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Personal computing with affordable computers and their peripheral devices becomes more
popular. To use such devices more efficiently and improve their usability, people want to
share surrounding peripheral devices between computers without any modification of their
own computing environments. The recent device sharing technologies in the pervasive com-
puting area are not sufficient for the peripheral devices of personal computers because these
technologies do not provide the network-transparency for applications and device drivers. In
this paper, we propose USB/IP as a transparent device sharing mechanism over IP network.
This advanced device sharing mechanism is based on the modern sophisticated peripheral
interfaces and their supports in operating systems. By the Virtual Host Controller Interface
Driver we have implemented as a peripheral bus driver, users can share diverse devices over
networks without any modification in existing operating systems and applications. The ex-
periments show that USB/IP has fairly practical I/O performance for various USB devices,
including isochronous ones. We also describe the performance optimization criteria for the
further improvements.

1. Introduction

By the innovations in computing technology,
people have their own computing environment
with several personal computers. Users always
want to use surrounding peripheral devices on-
demand and seamlessly through their own com-
puters and their favorite applications, even if
these devices are already attached to other com-
puters. For example, a user who brings back
his mobile computer to his office may want to
make the backup of his working files directly
into a DVD-R drive of a shared computer at the
office, rather than directly use the shared com-
puter or reconnect the DVD-R drive to his com-
puter. At his desk, he may also wish to work
on his mobile computer with an ergonomic key-
board and a mouse which are already-attached
to a desktop computer without plugging to a
KVM switch. In the context of resource man-
agement, the key technology for these scenarios
is the network-transparent device sharing mech-
anism by which computers can interact seam-
lessly with other computers’ devices as well as
directly-attached ones.

Many device sharing technologies 10),16) have
been proposed in the pervasive computing area
to aggregate accesses to network-attached de-
vices and improve their usability. These tech-
nologies address dynamic discovery, on-demand
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selection and automatic interaction among de-
vices. However, the network transparency for
existing device access interfaces, by which ex-
isting applications can also access to remote
shared devices without any modification, has
not been addressed adequately.

In this paper, we propose USB/IP as a trans-
parent device sharing mechanism over IP (In-
ternet Protocol) network. The main component
of this extension is the Virtual Host Controller
Interface driver implemented as a peripheral
bus driver. It is built in the lowest layer in op-
erating systems so that most applications and
device drivers can access remote shared devices
through existing interfaces after these devices
are virtually attached to a computer. We be-
lieve that this approach is fairly practical be-
cause of recently emerging sophisticated periph-
eral interfaces and broadband networks.

Our device sharing approach presents several
advantages over the conventional approaches.
First, a computer can access the full functional-
ity of a shared device. The control granularity
of the shared device is the same as directly-
attached one. In our system, all the low-level

The original paper 7) was published in the Pro-
ceedings of the FREENIX Track: USENIX An-
nual Technical Conference (The USENIX Associ-
ation: Berkeley, CA, April 2005). Some parts of
the FREENIX paper are refined for readers’ conve-
nience. Especially, Section 2, Section 3, and Sec-
tion 5 of the original paper are reconstructed.
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Fig. 1 USB device driver model.

I/O data for the devices are encapsulated into
IP packets and then transmitted. Second, a
computer can access a shared device with its
operating system and applications. With only a
few additional device drivers, users can control
the shared device as if it was directly attached
to a local peripheral bus. Last, various comput-
ers with different operating systems can share
their devices with each other, because the low-
level device control protocols do not depend on
any structures of operating systems.

In the remainder of this paper, we expand
on our vision of USB/IP. Section 2 explains
the overview of USB/IP and then gives the de-
sign details. Section 3 shows the evaluation of
USB/IP and clarifies its characteristics. Sec-
tion 4 examines related work. We conclude our
study in Section 5. The availability of USB/IP
is noted in Section 6. The contribution of this
paper is that we show the key idea of USB/IP is
enough practical by implementing USB/IP on
Linux and evaluating its I/O performance.

