld

Dynamic Linking and Loading 10-261

make it possible to import data addresses using al-® sheme, in
practice thg use a simpler scheme that requirgplieit program code to
dereference imported pointers to shared data.

In Windows, both programs and DLLs are PE format (portakéeigable)

files are intended to be memory mapped into a proddske Windows

3.1, where all applications shared a single address span82 \Wives

each application its own address space amdutables and libraries are
mapped into each address space wheredieused.For read-only code

this doesrt’ make any practical difference, but for data it means that each
application using a DLL gets its own gopf the DLLs data. (That a
slight oversimplification, since PE files can mark some sections as shared
data with a single cgpshared among all applications that use the filg, b
most data is unshared.)

Loading a Vihdows executable and DLLs is similar to loading a dynami-
cally linked ELF program, although in theiMdows case the dynamic
linker is part of the &rnel. Firstthe kernel maps in thexecutable file,
guided by section info in the PE headers. Then it maps in all of the DLLs
that the gecutable refers to, again guided by the PE headers in each DLL.

PE files can contain relocation entrie&n executable generally an't
contain them and so has to be mapped at the address for whiels it w
linked. DLLsall do contain relocation entries, and are relocated when
theyre mapped in if the address space for whicly tiere linked isrt
awailable. (Microsoftcalls runtime relocationebasing.)

All PE files, both gecutables and DLLs, ka an entry point, and the load-

er calls a DLIs entry point when the DLL is loaded, when the DLL is un-
loaded, and each time a process thread attaches to or detaches from the
DLL. (The loader passes an argument to say wts making each call.)

This provides a hook for static initializers and destructors analogous to the
ELF.init and. fini sections.

Imported and exported symbols in PE files

PE supports shared libraries withotgpecial sections of the file,edat a,
for exported data, that lists the symbols exported from a file, addt a,
that lists the symbols imported into a file. Program files generallg ha

10-262 Dynamid.inking and Loading

only an. i dat a section, while DLLs avays hare an . edat a and may

have a. i dat a if they use other DLLs. Symbols can be exported either

by symbol name, or by "ordinal”, a small igée that gies the index of

the symbol in the export address tablenking by ordinals is slightly

more efficient since itv@ids a symbol lookup, but considerably more er

ror prone since i§ up to he person who builds a DLL to ensure that ordi-
nals stay the same from one library version to anotimgoractice ordinals

are usually used to call system services that rarely change, and names for
eveaything else.

The. edat a section contains arxport directory table that describes the
rest of the section, followed by the tables that define the exported symbols,
Figure 5.

Figure 10-5: Structure of .edata section

export directory pointing to:
export address table
ordinal table

name pointer table

name strings

Dynamic Linking and Loading 10-263

parts of .edata section
\ . exploded view

directory |

address table
“ (of exported symbols)
ordinal ' e e | "'name pointed table
tables. T | , . (tonamesstrings)
!) f
l. - .
~ hame table
strings

The export address table contains thé\ Rrelatve virtual address, rela-

tive 1o the base of the PE file) of the symbol. If théARpoints back into

the. edat a section, its a 'forwarder" reference, and the value pointed to

is a string naming the symbol to use to satisfy the reference, probably de-
fined in a different DLL. The ordinal and name pointer tables are parallel,
with each entry in the name pointer table being t##& & the name string

10-264 Dynamid.inking and Loading

for the symbol, and the ordinal being the xdethe eport address table.
(Ordinals need not be zero-based; the ordinal base to subtract from ordinal
values to get the indan the export address table is stored in the export di-
rectory and is most often 1.) Exported symbols need not e hemes,
although in practice tlyealways do. The symbols in the name pointer
table are in alphabetical order to permit the loader to use a binary search.

The. i dat a section does the ceerse of what the edat a section does,

by mapping symbols or ordinals back into virtual addres3ée. section
consists of a null-terminated array of import directory tables, one per DLL
from which symbols are imported, followed by an import lookup table per
DLL, followed by a name table with hints, Figure 6.

Figure 10-6: Structure of .idata section

array of import directory tables, with lotsa arrows

each has import lookup tablevVR, time/date stamp, fer
warder chain (unused?), DLL name, import addre¥s R
table

NULL

import table, entries with high bit flag (table per DLL)
hint/name table

Dynamic Linking and Loading 10-265

import directory
table lookup table address tables
| ————__ Jfor'firstDLL" (in text segment)
| =f A). '
| —
|
. i] lookup table

, forsecond DLL
T

— - |

strings

For each imported DLL, there is an array of import addresses, typically in
the prograns text segment, into which the program loader places the re-
solved addressesThe import lookup table identifies the symbols to im-
port, with the entries in the import lookup table being parallel to those in
the import address tabldhe lookup table consists of 32 bit entries. If the
high bit of an entry is set, thewd31 hits are the ordinal of the symbol to
import, otherwise the entry is th&/R of an entry in the hint/name table.
Each hint/name entry consists of a four-byte hint that guesses tixeofnde

10-266 Dynamid.inking and Loading

the symbol in the DLE export name pointer table, followed by the null
terminated symbol namelrhe program loader uses the hint to probe the
export table, and if the symbol name matches, it uses that symbok, other
wise it binary searches the entire export table for the ngthéhe DLL
hasnt changed, or at least its list of exported symbols hadrdnged,
since the program that uses the DLL was linked, the guess will be right.)

Unlike ELF imported symbols, thealues of symbols imported via da-

t a are only placed in the import address table, not fixed yplaare else

in the importing file. For code addresses, this nesk little diference.
When the linker builds arxecutable or DLL, it creates in the text section
a table of misnamed "thunks", indirect jumps through the entries in the im-
port address table, and uses the addresses of the thunks as the address of
the imported routine, which is transparent to the program(i&e thunks

as well as most of the data in thedat a section actually come from a
stub library created at the same time as the DLL.) In recasions of
Microsoft's C and C++ compilerif the programmer knows that a routine
will be called in a DLL, the routine can be declared "dllimport", and the
compiler will emit an indirect call to the address table ertrgiding the
extra indirect jump.For data addresses, the situation is more problemati-
cal, since it harder to hide the extravd of indirection required to ad-
dress a symbol in anothexeeutable. Taditionally programmers just bit
the bullet and xplicitly declared imported variables to be pointers to the
real values andxglicitly dereferencd the pointers. Recent versions of Mi-
crosofts C and C++ compiler also let the programmer declare global data
to be "dllimport" and the compiler will emit the extra pointer deferences,
much like BLF code that references data indirectly via pointers in the
GOT.

