
Understanding And Programming With
Netlink Sockets

Neil Horman
Version 0.3

December 6, 2004

1

Contents

1 Introduction 3

2 The Netlink Address Family 4
2.1 Socket Creation . 4
2.2 Sending and Receiving Datagrams 4
2.3 The Netlink Socket Address Structure 5

3 The Netlink Message Format 7
3.1 The Netlink Header . 7
3.2 Netlink Utility Macros . 9
3.3 A Visual Overview . 10

4 The NETLINK FIREWALL protocol 11
4.1 Creation and Use . 11
4.2 Message Types . 12

4.2.1 IPQM MODE . 12
4.2.2 IPQM PACKET . 13
4.2.3 IPQM VERDICT . 14

4.3 Example use of the NETLINK FILTER protocol 16

5 The NETLINK ROUTE Protocol 18
5.1 Creation and Use . 18
5.2 the NETLINK ROUTE message macros 18
5.3 Another Visual Overview . 19
5.4 Message Types . 19

5.4.1 The LINK messages 20
5.4.2 The ADDR messages 21
5.4.3 The ROUTE messages 23
5.4.4 The NEIGH messages 24
5.4.5 The RULE messages 24
5.4.6 The QDISC messages 24
5.4.7 The CLASS messages 24
5.4.8 The FILTER messages 24

6 Adding Netlink Protocols in the Kernel 25

1

List of Figures

1 Netlink message layout and netlink macro interaction 10
2 Netlink route protocol message layout and macro interaction . 20

2

1 Introduction

Network configuration in Linux, and in various implementations of Unix in
general, has always been something of an afterthought from the programmers
point of view. Adding routes, neighbor table entries, or interface configura-
tion options required a somewhat haphazard combination of raw sockets,
ioctl calls and specialized pseudo-network protocols. In the 2.4 Linux ker-
nel, developers began an effort to create a more standard interface for the
configuration of the network control plane1. This configuration interface and
protocol, known as netlink sockets aims to create a communication frame-
work suitable for setting all aspects of the network control plane. While the
build out of the netlink system‘ is not complete, it is clearly the new method
for network configuration, and the infrastructure is reasonably solidified and
operational. This paper aims to document the format and use of both the
netlink socket family and its currently implemented protocols.

This whitepaper is intended to be used as a programming guide and
reference. It assumes that the reader has a prior familiarity both with C
programming, and with socket programming.

1The logical subsection of network communication responsible for controlling the de-
vices which forward network data

3

2 The Netlink Address Family

2.1 Socket Creation

The netlink address family uses the standard BSD socket API as its interface
between user-space programs and various kernel components. The creation
of a netlink socket is preformed in the exact same way as any other network
socket,via the socket library call:

socket fd=socket(AF NETLINK,SOCK RAW,protocol);

The address family is always given as AF NETLINK, and its type is always
given as SOCK RAW. The only variation in the creation of a netlink socket
is the protocol provided. The list of available protocols is and will continue
to change as configuration aspects of the Linux network stack add in their
configurability. As of this writing, the list of available protocols is as follows:

• NETLINK ARPD

• NETLINK FIREWALL

• NETLINK IP6 FW

• NETLINK NFLOG

• NETLINK ROUTE

• NETLINK ROUTE6

• NETLINK TAPBASE

• NETLINK TCPDIAG

• NETLINK XFRM

Each of these protocols is individually described in its own section.

2.2 Sending and Receiving Datagrams

Netlink sockets are connectionless, and operate in much the same way UDP2

sockets do. Messages are sent to recipients on an open netlink socket via the
sendto and sendmsg library calls. Messages are received by the recvfrom
and recvmsg library calls. Note that messages are not exchanged with the

2User Datagram Protocol

4

send and recv library calls. This is because netlink sockets are connection-
less. Much like UDP sockets, netlink messages are transferred in datagrams.
As such there is no guarantee of delivery between socket endpoints, although
there are mechanisms in the netlink message header which are designed to
help the programmer add a level of reliability to the protocol for those ap-
plications which require it.