2. USB/IP

2.1 USB Driver Architecture
USB (Universal Serial Bus) 17) is one of the

sophisticated peripheral interfaces based on the
recent hardware progress. In the USB 2.0
specification announced in April 2000, a host
computer controls various USB devices with
3 transfer speeds (1.5Mbps, 12.0 Mbps, and
480Mbps) and 4 transfer types (Control, Bulk,
Interrupt, and Isochronous). These transfers
are serialized and controlled by a dedicated
hardware function which is named USB Host
Controller. Figure 1 shows the USB device
driver model in most operating systems. A USB
Host Controller Driver (USB HCD) exists in
the lowest layer of the device driver stack and
abstracts the I/O interface of a host controller

into a common API for USB device drivers. A
USB PerDevice Drivers (USB PDD) is respon-
sible for the control of each USB device. The
key design of the USB driver stack is that a
USB Host Controller and its USB HCD provide
USB PDDs with abstracted data input/output
for I/O buffers. Although a USB device and
its USB PDD use the buffer to transfer some
control data and corresponding reply data, the
USB HCD do not distinguish between control
and reply.

In USB device drivers, a USB Request Block
(URB) presents USB I/O in a controller-
independent form, which includes information
about I/O;
• I/O buffer
• I/O direction (Input/Output)
• I/O speed (1.5 Mbps/12 Mbps/480 Mbps)
• I/O type (Control/Bulk/

Interrupt/Isochronous)
• I/O destination address
• completion handler

An application or a device driver controls a
USB device as follows:
( 1 ) A USB PDD converts I/O requests from

another driver into URBs and submits
these URBs to a USB HCD.

( 2 ) The USB HCD transfers data as de-
scribed by the URB.

( 3 ) After I/O of the URB is completed, the
completion handler of the URB is called
in an interrupt context.

( 4 ) The USB PDD notifies the upper driver
of the requested I/O completion.

A USB device and its USB PDD use 4 differ-
ent transfer types depending on characteristics
of the device. Control and Bulk transfer types
are asynchronously scheduled into the rest of
the bandwidth after the periodical transfers.
Control transfer is the most fundamental one
for enumeration and initialization of devices.
In 480 Mbps mode, 20% of the bandwidth is
reserved for Control transfer. Bulk transfer is
used for the requests without any temporal re-
striction, such as storage device I/O, which is
the fastest transfer when the bus is available.
Isochronous and Interrupt transfer types are pe-
riodically scheduled. Isochronous transfer can
move control data at a constant bit rate, which
is useful to read image data from a USB cam-
era or to write sound data to a USB speaker.
Interrupt transfer confirms the maximum delay
of the requested I/O. This is used for USB mice
and keyboards, which move a small amount of
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data sporadically.
2.2 Overview of USB/IP
To share various USB devices between com-

puters, we propose the Virtual Host Controller
Interface driver as one of the USB HCDs. The
VHCI driver provides the same access interface
to a virtually-attached remote USB device. It
encapsulates USB requests into IP packets and
transmits them to the remote device. This ap-
proach makes the best use of attractive USB
features, such as various device supports and
dynamic device configuration. Furthermore, in
the context of device sharing architecture, the
advantages of USB/IP are summarized as fol-
lows:

Full Functionality. All the functions of re-
mote devices can be manipulated by the oper-
ating system. The abstraction on the layer of
USB HCDs conceals only the difference between
USB host controllers. Per-device operations are
fully transferred to remote USB devices.

Network Transparency. The VHCI driver
conceals the implementation details of network
sharing mechanisms. Other device drivers (e.g.,
file system, block I/O and virtual memory) and
applications do not recognize any difference of
the access interfaces between remote devices
and locally-attached ones.

Interoperability. If the VHCI driver is im-
plemented in other operating systems, hetero-
geneous computers can share their USB de-
vices. The USB protocols, which are defined
by the several standards, do not depend on the
structures in an operating system. Addition-
ally, most operating systems have quite similar
USB driver models. Basically, USB/IP is fairly
applicable to various operating systems.

To transfer USB I/O data over IP network
efficiently, in which transfer delay and jitter are
larger than the USB wire, the key point is that
USB/IP encapsulates URBs into IP packets. In
general, the fine-grained I/O operations with
small data size and short temporal restriction
depress the total I/O performance when each
operation spends more execution time. The na-
tive I/O granularity of USB is too small to con-
trol USB devices over IP network. Isochronous
transfer needs to move 3KB data in every mi-
croframe (125 us) constantly and Bulk transfer
needs to move 6.5KB data in a microframe.
The I/O in a microframe is named as “trans-
action”, which is given in Transaction Descrip-
tor (TD). However, a URB, which substitutes
a series of USB I/O transactions with one re-

Fig. 2 USB/IP design.

quest by concatenating them into its I/O buffer,
can relax the restrictions to be ease to handle
small I/Os. For example, if a URB represents
80 I/O transactions of Isochronous transfer and
each transaction is executed every microframe,
the temporal restriction of the I/O is relaxed to
10 ms, still keeping its I/O granularity 125 us. If
a URB has the 100 KB buffer of Bulk transport
and each transaction moves 512 B, this URB
substitutes for 200 I/O transactions.