Lazy binding

Recent versions of iWdows compilers hee alded delay loaded imports

to permit lazy symbol binding for procedures, somewhatthike ELF PII.

A delay-loaded DLL has a structure similar to thedat a import direc-

tory table, lnt not in the.idata section so the program loader do¢$an-

dle it automatically The entries in the import address table initially all
point to a helper routine that finds and loads the DLL and replaces the con-
tents of the address table with the actual addresses. The delay-loaded di-

Dynamic Linking and Loading 10-267

rectory table has a place to store the original contents of the import ad-
dress table so the values can be put back if the DLL is later unloktied.
crosoft provides a standard helper routing, its interfaces are document-

ed and programmers can write their own versions if need be.

Windows also permits programs to load and unload DLLs explicitly using
LoadLi brary andFreelLi brary, and to find addresses of symbols
usingCet Pr ocAddr ess.

DLLs and threads

One area in which the Mdows DLL model doesi’work particularly

well is thread local storageA Windows program can start multiple
threads in the same process, which share the process’ addressEsgdce.
thread has a small chunk of thread local storage (TLS) to keep data specif-
ic to that thread, such as pointers to data structures and resources that the
thead is usingThe TLS needs "slots" for the data from tixeomitable and

from each DLL that uses TLS. TheiMdows linker can create a .tls sec-
tion in a PE recutable, that defines the layout for the TLS needed by rou-
tines in the recutable and anDLLs to which it directly refers. Each time

the process creates a thread, the tieead gets its own TLS, created us-
ing the .tls section as a template.

The problem is that most DLLs can either be linked implicitly from the ex-
ecutable, or loaded explicitly withoadLi brary. DLLs loaded &plic-

itly don’'t automatically get .tls storage, and since a BLauthor cant
predict whether a library will be woked implicitly or explicitly, it can’t
depend on the .tls section.

Windows defines runtime system calls that allocate slots at the end of the
TLS. DLLsuse those calls rather than .tls unless the DLL isvknonly
to be irvoked implicitly.

OSF/1 pseudo-static shared libraries

OSF/1, the ill-fated UNIX variant from the Open Softwar@ufdation,

used a shared library scheme intermediate between static and dynamic
linking. Its authors noted that static linking is a lot faster than dynamic
since less relocation is needed, and that libraries are updated infrequently

10-268 Dynamid.inking and Loading

enough that system managers are willing to endure some pain wien the
update shared libraries, although not the g gohrelinking esery ex-
ecutable program in the entire system.

So OSF/1 took the approach of maintaining a global symbol table visible
to all processes, and loaded all the shared libraries into a sharable address
space at system boot time. This assigned all of the libraries addresses that
wouldn’t change while the system was runningach time a program
started, if it used shared libraries, it would map in the shared libraries and
symbol table and res@wndefined references in thgeeutable using the
global symbol table No load-time relocation was/er required since pro-
grams were all linked to load in a part of the address space dajwar

anteed to bewailable in each process, and the library relocation had al-
ready happened when theere loaded at boot time.

When one of the shared libraries changed, the system just had to be re-
booted normallyat which point the system loaded thewnibraries and
created a ne symbol table for gecutables to use.

This scheme was aler, but it wasnt very satisactory For one thing, pro-
cessing symbol lookups is considerably slower than processing relocation
entries, so\aiding relocation vasnt that much of a performance auh+

tage. for anotherdynamic linking provides the ability to load and run a
library at runtime, and the OSF/1 scheme digrovide for that.

Making shared libraries fast

Shared libraries, and ELF shared libraries in particatar be very sha. *
The slavdowns come from a variety of sourcesyesal of which we men- *

tioned in Chapter 8: *

. Load-time relocation of libraries *
. Load-time symbol resolution in libraries anceutables *

. Overhead due to PIC function prolog code *
. Overhead due to PIC indirect data references

. Slower code due to PIC reserved addressiggsters *

The first two problems can be ameliorated by caching, the latter

Dynamic Linking and Loading 10-269

two by retreating from pure PIC code. *

On modern computers with & address spacessitsually possible to
choose an address range for a shared librarysthailable in all or at

least most of the processes that use the libr@ne very eflective tech-

nique is similar to the Wdows approach. Either when the library is
linked or the first time a library is loaded, terveyi bind its addresses to

a chunk of address space. After that, each time a program links to the li-
brary use the same addresses of possible, which means that no relocation
will be necessarylf that address space is@vailable in a n& process,

the library is relocated as before.

SGI systems use the te@UICKSTART to describe the process of pre-re-
locating objects at linktime, or in a separate pass the shared library
BeOS caches the relocated library the first tingeldded into a process.
If multiple libraries depend on each othir principle it should be possi-
ble to pre-relocate and then pre-resaymbol references among libraries,
although I'm not ware of ary linkers that do so.

If a system uses pre-relocated libraries, PIC becomes a lot less important.
All the processes that load a library at its pre-relocated address can share
the librarys aode whether i AC or not, so a non-PIC library at a well-
chosen address can in practice be as sharable as PIC without the perfor
mance loss of PICThis is basically the static linked library approach
from Chapter 9, except that in case of address space collisions, rather than
the program failing the dynamic linker nes the libraries at some loss of
performance. \idows uses this approach.

BeOS implements cached relocated libraries with great thoroughness, in-
cluding preserving correct semantics when libaries change. When a ne
version of a library is installed BeOS notes tlaetfand creates a we
cached version rather than using the old cached version when programs re-
fer to the library Library changes can ¥@ a ipple efect. Whenlibrary

A refers to symbols in library B and B is updated, & nached version of

A will also hare o be ceated if ag of the referenced symbols in Busa
moved. Thisdoes mak the programmes' life easierbut it's not clear to

me that libraries are in practice updated often enough to merit the consid-
erable amount of system code needed to track library updates.

10-270 Dynamid.inking and Loading

Comparison of dynamic linking approaches

The Unix/ELF and Whdows/PE dynamic linking diér in several interest-
ing ways.