2.3 The Netlink Socket Address Structure

The netlink socket address address structure, named struct sockaddr nl is
passed to all calls which send or receive netlink sockets. This structure both
informs the kernel networking stack of a datagrams destination, and informs
a user-space program of a received frames source. The strucutre is defined
as follows:

struct sockaddr nl
{

sa family t nl family;
unsigned short nl pad;

u32 nl pid;
u32 nl groups;

}

• nl family - This field defines the address family of the message being
sent over the socket. This should always be set to AF NETLINK.

• nl pad - This field is unused and should always be set to zero.

• nl pid - This field is PID3 of the process that should receive the frame
being sent, or the process which sent the frame being received. Set this
value to the PID of the process you wish to recieve the frame, or to
zero for a multicast message or to have the kernel process the message.

• nl groups - This field is used for sending multicast messages over
netlink. Each netlink protocol family has 32 multicast groups which
processes can send and receive messages on. To subscribe to a particu-
lar group, the bind library call is used, and the nl groups field is set to
the appropriate bitmask. Sending multicast frames works in a simmilar
fashion, by setting the nl groups field to an appropriate set of values
when calling sendto or sendmsg. Each protocol uses the multicast
groups differently, if at all, and their use is defined by convention.

3Process Identifier

5

The sockaddr nl structure is cast to a standard sockaddr structure
and passed in as the appropriate parameter to the send and recv familes of
library calls.

6

3 The Netlink Message Format

In the same way that every IP4 message has an standard IP header, netlink
messages all have an identical header on each message sent and received.
Unlike other protocols however, the programmer is required to build this
header for each frame. This header is used to store metadata about each
netlink message and forms the base infrastructure of every netlink protocol.

3.1 The Netlink Header

The netlink header is defined as follows:

struct nlmsghdr {
u32 nlmsg len;
u16 nlmsg type;
u16 nlmsg flags;
u32 nlmsg seq;
u32 nlmsg pid;

}

• nlmsg len - Each netlink message header is followed by zero or more
bytes of ancilliary data. This 4 byte field records the total amount of
data in the message, including the header itself.

• nlmsg type - This 2 byte field defines the format of the data which
follows the netlink message header

• nlmsg flags - This 2 byte field or logically OR’ed bits defines vari-
ous control flags which determine who each message is processed and
interpreted:

– NLM F REQUEST - This flag identifies a request message. It
should be set on almost all application initiated messages

– NLM F ACK - This flag identifies a response to a previous re-
quest packet. The sequence and pid values can be used to correlate
the request to the response.

– NLM F ECHO - This flag causes the associated packet to be
eched back to the sending process on the same socket.

4Internet Protocol

7

– NLM F MULTI - This flag indicates the message is part of a
multipart message. The next successive message in the chain can
be obtained with the NLMSG NEXT macro, which is detailed in
section 3.2.

– NLM F ROOT - Used With various data retrieval (GET) oper-
ations for various netlink protocols, request messages with this flag
set indicate that an entire table of data should be returned rather
than a single entry. Setting this flag usually results in a response
message with the NLM F MULTI flag set. Note that while this
flag is set in the netlink header, the get request is protocol specific,
and the specific get request is specified in the nlmsg type field.

– NLM F MATCH - This flag indicates only a subset of data
should be returned on a protocol specific GET request, as specified
by a protocol specific filter. Not yet implemented.

– NLM F ATOMIC - Indicates that any data returned by a pro-
tocol specific GET requests should be gathered atomically, which
prevents the contents of the table from changing accross multiple
GET requests.

– NLM F DUMP - Not yet defined/implemented

– NLM F REPLACE - Replace an entry in a table with a proto-
col specific SET request. Some netlink protocols allow the pop-
ulation of various tables data tables, and setting this flag allows
the message to override an entry in that table.