Considering the bandwidth of Gigabit Ether-
net goes beyond that of 480 Mbps of USB 2.0, it
is possible to apply the URB-based I/O model
to control remote USB devices over IP network.
The evaluation of using URBs for USB/IP is
described in Section 3.

2.3 Design and Implementation
The design of USB/IP is illustrated in Fig. 2.

We create the VHCI driver as a USB HCD in
a client host and the Stub driver as a USB
PDD in a server host. The VHCI driver em-
ulates the USB Root Hub’s behavior; when
a remote USB device is connected to a client
host over IP network, the VHCI driver noti-
fies the USB Core Driver of the port status
change. The Stub driver is responsible for
exporting of shared devices. It is automati-
cally loaded when the devices are attached to
the server computer. Most URBs are encapsu-
lated/decapsulated into/from IP packets while
their device numbers are always converted be-
tween the client’s one and the server’s one.

The USB/IP implementation on Linux uses
a common API of a USB core driver in both
client and server sides. First, a USB PDD
submits a URB by usb submit urb(struct
*urb, ..). usb submit urb() calls the
urb enqueue(struct *urb, ..) of the VHCI
driver after small sanity checks. The
urb enqueue() translates a URB into a SUB-
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Table 1 USB/IP protocol data unit (SUBMIT and RETURN).

Byte Field
0–3 SUBMIT
4–7 bus number
8–11 device number
12–15 sequence number
16–19 IN/OUT & I/O type & endpoint
20–23 transfer flags
24–27 buffer length
28–31 number of included transaction
32–35 transaction interval
36–39 control buffer
40– isochronous descriptors (if available)

I/O buffer (if available)

Byte Field
0–3 RETURN
4–7 bus number
8–11 device number
12–15 sequence number
16–19 reserved
20–23 transfer flags
24–27 buffer length
28–31 number of included transaction
32–35 error count
36–39 transfer status
40– isochronous descriptors (if available)

I/O buffer (if available)

MIT PDU (Protocol Data Unit) (Table 1) and
then transmits it to a remote Stub driver. Next,
the Stub driver receives the SUBMIT PDU,
creates a new URB from it, and then sub-
mits the URB to a real USB host controller by
usb submit urb(). After the requested I/O of
the URB is completed, the Stub driver sets up
a RETURN PDU which includes the status of
I/O and input data if available, and then trans-
mits it to the VHCI driver. Finally, the VHCI
driver notifies the USB PDD of the completion
of the URB. It also noted that the USB driver
stack and the USB/IP implementation allow a
USB PDD to enqueue multiple URBs simulta-
neously for I/O performance improvement.

An existing RPC mechanism, such as Sun
RPC, can be used to transfer a URB. However,
our prototype implementation simply transfers
a URB by defining SUBMIT and RETURN
PDUs. This implementation approach is quite
simple and practical enough to study the first
feasibility of USB/IP.

All PDUs for a virtually-attached USB de-
vice are transferred by a TCP/IP connection.
In the prototype implementation, the TCP/IP
connection is established by userland software
and its socket descriptor is passed to the VHCI
and Stub driver via /proc file system interfaces.
To transmit the TCP/IP packets as soon as pos-
sible avoiding the buffering delay, the Nagle al-
gorithm 13) is disabled. The current USB/IP
implementation does not use UDP/IP commu-
nication. The characteristics of the transmis-
sion errors of USB and UDP/IP are quite differ-
ent. Though the host controller does not resub-
mit failed Isochronous transactions, USB PDDs
and devices expect that most transactions suc-

This algorithm states that no small packets will be
sent on the connection until the existing outstanding
data is acknowledged.

ceed. These transaction failures seldom occur
unless broken devices or cables are used. There-
fore, the transport layer for URBs must guar-
antee the data arrival in order and retransmit
lost packets.

To use remote devices over IP network, the
appropriate error recovery should be consid-
ered. The error recovery of USB/IP exploits
the semantics of USB. If the TCP/IP con-
nection is suddenly disconnected, the VHCI
driver detaches the device virtually and the
Stub driver resets the device. In the same way
as directly-attached USB devices, some applica-
tions and drivers may lose their data. However,
this recovery policy is appropriate to LAN en-
vironments, in which sudden disconnection of
TCP/IP seldom occurs. The USB/IP imple-
mentation is kept simple by this policy.