The ELF scheme uses a single name space per program, while the PE
scheme uses a hame space per librAry ELF executable lists the sym-
bols it needs and the libraries it needs, ibdoesrt record which symbol

is in which library A PE file, on the other hand, lists the symbols to im-
port from each library The PE scheme is less flexible but also more resis-
tant to inadvertent spoofinglmagine that an»acutable calls routine
AFUNC which is found in library A and BFUNC which is found in library
B. If a rew wersion of library A happens to define its own BFUNC, an
ELF program could use the weBFUNC in preference to the old one,
while a PE program auldn’t. Thisis a problem with some large libraries;
one partial solution is to use the poorly documented DT_FILTER and
DT_AUXILIARY fields to tell the dynamic linker what libraries this one
imports symbols from, so the liakwill search those libraries for import-
ed symbols before searching theeutable and the rest of the libraries.
The DT_SYMBOLICfield tells the dynamic linker to search the library’
own symbol table first, so that other libraries cannot shatura-library
references. (Thissn't aways desirable; consider the malloc hack de-
scribed in the previous chapderThesead-hoc approaches nakt less
likely that symbols in unrelated libraries will inadvertently skadie
correct symbols, but tpgre no substitude for a hierarchical link-time
name space as we’'ll see in Chapter 11 that bas.

The ELF scheme tries considerably harder than the PE scheme to maintain
the semantics of static linked prograniis.an ELF program, references to
data imported from another library are automatically reshlwhile a PE
program needs to treat imported data specidllye PE scheme has trou-

ble comparing the values of pointers to functions, since the address of an
imported function is the address of the "thunk" that calls it, not the address
of the actual function in the other librarfLF handles all pointers the
same.

At run-time, nearly all of the Widows dynamic linker is in the operating
system, while the ELF dynamic linker runs entirely as part of the applica-

Dynamic Linking and Loading 10-271

tion, with the lernel merely mapping in the initial files. Theintlows
scheme is guably faster snce it doesrt’haveto map and relocate the dy-
namic linker in each process before it starts linking. The ELF scheme is
definitely a lot more fidble. Sinceeach gecutable names the "inter
preter" program (n@ always the dynamic linker named Id.so) to use, dif-
ferent executables could use different interpreters without requrirygopn
erating system changes. In practice, this @sak easier to supporke
ecutables from variant versions of Unix, notably Linux and BSD, by mak-
ing a dynamic linker that links to compatibility libraries that support non-
natve exeutables.

Exercises

In ELF shared libraries, libraries are often linked so that calls from one
routine to another within a single shared library go through tfiiedaat
have their addresses bound at runtime. Is this useful? @vhkvhy not?

Imagine that a program calls a library routpleugh() that is found in a
shared libraryand the programmer builds a dynamically linked program
that uses that libraryLater the system manager notices tpatugh is a
silly name for a routine and installs axneersion of the library that calls
the routinexsazq instead. Whahappens when the xtetime the pro-
grammer runs the program?

If the runtime ewmironment \ariableLD Bl ND_NOWis set, the ELF dy-
namic loader binds all of the progra™L.T entries at load time What

would happen in the situtation in the previous probleiDf Bl ND_NOW
were set?

Microsoft implemented lazy procedure binding without operating system
assistance by adding some extraveieess in the linker and using the-e
isting facilities in the operating systerilow hard would it be to pnade
transparent access to shared dateidang the extra Ieel of pointers that

the current scheme uses?

Project

It's impractical to hild an entire dynamic linking system for our project
linker, ance much of the work of dynamic linking happens at runtime, not
link time. Much of the work of building a shared librarasvalready done

10-272 Dynamid.inking and Loading

in the project 8-3 that created PlQeeutables. Adynamically linked
shared library is just a PIGecutable with a well-defined list of imported
and exported symbols and a list of other libraries on which it depdiads.
mark the file as a shared library or aeaitable that uses shared libraries,
the first line is:

LINKLIB libl Iib2 ...

or

LINK libl lib2 ...

where the libs ae the names of other shared libraries on which this one
depends.

Project 10-1: Starting with the version of the linker from project 8-8; e
tend the linker to produce shared libraries aret@tables that need shared
libraries. Thelinker needs to takas ts input a list of input files to com-
bine into the outputx@cutable or libraryas well as other shared libraries

to search.The output file contains a symbol table with definegb¢eted)

and undefined (imported) symbols. Relocation types are the ones for PIC
files along with AS4 and RS4 for references to imported symbols.

Project 10-2: Write a run-time binderthat is, a program that takes aa e
ecutable that uses shared libraries and resoitg references. It should

read in the xecutable, then read in the necessary libraries, relocating them
to non-werlapping a&ailable addresses, and creating a logically gedr
symbol table.(You may want to actually create such a table, or use a list

of perfile tables as ELF does.) Then resoll of the relocations andxe

ternal references. When yoe’'done, all code and data should be assigned
memory addresses, and all addresses in the code and data should be re-
solved and relocated to the assigned addresses.

Advanced techniques 11-273

Chapter 11
Advanced techniques

$Revision: 2.1 $
$Date; 1999/06/04 20:30:28 $

This chapter describes a grab-bag of miscellaneous linker techniques that
dont fit very well anywhere else.

Techniques for C++

C++ presents three significant challenges to thestin®ne is its compli-
cated naming rules, in which multiple functions caneithae same name if
they havedifferent agument types. Name mangling addresses this well
enough that all linkers use it in some form or another.

The second is global initializers and destructors, routines that need to be
run before the main routine starts and after the main routitee & hisre-

guires that the linker collect the pieces of initializer and destructor code, or
at least pointers to them, into one place so that startupxéncbde can

run it all.

The third, and by far the most comyplssue inolves templates and Xe

tern inline" proceduresA C++ template defines an infinite family of pro-
cedures, with eachamily member being the template specialized by a
type. For example, a template might define a generic hash table,amith f

ily members being a hash table of integers, of floating point numbers, of
character strings, and of pointers to various sorts of struct8iese com-
puter memories are finite, the compiled program needs to contain all of the
members of the family that are actually used in the program, but shiouldn’
contain ai others. Ifthe C++ compiler tads the traditional approach of
treating each source file separatélgan't tell when it compiles a file that
uses templates whether some of the temptately members are used in
other source files. If the compiler &&ka conseative gproach and gen-
erates code for eaclrhily member used in each file, it will usually end
up with multiple copies of eacharhily member wasting space. If it
doesnt generate that code, it risks having noyapadl of a required &m-

ily member.