– NLM F EXCL - Used in conjunction with the CREATE or AP-
PEND flags, causes a protocol specific SET message, causes the
request message to fail if the entry key already exists.

– NLM F CREATE - Indicates that the entry associated with
this SET request message should be created in the table specified
by the protocol data.

– NLM F APPEND - Indicates that the entry specified in this
protocol SET request should be created, specifically at the end of
the table

• nlmsg seq - This 4 byte field is an arbitrary number, and is used
by processes that create netlink request messages to correlate those
requests with thier responses.

• nlmsg pid - This 4 byte field is used in a simmilar fashion to nlmsg seq.
It can be used to correlate request messages to response messages, and

8

is primarily usefull in netlink sockets that use the multicast groups fea-
ture (implying that there may be several senders and receivers of data.
Any message which is originated by a user process should set this field
to the value returned by the getpid library call. Also note that it is
imperative that any program receiving netlink socket messages from
the kernel verify that this field is set to zero, or it is possible to expose
the software to unexpected influences from other non-privlidged user
space programs.

3.2 Netlink Utility Macros

The netlink header fields and the anciliary protocol data have associated
utiilty macros to facilitate their computation. The following utility macros
are used to build and manipulate netlink messages

• int NLMSG ALIGN(size t len) This macro accepts the length of a
netlink message and rounds it up to the nearest NLMSG ALIGNTO5

boundary. It returns the rounded length. This macro is not normally
used by applications, but rather is used by the other utility macros
internally.

• int NLMSG LENGTH(size t len) Given the size of the ancilliary
data to be sent with a netlink message, this macro returns the size of
the payload, plus the netlink header size, rounded up to the nearest
NLMSG ALIGNTO bytes. This macro is used to set the nlmsg len
field of a netlink message header.

• int NLMSG SPACE(size t len) Returns the aligned size of the
passed length. Effectively this is the same as NLMSG LENGTH with-
out including the size of the netlink message header

• void *NLMSG DATA(struct nlmsghdr *nlh) Given a netlink
header structure, this macro returns a pointer to the ancilliary data
which it contains.

• struct nlmsghdr *NLMSG NEXT(struct nlmsghdr *nlh) Many
netlink protocols have request messages that result in multiple response
messages. In these cases, if the buffer passed to the recv library call
is large enough, multiple responses will be copied into the buffer, and
the netlink header in each response will have the NLM F MULTI bit
set in the flags field. In this case this macro can be used to walk the

5Usually defined as 4 bytes

9

chain of responses. Returns NULL in the event the message is the last
in the chain for the given buffer.

• int NLMSG OK(struct nlmsghdr *nlh, int len) In the event that
multiple messages have been returned in a received buffer, this macro
is used to ensure that the passed netlink header has not had it or its
anciliary data truncated. It also guarantees that it is safe to parse using
the other macros.

• int NLMSG PAYLOAD(nlmsghdr *nlh, int len) This macro ac-
cepts a netlink message header, and returns the length of the ancilliary
data associated with that header.

3.3 A Visual Overview

The following figure illustrates how a netlink message is laid out in memory

Figure 1: Netlink message layout and netlink macro interaction

10

4 The NETLINK FIREWALL protocol

The NETLINK FIREWALL protocol is an extreemely usefull development
protocol. Primarily it is intended to be used a development tool to facilitate
the construction and debugging of iptables modules in user space, but in
conjunction with a combination of packet sockets and/or raw sockets, it can
be used to drive a wide variety of network traffic patterns, for any number
of applications.

This protocol is used in conjunction with several iptables modules. The
ip queue module (included in the linux kernel source) registers this protocol
within the kernel. Any attempt to create a socket on this protocol before this
module is added to the kernel (via insmod or modprobe) will result in failure.
Also the iptables filter module is needed, as only packets which are selected
by the filter will be sent to the NETLINK FIREWALL protocol socket. Use
the iptables command to configure the filter to select those packets you are
interested in examining with your user space application. For instance the
following command will select all frames originating from the local host with
a protocol of tcp and a destination port of 7551 to be sent to the user space
program:

iptables -I OUTPUT -j QUEUE -p tcp –destination-port
7551

Note the use of the QUEUE target. This option tells iptables that any frame
that matches the specified filter that it should be sent to the QUEUE target,
which is implmented by the ip queue module, which in turn sends it to the
user space program via the netlink socket.

