

White Paper:

H.264 / AVC
Context Adaptive Binary Arithmetic Coding
(CABAC)

Iain Richardson

Vcodex

© 2002-2011

White Paper: H.264 CABAC

© Iain Richardson/Vcodex Ltd 2002-2011 Page 2 of 2

Context-Based Adaptive Arithmetic Coding (CABAC)

1 Introduction
The H.264 Advanced Video Coding standard specifies two types of entropy coding:
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding
(VLC). This document provides a short introduction to CABAC. Familiarity with the
concept of Arithmetic Coding is assumed.

2 Context-based adaptive binary arithmetic coding (CABAC)
In an H.264 codec, when entropy_coding_mode is set to 1, an arithmetic coding
system is used to encode and decode H.264 syntax elements. The arithmetic coding
scheme selected for H.264, Context-based Adaptive Binary Arithmetic Coding or
CABAC, achieves good compression performance through (a) selecting probability
models for each syntax element according to the element’s context, (b) adapting
probability estimates based on local statistics and (c) using arithmetic coding.

Coding a data symbol involves the following stages.

1. Binarization: CABAC uses Binary Arithmetic Coding which means that only binary
decisions (1 or 0) are encoded. A non-binary-valued symbol (e.g. a transform
coefficient or motion vector) is “binarized” or converted into a binary code prior to
arithmetic coding. This process is similar to the process of converting a data symbol
into a variable length code but the binary code is further encoded (by the arithmetic
coder) prior to transmission.

Stages 2, 3 and 4 are repeated for each bit (or “bin”) of the binarized symbol.

2. Context model selection: A “context model” is a probability model for one or more
bins of the binarized symbol. This model may be chosen from a selection of available
models depending on the statistics of recently-coded data symbols. The context model
stores the probability of each bin being “1” or “0”.

3. Arithmetic encoding: An arithmetic coder encodes each bin according to the selected
probability model. Note that there are just two sub-ranges for each bin (corresponding
to “0” and “1”).

4. Probability update: The selected context model is updated based on the actual
coded value (e.g. if the bin value was “1”, the frequency count of “1”s is increased).

3 The coding process

We will illustrate the coding process for one example, MVDx (motion vector difference
in the x-direction).

White Paper: H.264 CABAC

© Iain Richardson/Vcodex Ltd 2002-2011 Page 3 of 3

1. Binarize the value MVDx . Binarization is carried out according to the following table
for |MVDx|<9 (larger values of MVDx are binarized using an Exp-Golomb codeword).

|MVDx| Binarization
0 0
1 10
2 110
3 1110
4 11110
5 111110
6 1111110
7 11111110
8 111111110

(Note that each of these binarized codewords are uniquely decodeable).

The first bit of the binarized codeword is bin 1; the second bit is bin 2; and so on.

2. Choose a context model for each bin. One of 3 models is selected for bin 1, based
on previous coded MVD values. The L1 norm of two previously-coded values, ek, is
calculated:

ek = |MVDA| + |MVDB| where A and B are the blocks immediately to the left and

above the current block (respectively).

ek Context model for bin 1
0 ≤ ek < 3 Model 0
3 ≤ ek <
33

Model 1

33 ≤ ek Model 2

If ek is small, then there is a high probability that the current MVD will have a small
magnitude; conversely, if ek is large then it is more likely that the current MVD will
have a large magnitude. We select a probability table (context model) accordingly.

The remaining bins are coded using one of 4 further context models:

Bin Context model
1 0, 1 or 2 depending on

ek
2 3
3 4
4 5
5 6
6 and
higher

6

3. Encode each bin. The selected context model supplies two probability estimates: the
probability that the bin contains “1” and the probability that the bin contains “0”. These
estimates determine the two sub-ranges that the arithmetic coder uses to encode the
bin.

White Paper: H.264 CABAC

© Iain Richardson/Vcodex Ltd 2002-2011 Page 4 of 4

4. Update the context models. For example, if context model 2 was selected for bin 1
and the value of bin 1 was “0”, the frequency count of “0”s is incremented. This means
that the next time this model is selected, the probability of an “0” will be slightly
higher. When the total number of occurrences of a model exceeds a threshold value,
the frequency counts for “0” and “1” will be scaled down, which in effect gives higher
priority to recent observations.

4 The context models

Context models and binarization schemes for each syntax element are defined in the
standard. There are a total of 267 separate context models, 0 to 266 (as of September
2002) for the various syntax elements. Some models have different uses depending on
the slice type: for example, skipped macroblocks are not permitted in an I-slice and so
context models 0-2 are used to code bins of mb_skip or mb_type depending on
whether the current slice is Intra coded.

At the beginning of each coded slice, the context models are initialised depending on
the initial value of the Quantization Parameter QP (since this has a significant effect on
the probability of occurrence of the various data symbols).

5 The arithmetic coding engine

The arithmetic decoder is described in some detail in the Standard. It has three distinct
properties:
1. Probability estimation is performed by a transition process between 64 separate
probability states for “Least Probable Symbol” (LPS, the least probable of the two
binary decisions “0” or “1”).
2. The range R representing the current state of the arithmetic coder is quantized to a
small range of pre-set values before calculating the new range at each step, making it
possible to calculate the new range using a look-up table (i.e. multiplication-free).
3. A simplified encoding and decoding process is defined for data symbols with a near-
uniform probability distribution.

The definition of the decoding process is designed to facilitate low-complexity
implementations of arithmetic encoding and decoding. Overall, CABAC provides
improved coding efficiency compared with VLC at the expense of greater
computational complexity.

Further reading

Iain E Richardson, “The H.264 Advanced Video Compression Standard”, John Wiley &
Sons, 2010.

White Paper: H.264 CABAC

© Iain Richardson/Vcodex Ltd 2002-2011 Page 5 of 5

About the author

Iain Richardson wrote the books on H.264 video compression : see
http://vcodex.com/h264book/. A founder of OneCodec, he is changing the way video
coding works.

Iain Richardson
iain@onecodec.com
http://onecodec.com