11-274 Adwanced techniques

Inline functions present a similar problemormally, inline functions are
expanded lile macros, but in some cases the compiler generatesvancon
tional out-of-line version of the functionlf several different files use a
single header file that contains an inline function and some of them require
an out-of-line version, the same problem of code duplication arises.

Some compilers v@ wsed approaches that change the source language to
help produce object code that can be linkeddiymb” linkers. Mary re-

cent C++ systems ke aldressed the problem head-on, either by making
the linker smarteror by integrating the linker with other parts of the pro-
gram deelopment systemWe look briefly at these latter approaches.

Trial linking

In systems stuck with simple-minded linkers, C++ systeras teed a &-
riety of tricks to get C++ programs lial. Anapproach pioneered by the
original cfront implementation is to do a trial link which will generally
fail, then hae te compiler duer (the program that runs theanous
pieces of the compileassemblerand linker) extract information from the
result of that link to finish the compiling and relink, Figure 1.

Figure 11-1: Trial linking

input files pass through linker to trial output plus errors,
then inputs plus info from errors plus maybe more generat-
ed objects pass through linker to final object

Advanced techniques 11-275

| source

: object files
 files g e without templates
error. . - linker-) T
messages
|
] compiler.
5>/ tomplate: > — | -'template
_ eéxpansion objects
‘ex'ECUtablwe |' L .‘I ¥
with ~—(linker— /€
| templates '

On Unix systems, if the linker canesole dl of the undefined references

in a link job, it can still optionally can also produce an output file which
can be used as the input to a subsequent linkTbk linker uses its usual
library search rules during the link, so the output file contains needed li-
brary routines as well as information from the input fileial linking
solves all of the C++ problems algoin a dow but effectve way.

For global initializers and destructors, the C++ compiler creates in each in-
put file routines that do the initialization and destruction. The routines are
logically anonymous, Wt the compiler gies them distinctve rames. Br
example, the GNU C++ compiler creates routines namé&il OB-

AL . 1. __4junk and_G.OBAL_.D. __ 4j unk to do initialization and
destruction of variables in a class caljegnk. After the trial link, the
linker driver examines the symbol table of the output file and makes lists

11-276 Adwanced techniques

of the global initializer and destructor routines, writes a small source file
with those lists in arrays (in either C or assembler). Then in the relink the
C++ startup andxat code uses the contents of the arrays to call all of the
appropriate routinesThis is essentially the same thing that C-vare
linkers do, just implemented outside the linker.

For templates and extern inlines, the compiler initially doegaherate

ary code for them at all. The trial link has undefined symbols for all of
the templates and extern inlines actually used in the program, which the
compiler drver can use to re-run the compiler and generate code for them,
then re-link.

One minor issue is to find the source code for the missing templates, since
it can be lurking in anof a potentially very lage number of source files.
Cfront used a simple ad-hoc technique, scanning the header files, and
guessing that a template declared oo. h is defined inf 0o. cc. Re-

cent versions of GCC use ‘aepository’ that notes the locations of tem-
plate definitions in small files created during the compilation progsfss.

ter the trial link, the compiler drer needs only scan those small files to
find the source to the templates.

Duplicate code elimination

The trial linking approach generates as little code as possible, then goes
back after the trial link to generateyarequired code that was left out the
first time. The cowerse approach is to generate all possible code, then
have the linker threv away the duplicates, Figure 2. The compiler gener
ates all of thex@anded templates and all of the extern inlines in each file
that uses themEach possibly redundant chunk of code is put inwa o
sggment with a name that uniquely identifies what it o example,

GCC puts each chunk in an ELF or COFF section called
.gnu. li nkonce. d. mangl ednanme where mangled name is the

“ mangled’ version of the function name with the type information added.
Some formats identify possibly redundant sections solely by name, while
Microsoft's COFF uses COMRBIT sections with explicit type flags to iden-

tify possibly redundant code sections. If there are multiple copies of a sec-
tion with the same name, the lekdiscards all but one of them at link
time.

Advanced techniques 11-277

Figure 11-2: Duplicate elimination

Input files with redundant sections pass into theelink
which collapses them into a single result (sub)section

|i ‘s?_urcé ' Cobject 1!

il . S — | ok

i A Tt templates/A, B

o= _ /| compiler -

;-' S S F"_‘T-——«- "

object 2
‘'t |
templates A, C

object3 |
templates’ B, D

_ linker

< executable |
it R

_..-ﬁteh'i:ilates‘- g & d’hp’licate"A and B removed'

11-278 Adwanced techniques

This approach does a good job of producirecetables with one cgpof

each routine, at the cost of verydarobject files with mancopies of tem-
plates. Italso offers at least the possibility of smaller final code than the
other approaches. In mawases, code generated when a templat&-is e
panded for different types is identicator example, a template that imple-
mented a bounds-checked array of <TYPE> would generally expand to
identical code for all pointer types, since in C++ pointers ak Itee same
representation. Ainker thats dready deleting redundant sections could
check for sections with identical contents and collapse multiple identical
sections to one. Some Windows linkers do this.

Database approaches

The GCC respository is a simplergion of a database. In the longer run,
tool vendors are moving w@rd database storage of source and object
code, such as the Montana environment in IBMsual Age C++.The
database tracks the location of each declaration and definition, which
makes it possible after a source change to figure out what theduali
routine dependencies are and recompile and relink just what has changed.

Incremental linking and relinking

For a long time, some linkers fi@ permitted incremental linking and re-
linking. Unix linkers provide & r flag that tells the linker to keep the
symbol and relocation information in the output file, so the output can be
used as the input to a subsequent link.

IBM mainframes hee dways had a “linkage editgt rather than a lindr.

In the IBM object format, the genents in each input file (IBM calls the
segments control sections or CSECTS) retain their individual identities in
the output file. One can re-edit a linked program and replace or delete
control sections.This feature was widely used in the 1960s and early
1970s when compiling and linking werewslenough that it was worth the
manual efort needed to arrange to relink a program, replacing just the
CSECTS that had been recompilethe replacement CSECTs need not
be the same size as the originals; thedimddjusts all of the relocation in-
formation in the output file as needed to account for the different locations
of CSECTSs than he noved.