4.1 Creation and Use

NETLINK FIREWALL packets are created with the standard socket library
call, specifying NETLINK FIREWALL as the protocol. The protocol makes
no use of the netlink multicast groups, so any messages sent on a socket bound
to this protocol should set the groups field of the sockaddr nl structure to
0. Sockets on this protocol also need not make use of the bind library call,
as packets are sent only between the kernel and a the originating process.
This implies that any packets sent from a user process should set the pid
field of the sockaddr nl structure to 0, although other user processes may be
designated as recipients by setting the appropriate value in the sockaddr’s
pid field.

11

4.2 Message Types

The NETLINK FIREWALL protocol has 3 messages which can be assigned
in the nlmsg type field of the netlink message header (see section 3.1):

• IPQM MODE

• IPQM PACKET

• IPQM VERDICT

Each message type, along with its requisite anciliary netlink data structures
are detailed in their own sections below.

4.2.1 IPQM MODE

After establishing a connection to the ip queue module in the kernel by open-
ing the NETLINK FIREWALL socket, an operational mode must be estab-
lished. The mode of the queue protocol defines what information about each
enqueued packet to send to user space. The ancilliary data which is appended
to the netlink message header has the following format:

typedef struct ipq mode msg {
unsigned char value;
size t range;

};

• value - This field has one of three values:

– IPQ COPY NONE - This is the initial mode, and causes no
filter reporting to be done. All queued packets are dropped.

– IPQ COPY META - This mode sends only metadata about the
frame to userspace (the data contained in the IPQM PACKET
message)

– IPQ COPY PACKET - This mode copies metadata and a por-
tion of the packet to the application. Note that setting the pro-
tocol mode to IPQ COPY PACKET and the range to 0 will cause
the entire packet to be copied in the payload for each IPQM PACKET
message.

• range - This optional setting is only valid when value is set to IPQ COPY PACKET.
The range specifies how many bytes of data should be copied into the
application on the receipt of a IPQM PACKET message.

12

4.2.2 IPQM PACKET

Once a mode other than IPQ COPY NONE is set on the socket, the socket
will start receiving messages when a packet is selected by the ip queue module
in the kernel6. When a packet is intercepted the queue module, The appli-
cation will read a mesage from the socket with the netlink message header
type set to IPQM PACKET. The ancilliary data appended to the message
will have the following format:

typedef struct ipq packet msg {
unsigned long packet id;
unsigned long mark;
long timestamp sec;
long timestamp usec;
unsigned int hook;
char indev name[IFNAMSIZ];
char outdev name[IFNAMSIZ];
unsigned short hw protocol;
unsigned short hw type;
unsigned char hw addrlen;
unsigned char hw addr[8];
size t data len;
unsigned char payload[0];

};

• packet id - This a unique number generated in the kernel and use to
correlate incomming packet messages with their disposition sent back
in the IPQM VERDICT messages, described in section 4.2.3.

• mark - Netfilter mark value. Used in conjunction with the netfilter
mangle table.

• timestap sec - Arrival time of the packet.

• timestap usec - Arrival time of the packet.

• hook - The netfilter hook number at which the packet was redirected
to the queue target.

• indev name - The device name the packet arrived on.

• outdev name - The device name the packet was destined to (if any).

6Based on the iptables configuration you have set

13

• hw protocol - The protocol specified in the MAC7 header. Usually
set to ETH P IP.

• hw type - The media type of the interface that the packet arrived on.
Usually set to ARPHDR ETHER.

• hw addrlen - The length of the MAC address of the packet.

• hw addr - The source hardware address of the incomming packet.