The current USB/IP implementation does
not allow multiple computers to access a shared
USB device simultaneously. This design crite-
rion is logical because the USB architecture is
designed to provide one computer with periph-
eral device access. At the beginning of USB/IP
access to a shared device, a computer needs
to connect the device exclusively. If the de-
vice is already used by another computer, the
computer cannot use the device until another
computer disconnects the device. Even though
shared device access is exclusive, USB/IP gives
a fair degree of transparency for remote shared
devices.

We have implemented USB/IP for Linux Ker-
nel 2.6 series. A simple USB/IP application
is also developed as in Fig. 3. As this figure
shows, a user selects a shared USB device on
a server machine and attaches it to a client
computer. To attach a remote shared device
virtually, a userland program devconfig in the
client initiates a TCP/IP connection and passes
an established TCP/IP socket to the VHCI



398 IPSJ Digital Courier Sep. 2005

% devconfig list list available remote devices
3: IO-DATA DEVICE, INC. Optical Storage
: IP:PORT : 10.0.0.2:3000
: local_state : CONN_DONE
: remote_state : INUSE
: remote_user : 10.0.0.3
: remote_module: USBIP

2: Logitech M4848
: IP:PORT : 10.0.0.2:3000
: local_state : DISCONN_DONE
: remote_state : AVAIL
: remote_user : NOBODY
: remote_module: USBIP

% devconfig up 3 attach a remote DVD Drive
% ...
% ... mount/read/umount a DVD-ROM
% ... play a DVD movie
% ... record data to a DVD-R media
% ...
% devconfig down 3 detach a remote DVD Drive

Fig. 3 USB/IP application usage.

Table 2 Machine specifications for experiments.

CPU Intel Pentium III 1GHz
Memory SDRAM 512MB
NICs (client/server) NetGear GA302T
NICs (NIST Net) NetGear GA620
USB 2.0 Interface NEC µPD720100

driver via /proc file system. In this paper, we
focus on the basic architecture of USB/IP and
its performance evaluation. The device discov-
ery, the authentication and the security will be
described in another paper.

3. Evaluation

In this section, we show the USB/IP char-
acteristics. We have conducted several exper-
iments to measure the USB/IP performance.
The used computers are listed in Table 2. To
emulate various network conditions, we use the
NIST Net 1) package on Linux Kernel 2.4.18.
A client machine and a server machine are
connected via a NIST Net machine, shown in
Fig. 4. Both the client and server machines
run Linux Kernel 2.6.8 with the USB/IP ker-
nel modules.

3.1 Performance Evaluation of Data
Sink/Source

In this subsection, we used a pure sink/source
USB device rather than a consumer USB de-
vice, to clarify the characteristics of USB/IP
itself. A USB peripheral development board
with a Cypress Semiconductor EZ-USB FX2
chip 3) was programmed to be a sink/source
of USB data. When programmed as a data
sink, the board receives output data of Bulk
or Isochronous transfer types from a computer.
When programmed as a data source, the board
sends input data of Bulk or Isochronous trans-
fer types to a computer. We wrote its firmwares

Fig. 4 Experiment environment.

and the test device driver as a USB PDD for the
experiments.

3.1.1 Bulk Transfer
The I/O performance of USB/IP depends on

network delay and the data size of the opera-
tion. In this subsection, we derive the modeled
throughput from the results of experiments and
give the optimization criteria.

The USB/IP overhead for USB requests of
Bulk transfer was measured. As Fig. 5 shows,
the test driver submits a Bulk URB to the re-
mote source USB device, waits for its comple-
tion and then resubmits it continuously. Each
execution time of URB in the client was mea-
sured by the TSC register of Intel Pentium pro-
cessors, changing URB data size and network
RTT. When NIST Net sets network RTT to
0 ms, the actual RTT between a client machine
and a server machine is 0.12 ms by ping.