Advanced techniques 11-279

In the mid to late 1980s, Quong and Linton at Stanford gjbr@ments
with incremental linking in a UNIX lin&r, to try and speed up the com-
pile-link-delug oscle. Thefirst time their linker runs, it links a coren-
tional statically linled executable, then stays ae#i in the background as a
daemon with the prograsi'symbol table remaing in memaryOn subse-
gent links, it only treats the input files thatvbahanged, replacing their
code in-place in the output file but leavingggthing else alone other than
fixing up references to symbols thavbanroved. Sincesggment sizes in

the recompiled files usually ddarchange very much from one link to the
next, they build the initial version of the output file with a small amount of
slop space between the input file segments, Figure 3. On each subsequent
link, so long as the changed input files’ segmengsriiagrown more than

the slop amount, the changed files’ segments replace Wieyseersions

in the output file. If thg havegrown past the end of the slop space, the
linker moves the subsequent segments in the output file using their slop
space. Ifmore than a small number ofgseents need to be wal, the
linker gives up and relinks from scratch.

Figure 11-3: Incremental linking

picture of inclink-ed object file with slop betweengse
ments, and v versions £gmnents pointing to replace old
ones

11-280 Adwanced techniques

incrementally
e emendinked . Updated
obj_é_ct versmn
B e | AT
Slﬂp 1 \J_,_._.._-—- -—--—-.: [{_ S
" / Ir’f.' /,.J__ = J ‘:
_______ S e T == : B,ﬁ%lm':gd in
e |9 [= | B | pldace/replaces
ﬁ"f :Jg { ¥ X J | ﬂew B | q]d ngwmﬂ]
; Pl r = \.-_,r-—;—,v—_:- — Qﬂ?dqu-' amd
.r,lrr : | ‘| (/_\ (L y ?"J
. i (o C
“slop ‘f-— :

The authors did considerable instrumentation to collect data on the number
of files compiled between linker runs in typicaldepment activities and

the change in segment sizeBhey found that typically only one or tw

files change, and the segmentswgranly by a fav bytes if at all. By
putting 100 bytes of slop between segmentsy #weided almost all re-
linking. They aso found that creating the output fdeg/mbol table,
which is essential for debugging, was as much work as creatingghe se
ments, and used similar technigques to update the symbol table incremen-
tally. Their performance results were quite dramatic, with links that took
20 or 30 seconds to do aa@ntionally dropping to half a second for an in-

Advanced techniques 11-281

cremental link. The primary drawback of their schenaes that the lingr
used about eight mgebytes to keep all of the symbols and other informa-
tion about the output file, which at the time was a lot of memooyksta-
tions rarely had more than 16MB.)

Some modern systems do incremental linking in much the saye¢hat
Quong and Linton did. The linker in Microsatsual studio links incre-
mentally by dedwult. Itleaves dop between modules and also can in some
circumstances nve an updated moduls from one part of theseutable to
anothey putting in some glue code at the old address.

Link time garbage collection

Lisp and other languages that allocate storage automatica#yfdramary
decades proded garbage ollection, a service that automatically identi-
fies and frees up storage tisatio bnger referred to by smother part of
the program.Several linkers offer an analogous facility to remeounused
code from object files.

Most program source and object files contain more than one procétiure.

a oompiler marks the boundaries between procedures, trer loak deter

mine what symbols each procedure defines, and what symbols each proce-
dure referencesAny procedure with no references at all is unused and
can safely be discarded. Each time a procedure is discarded, the link
should recompute the def/ref list, since the procedure just discarded might
have had the only reference to some other procedure which can in turn be
discarded.

One of the earlier systems to do link-time garbage collection is 4BM’
AIX. The XCOFF object files put each procedure in a separate section.
The linker uses symbol table entries to tell what symbols are defined in
each section, and relocation entries to tell what symbols are referenced.
By default, all unreferenced procedures are discarded, although the pro-
grammer can use linker switches to tell it not to garbage collect at all, or to
protect specific files or sections from collection.

Several Windows linkers, including Codearrior, the Watcom linkr, and
linker in recent versions of MicrosdadtVisual C++ can also garbage col-
lect. A optional compiler switch creates objects with "packaged" func-

11-282 Adwanced techniques

tions, each procedure in a separate section of the object file. Tke link
looks for sections with no references and deletes them. In most cases, the
linker looks at the same time for multiple procedures with identical con-
tents (usually from templatexgansions, mentioned al) and collapses

them as well.

An alternatve b a garbage collecting linker is morexttensve wse of li-
braries. Aprogrammer can turn each of the object filesdahinto a pro-

gram into a library with one procedure per library memthen link from

those libraries so the linker pulls in procedures as needed, but skips the
ones with no references. The hardest part is toengakh procedure a
separate object filelt typically requires some fairly messy preprocessing

of the source code to break multi-procedure source files inébasesmall

single procedure files, replicating the the data declarations and "include”
lines for header files in each one, and renaming internal procedures to pre-
vent name collisions. The result is a minimum sizecatable, at the cost

of considerably slower compiling and linking. This is a very old trick; the
DEC TOPS-10 assembiler in the late 1960s could be directed to generate
an object file with multiple independent sections that thestimkould treat

as a searchable library.

Link time optimization

On most systems, the linker is the only program in the softwaldiny
process that sees all of the pieces of a program that it is building at the
same time. That means that it has opportunities to do global optimization
that no other component can do, particularly if the program combines
modules written in different languages and compiled witfeiht com-
pilers. For example, in a language with class inheritance, calls to class
methods generally use indirect calls since a method mayedoedoen in

a aibclass. Buif there arert any subclasses, or there are subclassés b
none of them werride a particular method, the calls can be dirdctink-

er could mak ecial case optimizations 8khis to aoid some of the in-
efficiencies otherwise inherent in object oriented languagesnandez at
Princeton wrote an optimizing linker for Modula-3 thadsvable to turn
79% of indirect method calls into direct calls as well as reducing instruc-
tions eecuted by @er 10%.