• data len - The length of the data pointed to by the payload pointer.

• payload - The payload of the packet. Maximum length defined by the
range field of the mode message as discussed in section 4.2.1.

4.2.3 IPQM VERDICT

The NETLINK FIREWALL protocol is synchronous. In an effort to keep
packets properly ordered, the impelmentation of the protocol requires that
the user space application send an IPQM VERDICT message after every
IPQM PACKET message is received. If the application attempts to receive
two IPQM PACKET frames without an sending an intervening IPQM VERDICT
message, the second recvfrom or recvmsg call will block. The IPQM VERDICT
message is used to release packets from the kernel ip queue module. The
packets destination (if any) any is determined by the ancilliary data in the
verdict message. The ancilliary data appended to the message has the fol-
lowing format:

typedef struct ipq verdict msg {
unsigned int value;
unsigned long id;
size t data len;
unsigned char payload;

};

• value - This is the verdict to provide to the kernel queue module, which
determines the action the kernel will take for a given packet. Its value
is one of the following:

– NF DROP - This verdict causes the packet to be dropped im-
mediately.

7Media Access Control

14

– NF ACCEPT - This verdict causes the packet to be accepted.
The packet is sent on through the network stack without any
further iptables tests being preformed.

– NF STOLEN - Take ownership of the packet but don’t release
netfilter resources. This is best described as “drop but allow later
re-injection”

– NF QUEUE - Queue the packet to the ip queue module for user
space examination. Not often used by user space NETLINK FIREWALL
enabled applications.

– NF REPEAT - Send the packet on. Allow and subsequent check
in the iptables chain to be preformed.

• id - This value should always be set to the packet id value specified
in a received IPQM PACKET message. It is used by the kernel to
correlate a particular verdict to a particular packet message.

• data len - The length of the data pointed to by the payload value.
This may be set to zero if there is no payload to pass back to the kernel

• textbfpayload - When sending a verdict back to the kernel, a segment of
the packet may be rewritten prior to acceptance. This modification, be-
ginning at the MAC header, is pointed to by the payload pointer. This
is only usefull when the verdict returned on a packet is NF ACCEPT,
NF QUEUE or NF REPEAT.

15

4.3 Example use of the NETLINK FILTER protocol

...

int netlink_socket;

int seq=0;

struct sockaddr_nl addr;

struct nlmsghdr *nl_header = NULL;

struct ipq_mode_msg *mode_data = NULL;

struct ipq_packet_msg *pkt_data = NULL;

struct ipq_verdict_msg *ver_data = NULL;

unsigned char buf1[128];

unsigned char buf2[128];

/*create the socket*/

netlink_socket = socket(AF_NETLINK,SOCK_RAW,NETLINK_FIREWALL);

...

/*set up the socket address structure*/

memset(&addr,0,sizeof(struct sockaddr_nl);

addr.nl_family=AF_NETLINK;

addr.nl_pid=0;/*packets are destined for the kernel*/

addr.nl_groups=0;/*we don’t need any multicast groups*/

/*

*we need to send a mode message first, so fill

*out the nlmsghdr structure as such

*/

nl_header=(struct nlsmghdr *)buf1;

nl_header->nlmsg_type=IPQM_MODE;

nl_header->nlmsg_len=NLMSG_LENGTH(sizeof(struct ipq_mode_msg));

nl_header->nlmsg_flags=(NLM_F_REQUEST);/*this is a request, don’t ask for an answer*/

nl_header->nlmsg_pid=getpid();

nl_header->nlmsg_seq=seq++;/*arbitrary unique value to allow response correlation*/

mode_data=NLMSG_DATA(nl_header);

mode_data->value=IPQ_COPY_META;

mode_data->range=0;/*when mode is PACKET, 0 here means copy whole packet*/

if(sendto(netlink_socket,(void *)nl_header,nl_header->nlmsg_len,0,

(struct sockaddr *)&addr,sizeof(struct sockaddr_nl)) < 0) {

perror("unable to send mode message");