The result is shown in Fig. 6. The execution
times of URBs are linear to the data size and
the gradients in each case are constant. The
CPU cost for the USB/IP encapsulation is quite
low; in these experiments, it is always under a
few percentages. There is no influence of the
TCP/IP buffering because TCP NODELAY is set
in the socket options. From the graph, the ex-
ecution times toverIP for the data size s is

toverIP = aoverIP × s + RTT .
aoverIP is the gradient value in the USB/IP
cases. Then the throughput thpt is

thpt =
s

toverIP
=

s

aoverIP × s + RTT
. (1)

The regression analysis shows aoverIP is 6.30e-
2 ms/KB and the intercept in the 0 ms case is
0.24 ms. The modeled throughput by Eq. (1)
is illustrated in Fig. 7. The actual throughput
from the experiments is illustrated in Fig. 8.
As these graphs show the same shape, the
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Fig. 5 The summarized driver behavior of the experiments in Section 3.1.1.
In the case of USB/IP, the enqueued URBs are transferred to the
server’s HCD between 1 and 2, and vice versa between 3 and 4.

Fig. 6 Execution time of a URB.

Fig. 7 Throughput from model.

throughput of the model is fully substantiated
by the experimental results. Within the pa-
rameter range of the experiments, this model
is appropriate to estimate the throughput with
URB data size and network RTT.

To summarize these experiments, we have es-
timated the appropriate URB data size under

Fig. 8 Throughput from experiments.

various network delays. With the additional
experiments in which multiple URBs were en-
queued simultaneously, we have confirmed that
the throughput of Bulk transfer is dependent
on the total I/O data size of simultaneously-
enqueued URBs. To keep enough throughput
with some network delay, USB PDDs should
enlarge each URB data size or the queuing
depth of URBs. Moreover, when a large amount
of URBs are enqueued asynchronously under
larger network delay, the TCP/IP window size
must be also enlarged to fill up the network
pipe.

3.1.2 Isochronous Transfer
In this subsection, we examine the isochrony

of USB/IP. To keep periodical transfers for
USB Isochronous devices, the starvation of
transaction requests must be avoided in the
host controller. Therefore, the USB driver
model allows USB PDDs to enqueue multiple
URBs simultaneously. In the case of USB/IP,
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Fig. 9 The summarized driver behavior of the experiments in Section 3.1.2.
In the case of USB/IP, the enqueued URBs are transferred to the
server’s HCD between 1 and 2, and vice versa between 3 and 4.

it is important to select the appropriate queu-
ing depth of URB, as determined by network
delays.

We wrote the firmwares and the test device
driver for an Isochronous source device. The
device and drivers are configured as follows:
• A transaction moves 512 B data in one mi-

croframe (125 us).
• A URB represents 8 transactions.

In this case, the completion handler of the URB
is called every 1 ms (125 us × 8) . Figure 9
shows the detail of the driver behavior in the
experiments. The USB PDD sets up each URB
with the pointer of I/O buffer for 8 transactions
and then enqueues multiple URBs. As a result,
while the host controller keeps pending I/O re-
quests in the Periodic Frame List, the comple-
tion handler is called every 1 ms and the HCD
moves the input data to the USB PDD periodi-
cally. On the other hand, if there is no pending
I/O request in the Periodic Frame List, the host
controller does not copy data and isochronous
data will be lost.

For the directly-attached source device, when
the USB PDD submitted only one URB, the
completion intervals became 11.1 ms because of
the starvation of the requests. When the USB
PDD submitted 2 or more URBs simultane-
ously, the completion intervals kept 1 ms con-

The 1 ms interval in the experiments is selected to
become enough small to examine the isochrony of
USB/IP. In general, the interval of completion is
defined by driver developers as approximately 10ms
considering the smoothness of I/O and the process-
ing cost.

Fig. 10 Mean completion intervals.

stantly. The standard deviations were approxi-
mately equal to 20 ns for any queuing depth.

In the case of USB/IP, Fig. 10 illustrates the
mean completion intervals for various network
RTTs and the queuing depths of submitted
URBs. Even under some network delays, the
USB PDD could get 1 ms completion intervals
with the enough queuing depths. For example,
when the network delay is 8 ms, the appropriate
queuing depth is 10 and more. In this condition,
time series of completion intervals are figured
in Fig. 11. Immediately after the start of the
transfer, the completion intervals vary widely
because the host controller is not still filled with
enough URBs. Once the host controller is filled
and the cycle becomes stable, the completion
intervals keep 1 ms. Figure 12 shows the stan-
dard deviations of completion intervals. With
the sufficient URBs, the measured standard de-
viations are less than 10 us, including the NIST
Net’s deviations 1). These values are less than
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Fig. 11 Time series data of completion intervals
(RTT = 8ms, queuing depth = 10).