Advanced techniques 11-283

A more aggresse gproach is to perform standard global optimizations
on an entire program at link timerivastava and Wall wrote an optimiz-

ing linker that decompiled RISC architecture object code into an interme-
diate form, applied high-&l optimizations such as inlining andweevel
optimizations such as substituting a faster but more limited instruction for
a dower and more general one, then regenerated the object Batieu-

larly on 64 bit architectures, the speedups from these optimizations can be
quite significant. On the 64 bit Alpha architecture, the general way to ad-
dress awy static or global data, or gnprocedure, is to load an address
pointer to the item from a pointer pool in memory into gister, then use

the register as a basegiger (The pointer pool is addressed by a global
pointer rgister) Their OM optimizing linker looled for situations where

a £quence of instructions refer toveral global or static variables that are
located close enough to each other thay ttaa all be addressed reladi

to the same pointeand rewrites object code to ren@mary pointer loads
from the global pool.lt also looks for procedure calls that are within the
32 bit address range of the branch-to-subroutine instruction and substitutes
that for a load and indirect call. It also can rearrange the allocation of
common blocks to place small blocks togihterincrease the number of
places where a single pointer can be used for multiple referebsasg
these and some other standard optimizations, OM\&shggnificant im-
provements in gecutables, removing as maas 11% of all instructions in
some of the SPEC benchmarks.

The Tera computer compilation suite does very aggedsk time opti-
mization to support theefas high-performance highly parallel architec-
ture. TheC compiler is little more than a parser that creates "object files"
containing tokenized versions of the source code. Therirdsolves all

of the references among modules and generates all of the objectltode.
aggressiely in-lines procedures, both within a single module and among
modules, since the code generator handles the entire program affonce.
get reasonable compilation performance, the system uses incremental
compilation and linking. On a recompile, the linker starts with theipre
ous version of thexecutable, rewrites the code for the source files that
have changed (which, due to the optimization and in-lining, may be in
code generated from files thatvba't changed) and creates aneipdat-

ed, xecutable. Fer of the compilation or linking techniques in thera

11-284 Adwanced techniques

system are vg but to date i5 unique in its combination of so mgaag-
gressve gptimization techniques in a single system.

Other linkers hee done other architecture-specific optimizatioriBhe
Multiflow VLIW machine had a very large number of registers, agd-re

ter saes and restores could be a major bottleneck. An experimental tool
used profile data to figure out what routines frequently called what other
routines. Itmodified the registers used in the code to minimize tee o
lapping registers used by both a calling routine and its callee, thereby min-
imizing the number of s@s and restores.

Link time code generation

Many linkers generate small amounts of the output object codexdon-e
ple the jump entries in the Plin Unix ELF files. But some gperimental
linkers do far more code generation than that.

The Srvastava and Wall optimizing linler starts by decompiling object
files back into intermediate code. In most cases, if the linker wants inter
mediate code, iif be st as easy for compilers to skip the code generation
step, create object files of intermediate code, and let ther ldkthe code
generation. Thad' actually what the Fernandez optimizer describedsabo
did. Thelinker can tak dl the intermediate code, do a big optimization
pass ger it, then generate the object code for the output file.

Theres a ouple of reasons that production letk rarely do code genera-

tion from intermediate code. One is that intermediate languages tend to be
related to the compiles’urce language. While &'not too hard to dese

an intermediate language that can handieraé Fortran-like languages
including C and C++, i$ considerably harder to devise one that can han-
dle those and also handle less similar languages such as Cobol and Lisp.
Linkers are generally expected to link object code frogncampiler or
assemblemaking language-specific intermediates problematical.

Link-time profiling and instrumentation

Several groups hee witten link-time profiling and optimization tools.
Romer et al. at the Uvarsity of Washington wrote Etch, an instrumenta-
tion tool for Windows x86 eecutables. lanalyzes ECOFFxecutables to
find all of the &ecutable code (which is typically intermixed with data) in

Advanced techniques 11-285

the main gecutable as well as in DLL libraries it callf. has been used to
build a call graph profiler and an instruction scheduldre lack of struc-

ture in ECOFF xecutables and the compiéy of the x86 instruction en-
coding were the major challenges to creating Etch.

Cohn et al. at DEC wrote Spike, aintfows optimization tool for Alpha

NT executables. Ifperformed both instrumentation, to add profiling code
to executables and DLLs, as well as optimization, using the profile data to
improve regster allocation and to regenize executables to impnee @ache
locality.

Link time assembler

An interesting compromise between linking traditional binary object code
and linking intermediate languages is to use assembler source as the object
language. Thénker assembles the entire program at once to generate the
output file. Minix, a small Unix-like g/stem that was the inspiration for
Linux did that.

Assembler is close enough to machine language that@mpiler can
generate it, while still being high enouglvdeto permit useful optimiza-

tions including dead code elimination, code rearrangement, and some
kinds of strength reduction, as well as standard assembler optimization
such as choosing the smallest version of an instruction that has enough bits
to handle a particular operand.

Such a system could be fast, since assembly can be very fast, particularly
if the object language is really a tokenized assembler rather than full as-
sembler source(ln assemblers, as in most othter compilers, the initial to-
kenizing is often the slowest part of the entire process.)

Load time code generation

Some systems defer code generation past link time to program load time.
Franz and Kistler created "Slim Binaries", orignally as a response to Mac-
intosh "fat binaries" that contain object code for both older 68000 Macs
and newer Power PC Mac4 slim binary is actually a compactly encod-

ed version of an abstract parse for a program module. The program loader
reads and expands the slim binary and generates the object code for the
module in memorywhich is then gecutable. Thenventors of slim bina-

11-286 Adwanced techniques

ries male the plausible claim that modern CPUs are so much faster than
disks that program loading time is dominated by disk I/O, aed with

the code generation step, slim binaries are abowsasd load because as
standard binaries because their disk files are small.

Slim binaries were originally created to support Oberon, a strongly typed
Pascal-like language, on the Macintosh and latend@ws for the x86, and
they apparently vork quite well on those platforms. The authors abso e
pect that slim binaries will work equally well with other source languages
and other architectureslhis is a much less credible claim; Oberon pro-
grams tend to beevy portable due to the strong typing and the consistent
runtime erironment, and the three target machines are quite similar with
identical data and pointer formats except for byte order on the A86.
long series of "umiersal intermediate language" projects dating back to the
UNCOL project in the 1950s ha failed after promising results with a
small number of source and target languages, and sheoeleason to
think that slim binaries wuldn't meet the same result. But as a distrib
tion format for a set of similar target environments, e.g. Macs with 68K or
PPC, or Windows with x86, Alpha, or MIPS, it should work well.