16

exit(0);

}

/*

*we’re ready to fileter packets

*/

for(;;) {

if(recvfrom(netlink_socket,buf1,NLMSG_LENGTH(sizeof(struct ipq_packet_msg)),

0,&addr,sizeof(struct sockaddr_nl)) < 0) {

perror("Unable to receive packet message");

exit(0);

}

/*

*once we have the packet message, lets extract the header and ancilliary data

*/

nl_header=(struct nlmsghdr *)buf1;

pkt_data=NLMSG_DATA(nl_header);

/*for the example just forward all packets*/

nl_header=buf2;

nl_header->nlmsg_type=IPQM_VERDICT;

nl_header->nlmsg_len=NLMSG_LENGTH(sizeof(struct ipq_verdict_msg));

nl_header->nlmsg_flags=(NLM_F_REQUEST);/*this is a request, don’t ask for an answer*/

nl_header->nlmsg_pid=getpid();

nl_header->nlmsg_seq=seq++;/*arbitrary unique value to allow response correlation*/

ver_data=(struct ipq_verdict_msg *)NLMSG_DATA(nl_header);

ver_data->value=NF_ACCEPT;

ver_data->id=pkt_data->packet_id;

if(sendto(netlink_socket,(void *)nl_header,nl_header->nlmsg_len,0,(struct sockaddr *)&addr,sizeof(struct sockaddr_nl)) < 0) {

perror("unable to send mode message");

exit(0);

}

}

17

5 The NETLINK ROUTE Protocol

5.1 Creation and Use

The NETLINK ROUTE protocol has the largest scope and is the most ma-
ture of all the netlink family protocols. It contains its own subset of message
manipulation macros that mirror the behavior and function of the netlink
address family macros described in section 3.2. These macros allow the
NETLINK ROUTE protocol to implement additional ancilliary data seg-
ments that can be customized to each particular message type.

The messages that make up the NETLINK ROUTE protocol can be di-
vided into families, each of which control a specific aspect of the Linux kernels
network routing system. The message families are:

• LINKS

• ADDRESSES

• ROUTES

• NEIGHBORS

• RULES

• DISCIPLINES

• CLASSES

• FILTERS

Each of these families are implemeted in the same message type names-
pace, and each family has a common structure of ancilliary data. Each
ancilliary strucutre may be followed by one or more message family specific
attributes, as described in section 5.2.

Each family consists of three methods; a NEW method, a DEL method,
and a GET method. As each family controls a set of data objects that can
be represented as a table, these methods allow a user to create table entries,
delete table entries, and retrieve one or more of the objects in the table.

5.2 the NETLINK ROUTE message macros

The NETLINK ROUTE protocol allows for each message to follow up its
defined ancilliary data with a set of subsequent segments of varying length.
Each segment of data contains a header which defines its data type, and its
length, as follows:

18

struct rtattr {
unsigned short rta len;
unsigned short rta type;

}

A user can parse the set of subsequent data segments using the follow-
ing macros, which operate identically to the netlink macros as described in
section 3.2:

• int RTA OK(struct rtattr *rta, int rtabuflen); - Verify the data
integrity of the data which succedes this rtattr header.

• void * RTA DATA(struct rtattr *rta); - Return a pointer to the
ancilliary data associated with this rtattr header.

• struct rtattr *RTA NEXT(struct rtattr *rta); - Return a pointer
to the next rtattr header in the chain.

• unsigned int RTA PAYLOAD(struct rtattr *rta); - Return the
length of the ancilliary data associated with the passed rtattr header.

• unsigned int RTA LENGTH(unsigned int length); - Return the
aligned length for the passed payload length. This value is assigned to
the rta len field of the rtattr header

• unsigned int RTA SPACE(unsigned int length); - Return the
length of the ancilliary data, when aligned.