Fig. 12 Standard deviations of completion intervals.

one microframe interval (125 us) and enough ac-
curate for most device drivers, because process
scheduling is driven by jiffies, which is incre-
mented every 1 ms in Linux Kernel 2.6 series.
There is no influence of the TCP/IP buffering
because of the socket option TCP NODELAY.

The periodical transfers of USB/IP are illus-
trated in Fig. 13. In this case, the USB PDD in
the client host enqueues 3 URBs which are com-
pleted every xms. For periodical completions
in the server host, the host controller must al-
ways keep multiple URBs enqueued. Therefore,
with the queuing depth q, the time in which the
next URB is pending is

tnpending = (q − 1)x − RTT > 0.
Then, the appropriate queuing depth q is cal-
culated by

q >
RTT

x
+ 1. (2)

In Fig. 10, Eq. (2) can explain the sufficient
queuing depth of URBs in the experiments.

To summarize these experiments, USB PDDs
with periodic transfers must enqueue multiple
URBs to fill the queuing depth q of Eq. (2)

Fig. 13 USB/IP model for periodical transfers.

Fig. 14 usbview output for a USB/IP device.

for continuous stream I/O. In the other net-
works rather than LAN, with jitter or packet
loss, q should be increased with sufficient mar-
gins. The result can be also applied to Inter-
rupt URBs which specify the maximum delay
of completion. This examination continues for
common USB devices over IP network in Sec-
tion 3.2.2.

3.2 Performance Evaluation of USB
Devices

In this subsection, we show the USB/IP char-
acteristics for common USB devices. All USB
devices we have tested can be used as USB/IP
devices. Figure 14 shows that a client host vir-
tually attaches a remote USB camera through
the VHCI driver and a USB device viewer
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Table 3 Specification of the tested USB hard disk.

Product Name IO-DATA HDA-iU120
Interface USB 2.0/1.1, iConnect
Capacity 120GB
Rotation Speed 5,400 rpm
Cache Size 2 MB

usbview 11) gets the device descriptors. No
difference between USB and USB/IP can be
seen except that the host controller is VHCI.
USB PDDs can also control their correspond-
ing remote USB devices without any modifica-
tion themselves. In our LAN environment, the
performance degradation of USB/IP is negligi-
ble for actual usages. The specific details of
each kind of USB/IP devices are described in
the next paragraphs. It should be noted that
the performance of USB/IP becomes worse un-
der a congestion network. However, this issue
will be addressed in future work. For exam-
ple, to transfer USB requests beyond wide area
network, a reservation mechanism of network
resources may be employed with USB/IP.

3.2.1 USB Bulk Device
USB storage devices (e.g., hard disks, DVD-

ROM drives, memory drives, etc.), USB print-
ers, USB scanners and USB Ethernet devices
use USB Bulk transfer mainly. We can use
these devices by USB/IP; for USB storage de-
vices, we can make partitions, file systems,
mount/umount and operate files. Moreover, we
can play DVD videos in remote DVD drives and
can also write DVD-R media, with existing ap-
plications. As described in Section 3.1.1, the
USB/IP performance of USB Bulk devices de-
pends on the queuing strategy of Bulk URBs.
We have tested the original USB storage driver
of Linux Kernel 2.6.8 to show its effectiveness
for USB/IP.

The experiment environments are the same
as those described in Section 3.1.1. NIST Net
was used to emulate various network delays.
We have run Bonnie++ 1.03 2) benchmarks for
ext3 file system on a USB hard disk described
in Table 3. Bonnie++ measures performances
of hard drives and file systems, by the file I/O
tests and the file creation/deletion tests. The
file I/O tests include sequential I/O per char-
acter and per block and random seeks. The file
creation/deletion tests do creat/stat/unlink
a lot of small files.

Figures 15 and 16 show the sequential I/O
throughput and their CPU usages on the client
by USB and USB/IP, respectively. Figure 17

Fig. 15 Bonnie++ Benchmark (sequential Read/
Write throughput on USB and USB/IP).

Fig. 16 Bonnie++ Benchmark (sequential Read/
Write CPU usage on USB and USB/IP).