The IBM System/38 and AS/400Veawsed a similar technique for man
years to provide binary program compatibility among machines with dif-
ferent hardware architecture¥he defined machine language for the S/38
and AS/400 is a virtual architecture with a very large singld bxldress
space, neér actually implemented in hardave. Whera S38 or AS/400
binary program is loaded, the loader translates the virtual code into the ac-
tual machine code for whatar processor the machine on which it is run-
ning contains.The translated code is cached to speed loading on subse-
guent runs of the program. This has aka IBM to eolve the S/38 and

then AS/400 line from a midrange system with multi-board CPUs to a
deskside system using avwer PC CPU, maintaining binary compatibility
throughout. Thevirtual architecture is very tightly specified and the trans-
lations \ery complete, so programers can debug their program at the virtu-
al architecture Ml without reference to the physical CPUhis scheme
probably wouldn't have worked without a single endors complete con-

trol over the virtual architecture and all of the models of the computers on
which it runs, but i a \ery efective way to get a lot of performance out

Advanced techniques 11-287

of modestly priced hardware.
The Javalinking model

The Jaa pogramming language has a sophisticated and interesting load-
ing and linking model. The ¥va surce language is a strongly typed ob-
ject oriented language with a syntax similar to C++. What makes it inter
esting is that Ja dso defines a portable binary object code format,-a vir
tual machine thatxecutes programs in that binary format, and a loading
system that permits avdapogram to add code to itself on the fly.

Java aganizes a program intolasseswith each class in a program com-
piled into a separate logical (and usuallysibal) binary object code file.

Each class defines the fields that each class members contains, possibly
some static variables, and a set of procedures (methods) that manipulate
class membersJava uses single inheritance, so each class is a subclass of
some other class, with all classes being desendants from Weesahbase

class Object.A class inherits all of the fields and methods from its super
class, and can add wdields and methods, possiblyenriding existing
methods in the superclass.

Java loads one class at a timA. Java program starts by loading an initial
class in an implementation-dependerayw|f that class refers to other
classes, the other classes are loaded on demand wiemaheeeded A

Java gplication can either use the built-in bootstrap class loader which
loads clases from files on the local disk, or it can provide its own class
loader which can create or retreedasses anway it wants. Mostcom-

monly a custom class loader retwe dass files wer a network connec-

tion, but it could equally well generate code on the flyxtraet code from
compressed or encrypted files. When a class is loaded due to a reference
from another class, the system uses same loader that loaded the referring
class. Eaclelass loader has itsvm separate name space, gendf an -
plication run from the disk and one ruweo the net hee identically
named classes or class members, ther@rame collision.

The Jaa cefinition specifies the loading and linking process in consider
able detail. When the virtual machine needs to use a class, fitsads
the class by calling the class load€énce a class is loaded, the linking
process includegerificationthat the binary code is valid, apteparation

11-288 Adwanced techniques

allocating the static fields of the class. The final step of the process is
tialization, running an routines that initialize the static fields, which hap-
pens the first time that an instance of the class is created or a static func-
tion of the class is run.

Loading Javaclasses

Loading and linking are separate processes becays#ass needs to en-
sure that all of its superclasses are loaded and linked before linking can
start. Thismeans that the process conceptually crawls up and tivem do
the class inheritance tree, Figure Phe loading process starts by calling
the classLoaderprocedure with the name of the clasghe class loader
produces the class’ data somehthen callsdef i neCl ass to pass the

data to the virtual machinedef i neCl ass parses the class file and
checks for a ariety of format errors, throwing an exception if it findg.an

It also extracts the name of the class’ superclHgbe superclass ishal-

ready loaded, it calls classLoader rectelyito load the superclas§Vhen

that call returns, the superclass has been loaded and linked, at which point
the J&a g/stem proceeds to link the current classs.

Figure 11-4: Loading and linking a Java class file

crawling up and down the tree

Advanced techniques 11-289

(‘.Iéss ”trée

ébjecf L

Artist: this is a wavy equal sign
@ to show stuff is omitted

Loadingwalks ' Theniinkingand-
up the‘class tree g#mpcl'ass\\ * initialization walk |
() back down

1

/
.l'

\ superclass

A 7
| J I \

|' E I._ il

¥ S

5 —
) jclass [*;

The next step, verification, makes ariety of static correctness checks,
such as ensuring that each virtual instruction has a valid opcode, that the
target of each branch is a valid instruction, and that each instruction han-
dles the appropriate data type for the values it references. This speeds pro-
gram e&ecution since these checks need not be made when the code is run.
If verification finds errors, it throws axeeption. Therpreparation allo-

cates storage for all of the static members of the class, and intitializes them
to standard default values, typically zetdost Ja¥a implementations cre-

ate a method table at this point that contains pointers to all of the methods
defined for this class or inherited from a superclass.

11-290 Adwanced techniques

The final stage of Ja linking is resolution, which is analogous to dynam-

ic linking in other languages. Each class includesoastant poolthat
contains both corentional constants such as numbers and strings, and the
references to other classes. All references in a compiled clesstoeits
superclass, are symbolic, and are remwlafter the class is loade{The
superclass might ka been changed and recompiled after the claas, w
which is valid so long asvery field and method to which the class refers
remains defined in a compatiblay) Java dlows implementations to re-
solve references at grtime from the moment after verification, to the mo-
ment when an instruction actually uses the reference, such as calling a
function defined in a superclass or other cld&syardless of when it actu-

ally resolves a reference, aléd reference doedrcause an exception un-

til it' s used, so the program befes as hough Jaa wses lazy just-in-time
resolution. Thisflexibility in resolution time permits a wide variety of
possible implementationsOne that translated the class into veatma-

chine code could resadl of the references immediatelyo the address-

es and offsets could be embedded into the translated code, with jumps to
an exception routine at yamplace where a reference coultdbe resolved.

A pure interpreter might insteadaw and resee references as thige en-
countered as the code is interpreted.

The effect of the loading and linking design is that classes are loaded and
resohed as neededlava’s garbage collection applies to classes the same
as it applies to all other data, so if all references to a class are deleted, the
class itself can get unloaded.

The Jaa loading and linking model is the most compbd any we've en

in this book. But Jea dtempts to satisfy some rather contradictory goals,
portable type-safe code and also reasonasy é&ecution. Theloading

and linking model supports incremental loading, static verification of most
of the type safety criteria, and permits class-at-a-time translation to ma-
chine code for systems that want programs to run fast.