5.3 Another Visual Overview

The following figure is an extention of the figure shown in section 3.3. It
illustrates the memory layout of a sample netlink message which uses data
structures from the NETLINK ROUTE protocol

5.4 Message Types

As mentioned in section 5.1, The message namespace for the NETLINK ROUTE
protocol can be subdivided into families, each of which interfaces to a partic-
ular aspect of the networking subsystem in the kernel. Each group is detailed
in its own subsequent section. Note that all families in this protocols oper-
ate on tables of objects. Each family has a GET member which, when used
in conjunction with the NLM F ROOT flag (described in section ??), can
dump the entire contents of the table.

19

Figure 2: Netlink route protocol message layout and macro interaction

5.4.1 The LINK messages

The LINK family of messages allow a user of the NETLINK ROUTE protocol
to set and retrieve information about network interfaces on the system. It
consists of three message types:

• RTM NEWLINK - Create a new network interface

• RTM DELLINK - Destroy a network interface

• RTM GETLINK - Retrieve information about a network interface

Each of these messages contains as its ancilliary data a infomsg structure
which is defined as:

struct ifinfomsg {
unsigned char ifi family;
unsigned short ifi type;
int ifi index;
unsigned int ifi flags;
unsigned int ifi change;

};

• ifi family - The address family that this interface belongs to. For inter-
faces with ipv6 addresses associated this field is AF INET6, otherwise
it is set to AF UNSPEC

• ifi type - The media type of the interface. Usually set to ARPHRD ETHER

• ifi index - The unique interface number associated with this interface.
Note that this number is simply a unique identifier number associated
with a interface, and is in no way related to the interface name

20

• ifi flags - The interface flags

• ifi change - Reserved field. Always set this is 0xffffffff

The ifinfo data structure may be followed by zero or more attributes, each
lead by an rtattr structure. The possible attributes are:

rtattr type description data length data type
IFLA ADDRESS Hardware

MAC address
Varies based
on ifi type

char array

IFLA BROADCAST Hardware
MAC broad-
cast address

Varies based
on ifi type

char array

IFLA IFNAME Interface
Name

0 ¡ length ¡ IF-
NAMSIZ

char array

IFLA MTU Max trans-
mission unit

4 bytes unsigned int

IFLA LINK Link Type 4 bytes int
IFLA QDISC Queue disci-

pline
varies char array

IFLA STATS interface
statistics

sizeof(struct
net device stats

struct
net device stats

5.4.2 The ADDR messages

The ADDR family of NETLINK ROUTE protocol messages are used to ma-
nipulate network addresses on network interfaces. This family contains three
messages:

• RTM NEWADDR

• RTM DELADDR

• RTM GETADDR

Each of these messages carries as ancilliary data a struct ifaddrmsg:

struct ifaddrmsg {
unsigned char ifa family;
unsigned char ifa prefixlen;
unsigned char ifa flags;
unsigned char ifa scope;
int ifa index;

}

21

• ifa family - The address family to which this address belongs. Most
often set to AF INET

• ifa prefixlen - The length of the address mask of the family, if defined

• ifa flags - The flags associated with this address. Specifies (among
other settings) if this address is the primary address for the interface,
or if it is a secondary one. Defined as the IFA F * flags in rtnetlink.h

• ifa scope - The scope of the address. This is kind of a loose definition
of a distance to the address. Also defined in rtnetlink.hi, and always
set to RT SCOPE HOST or RT SCOPE LINK.

• ifa ifindex - The interface index number of the interface this address
is associated to. Defined identically to ifi ifindex from section 5.4.1.