Fig. 17 Bonnie++ Benchmark (sequential Read/
Write throughput on USB/IP).

shows sequential I/O throughput by USB/IP
under various network delays. For char write
and block write, the throughput by USB/IP
when NIST Net’s RTT is 0ms (0.12ms by ping)
is approximately 77% of the throughput by only
USB, for rewrite 66%, for char read and block
read 79% and 54%, respectively. Because the
graph shows that there is enough room in the
CPU usage, the performance degradation of the
USB/IP case can be attributed to insufficient
queuing data size. The Linux USB storage
driver is implemented as a glue driver between
the USB and SCSI driver stacks. For the SCSI
stack, the USB storage driver is a SCSI host
driver. A SCSI request with scatter-gather lists
is repacked into several URBs which are respon-
sible for each scatter-gather buffer. The Linux
USB storage driver does not support the queu-
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Fig. 18 Bonnie++ Benchmark (random seek speed
on USB/IP).

Fig. 19 Bonnie++ Benchmark (Create/Delete speed
on USB/IP).

ing of multiple SCSI requests. Therefore, a to-
tal I/O data size of URBs submitted simulta-
neously is the same as each SCSI request size;
in the case of the block write, this is approxi-
mately 128 KB. This queuing data size is small
for USB/IP under some network delays, as we
have considered in Section 3.1.1. To optimize
the sequential I/O throughput for USB/IP, the
reasonable solution is that the USB storage
driver should provide the SCSI request queu-
ing.

The throughput of random seek I/O by
USB/IP is illustrated in Fig. 18. This test runs
a total of 8000 lseek in a file randomly with
three seek processes. A seek process reads a
block in each case and also writes back the block
in 10% of cases. The throughput by only USB is
167KB/s. The throughput difference between
USB and USB/IP is quite smaller than that
of sequential I/Os. The CPU usages in both
the USB and USB/IP cases are 0%. Random
seek I/O has its bottleneck in the seek speed
of a USB hard disk itself. The seek speed of
the hard disk is relatively slower than those
of read/write I/Os; the rational speed of USB
hard disk tested is 5,400 rpm and its seek speed
is approximately 10 ms.

Figure 19 shows the speed of file creation
and deletion by USB/IP under various network
delays. The speeds by USB are 682/s in the

sequential creation, 719/s in the random cre-
ation and 2,687/s in the deletion. In all the
cases, the CPU usages are over 90%. The dif-
ferences between USB and USB/IP are quite
small and the speeds of each test are almost
constant under various network delays. In the
file creation/deletion tests, the bottleneck is the
CPU resources.

3.2.2 USB Isochronous Device
USB multimedia devices, such as USB cam-

eras and USB speakers, use USB Isochronous
transfer to move their periodical data. We
have tested a USB camera with the OmniVison
OV511 chip and a USB Audio Class speaker.
These devices work completely by USB/IP in
our LAN; we can capture the video from the
camera and play some music by the speaker.

The Linux USB Audio Class driver submits 2
URBs simultaneously for multi-buffering. Each
URB is responsible for 5ms transactions. Equa-
tion (2) shows this driver can play the speaker
by USB/IP under less than 5 ms network de-
lays. For larger network delays, the easy and
effective solution is that the completion inter-
val of each URB should be enlarged. However,
there is also the drawback that such modifica-
tion makes the I/O response worse than ever.

3.2.3 USB Interrupt Device
USB Human Input Devices, such as USB key-

boards and USB mice, use USB Interrupt trans-
fer to move data sporadically like IRQ. Some
other devices also use the Interrupt transfer to
notify their status changes. In our LAN, we can
use these devices by USB/IP comfortably with
consoles and X Window System.

Most USB HID drivers submit only one URB
whose completion delay is 10ms. After the
URB is completed, the driver resubmits it. The
drivers read the interrupt data every 10 ms,
which is accumulated in the device endpoint
buffer. Under large network delays, the pos-
sible pitfall is that the device endpoint buffer
may overflow. Under more than 100ms net-
work delays, the users may feel odd for their
input devices. The former problem can be re-
solved by enqueuing more URBs not to overflow
the endpoint buffer. The latter problem is un-
derlying in any network program with human
interaction.

4. Related Work

iSCSI 14) transports the SCSI packets over
TCP/IP and provides the access to storage de-
vices beyond IP networks. It is worthy of re-
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mark that iSCSI is the extension of a SCSI
bus to IP networks and its protocol has basi-
cally network transparency and interoperabil-
ity. However, iSCSI supports only storage de-
vices. Our USB/IP has the advantage that all
types of devices, including isochronous devices,
can be controlled over IP networks.