Exercises

How long does the linker you use &ato link a fairly large program2n-
strument your linker to see what it spends its time do{iyen without
linker source code you can probably do a system call trace which should

Advanced techniques 11-291

give you a pretty good idea.)

Look at the generated code from a compiler for C++ or another object ori-
ented languageHow much better could a link time optimizer neak?
What info could the compiler put in the object module to enakasier for

the linker to do interesting optimizationgPow badly do shared libraries
mess up this plan?

Sketch out a tokenized assembler language for yauarife CPU to use as
an object languageWhat's a gpod way to handle symbols in the pro-
gram?

The AS/400 uses binary translation to\pde binary code compatibility
among different machine models. Other architectures including the IBM
360/370/390, DEC AX, and Intel x86 use microde to implement the
same instruction set on different underlying haadsy Whatare the ad-
vantages of the AS/400 schemé&® microcoding? If you were defining a
computer architecture todayhich would you use?

Project

Project 11-1:Add a garbage collector to the Ik Assume that each in-

put file may hge multiple text segments named ext 1, . t ext 2, and

so forth. Build a global def/ref data structure using the symbol table and
relocation entries and identify the sections that are unreferentedl

have © add a command-line flag to mark the startup stub as referenced.
(What would happen if yuo didt?) Afterthe garbage collector runs, up-
date the sgment allocations to squeeze out space used by delejed se
ments.

Improve the garbage collector to mak iteratve. After each pass, update
the def/ref structure to reme references from logically deletedgseents
and run it again, repeating until nothing is deleted.

References 12-293

Chapter 12
References

$Revision: 2.1 %
$Date: 1999/06/04 20:30:28 $

IBM, MVS/ESA Linkage Editor and Loader UseiGuide, Order number
SC26-4510, 1991. Alsovailable as http://www.ibm.com/

AT&T, System V Application Binary Interface, UNIX Press/Prentice Hall,
ISBN 0-13-877598-2, 1990.

AT&T, System V ABI Motorola 68000 Processoarkily Supplement,
UNIX Press/Prentice Hall, ISBN 0-13-877663-6, 1990.

AT&T, System V ABI Intel386 Architecture Processoarkily Supple-
ment, Intel, Order number 465681, 1990.

Tool Interface Standard (TIS) Portable Formats Specification Version 1.1,
Intel order number 241597, 1992\so athtt p: // devel oper. i n-
tel.com vtune/tis.htm Describes ELF, DWARF, and OMF for

X86.

Tool Interface Standard (TIS)oFmats Specification for iWdows \ersion
1.0, Intel order number 241597, 199Bescribes PE format and debug
symbols, Ithough Microsoft has changed them since this came out."

Randy Kath, The Portable Executable File Format from Top to Bottom,
http://prem um m crosoft.com nsdn/li -
brary/techart/ msdn_pefil e. ht m 1993.

Matt Pietrek, Peering Inside the PE: A Tour of the Win32 Portabée Ex
cutable File Brmat, http://prem um m crosoft. conm ns-
dn/library/techart/ nmsdn_peeri ngpe. ht m 1994.

Microsoft Portable Egcutable and Common Object File Format Specifica-
tion, Revision 5.0http: // prem um m crosoft. com nsdn/|i -
brary/ specs/ pecof f/ m crosof t port abl eexecut abl eand-
comonobj ectfi | ef or mat speci fi cati on. ht m October 1997

12-294 References

Daniel Barlav, The Linux GCC HOVTO, ht t p: / / www. | i nux- how-
t 0. com LDP/ HOMQ GCC- HOMO. ht m , 1996.

Matt Pietrek, Vihdows 95 System Programming Secrets, IDG Books, IS-
BN 1-56884-318-61995.

Intel, 8086 Relocatable Object Modulerfats, Order number 121748,
1981.

Ellis and Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, ISBN 0-201-51459-1, 1990lncludes the C++ name mangling
algorithm.

David Gries, Compiler Construction for Digital Computersilé ISBN
0-471-32776-X, 1971 Contains one of the best available description of
IBM card image object format.

Mary Fernandez, Simple andestive link-time optimization of Modula-3
programs, PLDI 95 Proceedings@M SIGPLAN Notices V30, N6, June
1996), pp. 102-115.

A. Srivastava and D. W Wall, A practical system for intermodule code op-
timization at link-time, Journal of Programming Langggs, March 1993,
pp. 1-18.

Michael Franz and Thomas Kistl&lim Binaries, Department of Informa-
tion and Computer Science, Waisity of California at Irvine, Tech report
96-24, 1996.

Robert Cohn, David Goodwin, BBeoffrey Lowney, and Norman Rubin
Spike: An Optimizer for Alpha/NT Executables, In USENIXndlons NT
Workshop, August 11-13, 1997.

A. Srivastava and D. Wall. “Link-Time Optimization of Address Calcula-
tion on a 64-bit ArchitectureProgramming Language Design and Imple-
mentation, Orlando, FL, June 1994.

Ted Romer Geoff Voelker Dennis Lee, Alec WWman, Wayne Whg,
Hank Lesry, and Brian Bershad, Instrumentation and Optimization of
Win32/Intel Executables Using Etch, In USENIXintlows NT Work-
shop, August 11-13, 1997.

References 12-295

Christopher Fraser and David Hanson A Machine-IndependenerLink
Software Practice and Experience, Vol 12, pp. 351-366, 1982.

Tim Lindholm and Frank Yellin , The J@tm] Virtual Machine Specifica-
tion, Second Edition, Addison-Weg|e1999, ISBN,0-201-43294-3.

Bill Venners, Inside the ¥a Virtual Machine, second editionvicGraw-
Hill, 1999. ISBN 0-07-135093-4.

Apple Computer Inside Macintosh: MacOS Runtime Architectures,
http://developer.apple.com/techpubs/mac/runtimehtiirch-2.html.

Per| books

Larry Wall, Tom Christiansen, and Randal Sentw, Programming Perl,
Second Edition, O'Reilly1996, ISBN 1-56592-149-6.

Randal Schwartz, Learning Perl, O’'Rejll993, ISBN 1-56592-042-2.

Paul Hoffman, Perl for Dummies, IDG Books, 1998, ISBN
0-7645-0460-6.