Following the primary ancilliary data, a series of route attributes (struct
rtattrs with ancilliary data) may follow. The table below details all of the
route attributes that may be returned in conjunction with this family of
messages.

rtattr type description data length data type
IFA ADDRESS Protocol Ad-

dress
varies de-
pending on
protocol

varies by pro-
tocol

IFA LOCAL Protocol Ad-
dress

varies de-
pending on
protocol

varies by pro-
tocol

IFA LABEL Interface
Name

0 ¡ length ¡ IF-
NAMSIZ

char array

IFA BROADCAST Broadcast
Protocol
Address

varies de-
pending on
protocol

varies by pro-
tocol

IFA ANYCAST Anycast Pro-
tocol Address

varies by pro-
tocol

varies by pro-
tocol

IFA CACHEINFO Provides ad-
ditional infor-
mation about
this address

sizeof(struct
ifa cacheinfo

struct
ifa cacheinfo

22

5.4.3 The ROUTE messages

The ROUTE family of messages are responsible for managing the IPV4 route
table. This family consists of three messages, following with the same con-
vention as the preceding families:

• RTM NEWROUTE

• RTM DELROUTE

• RTM GETROUTE

Each of the ROUTE family of messages contains the following strucutres as
ancilliary data8:

struct rtmsg {
unsigned char rtm family;
unsigned char rtm dst len;
unsigned char rtm src len;
unsigned char rtm tos;
unsigned char rtm table;
unsigned char rtm protocol;
unsigned char rtm scope;
unsigned char rtm type;
unsigned int rtm flags;

}

• rtm family - The address family of the route. most commonly AF INET.

• rtm dst len - The length of the destination address of the route entry.

• rtm src len - The length of the source address of the route entry.

• rtm tos - The type of service indicator for the route.

• rtm table - Specifies the routing table to operate on. See the table
below for an enumeration of the values which this field can contain.

• rtm protocol - Specifies the routing protocol to operate on. This
value differentiates static vs. dynamic vs. other types of routes. See
the table below for an enumeration of the values this field can contain.

8For the RTM GETROUTE message all fields use 0 as a wildcard match except for
rtm table and rtm protocol, which must be exactly specified

23

• rtm scope - The network horizon to which this route applies. See
the table below for an enumeration as to the value that this field can
contain.

• rtm type - The type of route this route is (unreachable, broadcast,
blackhole, etc). See the table below for an enumeration of the values
that this field can contain.

• rtm flags - Miscelaneous operational flags applied to the route. See
the table below for a list of value that this field can contain.

rtm type value Meaning
RT TABLE UNSPEC All routing tables
RT TABLE DEFAULT The default routing table
RT TABLE MAIN The main routing table
RT TABLE LOCAL The local routing table

rtm protocol value Route Origin
RTPROT UNSPEC All routing protocols
RTPROT REDIRECT Redirect via ICMP message
RTPROT KERNEL Route managed by the kernel
RTPROT BOOT Route added during boot
RTPROT STATIC Route added by admin

rtm scope value Horizon of route
RT SCOPE UNIVERSE Global route
RT SCOPE SITE Route within interior system (ipv6

only)

5.4.4 The NEIGH messages

5.4.5 The RULE messages

5.4.6 The QDISC messages

5.4.7 The CLASS messages

5.4.8 The FILTER messages

24

6 Adding Netlink Protocols in the Kernel

Just as user space programs can use the Netlink Socket family and manipula-
tion macros to communicate with various kernel subsystems, there is an api
within the kernel which allows developers to create modules which allow the
netlink protocol family to be extended to provide further user space access
to other kernel functionality.

25

	Introduction
	The Netlink Address Family
	Socket Creation
	Sending and Receiving Datagrams
	The Netlink Socket Address Structure

	The Netlink Message Format
	The Netlink Header
	Netlink Utility Macros
	A Visual Overview

	The NETLINK_FIREWALL protocol
	Creation and Use
	Message Types
	IPQM_MODE
	IPQM_PACKET
	IPQM_VERDICT

	Example use of the NETLINK_FILTER protocol

	The NETLINK_ROUTE Protocol
	Creation and Use
	the NETLINK_ROUTE message macros
	Another Visual Overview
	Message Types
	The LINK messages
	The ADDR messages
	The ROUTE messages
	The NEIGH messages
	The RULE messages
	The QDISC messages
	The CLASS messages
	The FILTER messages

	Adding Netlink Protocols in the Kernel