Network File System (NFS) 15) is widely used
to share storage devices between computers.
Since NFS is implemented using the virtual file
system (VFS) layer in the UNIX operating sys-
tem, it is not able to share either the common
APIs for block devices nor the native I/O op-
erations for ATA or SCSI disks, both of which
are lower-level functions than the VFS. For ex-
ample, the NFS protocol does not define meth-
ods to format a remote storage device, or to
eject a remote removable media device. How-
ever, USB/IP provides all the functions of a re-
mote shared device because it is implemented
in the lowest layer of an operating system.

University of Southern California’s Netsta-
tion 4)∼6) is a heterogeneous distributed sys-
tem composed of processor nodes and network-
attached peripherals. The peripherals (e.g.,
camera, display, emulated disk, etc.) are di-
rectly attached to a shared 640 Mbps Myrinet
or to a 100 Mbps Ethernet. The goal of Netsta-
tion is to share resources and improve system
configuration flexibility. In this system, VISA
(Virtual Internet SCSI Adapter) 12) emulates
disk drives using UDP/IP. This project is simi-
lar to our proposed system; both systems use IP
network to transfer peripherals’ data 8). How-
ever, while Netstation studied network-based
computer architecture and substitutes existing
systems, our system aims to share already-
attached devices between heterogeneous com-
puters and proposes the most practical ap-
proach in existing operating systems and ap-
plications with exploiting today’s sophisticated
peripheral buses and their device drivers.

The Inside Out Network’s AnywhereUSB 9)

is a network-enabled USB hub. By their pro-
prietary USB over IP technology, it provides
remote access to the USB devices attached
to its USB ports in a quite limited manner.
It supports only USB Bulk and Interrupt de-
vices within 12 Mbps mode under LAN envi-
ronments; most USB storage devices, which
are now implemented as 480 Mbps devices, and
USB isochronous devices are out of its target.
Our USB/IP supports all types of USB de-
vices with 480 Mbps mode. Our evaluation has

shown that in LAN environments all the devices
work perfectly with the original PDD. More-
over, the optimization strategy is also presented
to utilize our USB/IP more effectively even un-
der larger network delays.

As one of the applications of USB/IP, it
is possible to develop device switching soft-
ware like existing KVM (Keyboard, Video, and
Mouse) switches. These switching appliances
have a virtual USB keyboard and mouse inside
to always emulate these attachments to com-
puters. This approach is also appropriate to the
device switching software of USB/IP. USB/IP
can provide all kinds of USB devices with fairly
direct access over IP networks, which are now
deployed everywhere by diverse media. This
advantage has enormous potentialities for use-
ful applications. A practical application of the
USB/IP technology is now in progress to share
a device more easily between computers.

Wireless USB 18), which is under develop-
ment, employs UWB (Ultra Wide Band) to ex-
pand the USB connectivity. This technology
aims to eliminate USB cables. The communi-
cation range is limited within 10 meters. The
implementation of Wireless USB is almost in
the physical layer of USB. Therefore, this tech-
nology is a complement for our USB/IP; our
USB/IP will be also used for Wireless USB de-
vices. Our USB/IP provides remote device ac-
cess with IP network infrastructures which are
deployed everywhere.

5. Conclusion

We designed and implemented USB/IP as a
transparent device sharing mechanism. We can
use various remote USB devices from existing
applications without any modification of the de-
vice drivers. In our LAN, the I/O performance
of remote USB devices is sufficient for actual us-
age. By the experiments, we showed the char-
acteristics of USB/IP and the optimization cri-
teria for IP networks.

To transfer fine-grained device control op-
erations over IP networks, three design crite-
ria should be considered carefully for the ap-
plied networks. First, for asynchronous devices
as known as bulk devices, the device drivers
should enqueue enough request data to get
the maximum throughput for remote devices.
Second, for synchronous devices as known as
isochronous devices, the smoothness of I/O is
required. The appropriate number of requests
should be enqueued to avoid the starvation of
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requests on the device side. However, large
queuing size makes the responses of each de-
vice worse. Last, the temporal restrictions
of the request responses should be considered.
In greater or lesser degrees, all the requests
have their own temporal restrictions of the re-
sponses. As far as the system works properly, it
is possible to relax the temporal restrictions in
the device drivers or the applications and also
possible to keep the buffering size minimum in
synchronous transfers.

In future work, we continue to improve the
USB/IP technology to support various network
environments efficiently, such as a wireless net-
work and a WAN.

6. Availability

The USB/IP implementation is available un-
der the open source license GPL. The informa-
tion is at http://usbip.naist.jp/.
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